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Denoised Senone I-Vectors for Robust Speaker
Verification
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Abstract—Recently, it has been shown that senone i-vectors,
whose posteriors are produced by senone deep neural networks
(DNNs), outperform the conventional Gaussian mixture model
(GMM) i-vectors in both speaker and language recognition tasks.
The success of senone i-vectors relies on the capability of the DNN
to incorporate phonetic information into the i-vector extraction
process. In this paper, we argue that to apply senone i-vectors in
noisy environments, it is important to robustify the phonetically
discriminative acoustic features and senone posteriors estimated
by the DNN. To this end, we propose a deep architecture
formed by stacking a deep belief network (DBN) on top of
a denoising autoencoder (DAE). After backpropagation fine-
tuning, the network, referred to as denoising autoencoder–deep
neural network (DAE–DNN), facilitates the extraction of robust
phonetically-discriminitive bottleneck (BN) features and senone
posteriors for i-vector extraction. We refer to the resulting i-
vectors as denoised BN-based senone i-vectors. Results on NIST
2012 SRE show that senone i-vectors outperform the conventional
GMM i-vectors. More interestingly, the BN features are not only
phonetically discriminative, results suggest that they also contain
sufficient speaker information to produce BN-based senone i-
vectors that outperform the conventional senone i-vectors. This
work also shows that DAE training is more beneficial to BN
feature extraction than senone posterior estimation.

Index Terms—speaker verification, i-vectors, phonetically dis-
criminative features, senone posteriors, deep learning, denoising
autoencoders, noise robustness.

I. INTRODUCTION

Speaker verification, an important pathway to biometric
authentication, has been dominated by the combination of
the i-vector approach [1] and probabilistic linear discriminant
analysis (PLDA) [2] since 2011. The former is considered as
a feature extraction method that converts variable-length utter-
ances into fixed-length feature vectors. The latter is a proba-
bilistic backend where unwanted variabilities are marginalized
out when computing the likelihood ratio scores. To raise
the efficiency of this framework, efforts have been made to
improve the combination of i-vector and PLDA. For example,
Cumani and Laface [3] proposed nonlinearly transforming the
i-vectors to make them more suitable for PLDA modeling.

A major limitation of the i-vector/PLDA framework is
that the speaker characteristics in i-vectors can be easily
distorted by background noise and reverberation effects. One
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approach to improving the robustness of i-vector systems is to
directly reduce the distortion at the spectral level. For example,
Xing and Hansen [4] reduced the frequency-shift distortion
due to modulation/demodulation carrier mismatch for speaker
recognition. Human tend to change their vocal effort under
noisy environments (a phenomenon known as the Lombard
effect), causing acoustic mismatch between normal speech
and shouted speech. Saedi et al. [5] addressed this problem
by compressing/expanding power spectra in autocorrelation-
based linear prediction features. Both [4] and [5] demonstrate
that reducing spectral distortion can make the i-vectors more
resilient to background noises.

The use of speech enhancement techniques to improve
speaker recognition performance has drawn the attention of the
speaker recognition community. Unlike conventional speech
enhancement, the goal is to robustify the feature vectors
instead of reconstructing the clean waveforms. For example,
Hasan and Hansen [6] performed feature-domain factor analy-
sis to enhance and transform acoustic vectors. The transformed
feature vectors were then used for computing the sufficient
statistics in the i-vector extraction procedure. In [7], [8],
[9], i-vectors extracted from short utterances or from noisy
utterances are restored by stacked denoising autoencoders [10].

Attempts have also been made to improve noise robustness
in PLDA models. For example, Hasan et al. [11] and Garcia-
Romero et al. [12] trained a PLDA model by pooling speeches
from multiple conditions, and Li and Mak [13], [14] modeled
the noise-level variability in utterances by introducing an SNR
factor and an SNR subspace into the PLDA model. In [15],
[16], Mak et al. advocated that utterances of different SNR
levels will not only cause i-vectors to fall on different regions
of the i-vector spaces but also change the orientation of
the speaker subspace. A mixture PLDA model with mixture
alignments determined by the SNR level of utterances was
then derived to model SNR-dependent i-vectors.

Because of the great success of deep neural networks
(DNNs) [17], convolutional neural networks (CNNs) [18] and
recurrent neural networks (RNNs) [19], [20], [21] in automatic
speech recognition (ASR), the application of deep learning
[22] to speaker verification has been under the spotlight
recently. One promising approach is to replace the PLDA
backend by DNNs. For instance, Ghahabi and Hernando [23]
trained one DNN for each target speaker to discriminate
his/her i-vectors from those of the other speakers. Each DNN
receives i-vectors as input and produces the posterior proba-
bilities of the target and non-target classes as output. Given
a test i-vector, the log-posterior ratio can then be obtained
from the network outputs. In [24], the whole i-vector extraction

This is the Pre-Published Version.
The following publication Z. Tan, M. Mak, B. K. Mak and Y. Zhu, "Denoised Senone I-Vectors for Robust Speaker Verification," in IEEE/ACM 
Transactions on Audio, Speech, and Language Processing, vol. 26, no. 4, pp. 820-830, April 2018 is available at https://doi.org/10.1109/
TASLP.2018.2796843.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works.



2

cum PLDA scoring pipeline is replaced by RNNs. Specifically,
long short-term memory RNNs were collaboratively trained
for speech and speaker recognition tasks, and the contextual
information obtained from the speech recognition RNN was
found to be assistive to the speaker recognition RNN.

Another promising approach is to integrate DNNs into
the i-vector framework. Campell [25] used DBNs pre-trained
by contrastive divergence [26] to generate the posteriors of
the mixtures of a universal background model (UBM). The
posteriors are then used for computing the sufficient statistics
of vector-based speaker recognition systems. Lei et al. [27],
[28] replaced the posteriors of UBM’s mixture components
in the i-vector extractor by the posteriors of senones. In this
approach, acoustic frames are aligned to senones by a DNN
so that speakers can be compared based on the same set of
sub-phonetic units [29].

It is believed that better and possibly more robust features
can be extracted from DNNs. For example, bottleneck features
were extracted from DNNs in [30], [31]. The bottleneck
features can replace the standard mel-frequency cepstral coef-
ficients [32]. A similar idea has also been applied to i-vector
based DNN adaptation for robust speaker recognition [33].
Richardson et al. [34] demonstrated that GMM i-vectors based
on the phonetically discriminative BN features outperforms
the ones based on MFCC significantly on the 2013 Domain
Adaptation Challenge (DAC13). Sarker et al. [35] showed
that the phonetically discriminative BN features are com-
plementary to the short-term cepstral features, and therefore
improve the performance significantly on NIST 2008 and 2010
SRE by both score domain and feature domain fusion. These
works show that the phonetically discriminative BN features
still retain speaker-specific information, possibly taking the
benefits of the contextual input window of DNNs.

This paper explores and extends our early work [36] on
using DNNs for extracting phonetically discriminative and
noise robust bottleneck features from noisy speech and for
computing senone posteriors for BN-based i-vector extraction.
We have recently proposed a denoising autoencoder–deep
neural network by stacking restricted Boltzmann machines
(RBMs) on top of a denoising autoencoder [37]. The whole
network was trained to produce the posteriors of speaker
IDs given noisy speech as input. Bottleneck features were
then extracted from the RBM layer just below the output
(softmax) layer. Results in [37] suggest that the DAE is very
effective in suppressing the effect of noise in the input speech,
making the BN features noise robust. Similar to the DNNs
in d-vectors [38] and speaker embedding [39], the DNN in
[37] produces speaker posteriors. Because the DNNs of these
methods are trained to produce speaker posteriors, their frame-
based activations at the bottleneck layer tend to be very similar
across the whole utterance. As will be explained in Section II-
A, this property will cause numerical difficulty when training
the BN-based UBM and the total variability (TV) matrix when
the utterances are long. The d-vectors and speaker embedding
avoid this problem by averaging the activations across the
frames of the entire utterance, which essentially bypasses
the UBM training and TV matrix estimation. However, the
averaging process throws away lots of speaker information

in the frame-based BN vectors, which explains why the
performance of d-vectors and speaker embedding is poorer
than i-vectors for long utterances [38], [39].

To exploit the denoising capability of denoising autoen-
coders (DAE) without throwing away speaker information,
we propose training the denoising DNN in [37] to produce
senone posteriors instead of speaker posteriors. The advantage
of this strategy is that as long as a training utterance is
phonetically balanced, its BN vectors will be scattered over
different regions of the BN feature space, which solves the
numerical problem. With the denoising capability of DAE,
the network can produce noise robust BN features and robust
senone posteriors for i-vector extraction. We refer to the
resulting network as DAE–DNN.

Experimental results on NIST 2012 SRE demonstrate that
the proposed BN-based i-vectors are less susceptible to babble
noise, even at 0dB. We found that no matter under the GMM
i-vector framework or the senone i-vector framework, the
phonetically discriminative BN features outperform MFCC in
speaker verification tasks. This suggests that the phonetically
discriminative BN features still retain speaker-specific infor-
mation. Furthermore, we demonstrate that the denoising capa-
bility works for our denoised BN-based senone i-vectors rather
than the denoised MFCC-based senone i-vectors. Specifically,
by comparing the combinations of phonetically discriminative
BN features and senone posteriors with and without DAE
training, we validate that the DAE training is more useful for
extracting phonetically discriminative BN features than esti-
mating senone posteriors, especially under common condition
5 of NIST 2012 SRE.

II. SYSTEM OVERVIEW

A. Conventional I-vector Extractor

I-vector extraction is a factor analysis method that com-
presses all sort of variabilities in speech (including speaker
variability) into a low-dimensional subspace of the GMM-
supervector space [40]. One important property of i-vectors
is that they are low-dimensional representations of utterances
regardless of their duration.

We denote Oi = {oi1, . . . ,oiTi
} as a set of F -dimensional

acoustic vectors of the i-th utterance, such as MFCC, which
are assumed to follow a mixture distribution:

p(oit) =

C∑
c=1

λcp(oit|c),

where p(oit|c) is the conditional likelihood of oit and λc’s are
the mixture weights. The GMM-supervector representing the
i-th utterance is assumed to be generated by a factor analysis
model:

µi = µ
(b) + Twi, (1)

where µ(b) is the supervector formed by stacking the mean
vectors of a universal background model (UBM), T is a
CF ×D low-rank total variability matrix (T-matrix) modeling
the speaker and channel subspaces, and wi is a D-dimensional
latent factor whose prior follows a standard Gaussian distribu-
tion N (0, I). While µi and wi are utterance-dependent, µ(b)

and T are shared across all speakers and utterances.
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Eq. 1 is a generative model in that given the wi of a
speaker, his/her supervector µi can be generated. Of course,
the model is not perfect and there will be discrepancy (error)
between the truth value of µi and the generated one. In factor
analysis, we typically assume that the discrepancy follows a
Gaussian distribution with zero mean and covariance Σ. As
the dimension of µi is very high, Σ is assumed to be diagonal.
In most practical implementation of i-vector extraction, Σ is
approximated by the covariance matrices in the UBM, i.e.,

Σ ≈ diag{Σ(b)} = diag{Σ(b)
1 , . . . ,Σ

(b)
C },

where Σ(b)
c is the c-th covariance matrix of the UBM, which

is typically diagonal.
Given N training utterances, the T-matrix can be estimated

by the following EM algorithm [41], [42]:
• E-step:

〈wi|Oi〉 = L−1i

C∑
c=1

T ᵀ
c (Σ

(b)
c )−1f̃ ic, (2a)

〈wiwi
ᵀ|Oi〉 = L−1i + 〈wi|Oi〉〈wi|Oi〉ᵀ, (2b)

Li = I +

C∑
c=1

N icT
ᵀ
c (Σ

(b)
c )−1T c, (2c)

where i = 1, . . . , N .
• M-step:

T c =
[∑

i
f̃ ic〈wi|Oi〉ᵀ

] [∑
i
Nic〈wiwi

ᵀ|Oi〉
]−1

. (3)

In Eq. 2 and Eq. 3, 〈·|·〉 denotes conditional expectation; i
indexes the set of training utterances; N is the number of
training utterances; T c is the c-th partition of T ; Σ(b)

c is the
c-th covariance matrix of the UBM; Nic and f̃ ic are the 0th-
and 1st-order Baum-Welch statistics respectively:

Nic =
∑

t
γc(oit),

f̃ ic =
∑

t
γc(oit)(oit − µ(b)

c ).
(4)

Given the t-th frame of the i-th utterance, oit is the MFCC
vector of the t-th frame and γc(oit) in Eq. 4 is the posterior
of the c-th mixture component in the UBM:

γc(oit) =
λ
(b)
c N (oit|µ(b)

c ,Σ(b)
c )∑C

j=1 λ
(b)
j N (oit|µ(b)

j ,Σ
(b)
j )

, (5)

where
{
λ
(b)
j ,µ

(b)
j ,Σ

(b)
j

}C

j=1
are UBM parameters.

Once the T-matrix has been estimated, the i-vector 〈wi|Oi〉
representing the i-th utterance can be computed according to
Eq. 2a.

Note that the acoustic vectors oit’s are not limited to
MFCCs. Instead, they can be BN vectors extracted from a
DNN. However, caution should be taken when BN vectors
are used. If the DNN is trained to produce speaker posteriors,
the BN vectors from the same utterance will be very similar
because they come from the same speaker. In other words, for
the entire utterance, the frame-based activations at the bottle-
neck layer are very similar so that the DNN can give a large

posterior probabilities in the output node corresponding to the
speaker and small probabilities in the rest. The similarity in the
BN vectors causes them to align to the same (potentially small)
group of Gaussians in the BN-based UBM. This property leads
to sparsity in the zeroth- and first-order statistics in Eq. 4,
which in turns causes numerical difficulty when computing the
matrix inverses in Eq. 2 and Eq. 3. Another issue is that the
BN vectors tend to form isolated islands in the BN space (oth-
erwise they cannot differentiate speakers). The small within-
speaker variances essentially reduce the effective number of
vectors for training the BN-based UBM, which again causes
numerical problems. Both of these drawbacks motivate us to
use senone posteriors instead of speaker posteriors, as detailed
in Section II-D.

B. Generalized I-vector Extractor

In most systems, {µ(b)
c } and {Σ(b)

c } in Eqs. 2–5 are
obtained from the UBM. However, they can also be computed
from the sufficient statistics as follows:

µc =

∑
i

∑
t γc(oit)oit∑
iNic

Σc =

∑
i

∑
t γc(oit)(oit − µc)(oit − µc)

ᵀ∑
iNic

.

Therefore, without the UBM, we can still estimate the T-
matrix and i-vectors as long as the Baum-Welch statistics are
available. In fact, only the observed vectors oit and the mixture
posteriors γc(oit) are necessary for i-vector extraction.1 This
means that we may replace the MFCC by other types of
acoustic features and estimate the mixture posteriors γc(oit)
from other model, such as a DNN, rather than the UBM.
Specifically, the acoustic feature vectors and mixture posteriors
can respectively be written in more general forms:

oit = f(sit) and γc(sit) = P (c|sit), (6)

where sit represents the speech signal in a contextual window
comprising multiple frames centered at frame t and f(sit) is
a function that maps acoustic vectors in sit to oit.

C. DNN with Denoising Autoencoder

In [28], P (c|sit)’s in Eq. 6 are given by a DNN that is
trained to produce the posteriors of senones given multiple
frames of MFCCs as input. In this work, we trained a DNN
formed by stacking a deep belief network (DBN) on top of
a denoising autoencoder [37] to improve the noise robustness
of P (c|sit). The network architecture of the stacked DNN is
shown in the right part of Fig. 1. Because of the denoising
capability of the DAE and the classification capability of the
DNN, we refer to the stacked DNN as denoising autoencoder–
deep neural network (DAE–DNN).

Fig. 1 illustrates the procedure to train the DAE–DNN. To
equip the autoencoder with denoising capability, we used both
clean and noisy speech as input and their corresponding clean
counterpart as the target output. The denoising autoencoder

1In some literatures, γc(oit)’s are referred to as frame posteriors. But they
are in fact the posterior probabilities of mixture components.
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Fig. 1. Procedure of training the Denoising Autoencoder–Deep Neural Network (DAE–DNN).

comprises multiple layers of restricted Boltzmann machines,
which are trained layer-by-layer using the contrastive diver-
gence algorithm [26] [43]. Only the bottom half of the RBMs
need to be trained, and the upper half are the mirrored copies
of the lower half due to the symmetry of the autoencoder.
Since we used MFCCs as inputs to the DNN, the first RBM is a
Gaussian-Bernoulli RBM and the last layer of the autoencoder
is linear. The denoising autoencoder is then fine-tuned by
the backpropagation algorithm to minimize the squared errors
between the outputs and the clean MFCCs. In practice, we
obtained the clean–noisy sample pairs by adding babble noise
to clean speech using the FaNT tool [44], which will be
explained in Section III-A.

Once the denoising autoencoder has been trained, we built
the DAE–DNN using the senone labels as the targets. By
adding three layers of RBMs on top of the DAE, the network
can extract the phonetic information even if the input is noisy.

To enrich the contextual information in Oi, the vectors oit’s
are extracted from the bottleneck layer just below the softmax
layer of the DNN (the blue nodes in Fig. 1). More precisely,
f(sit) in Eq. 6 represents the combined effect of the denoising
operation in the DAE and the feature extraction operation in
the DNN using contextual MFCCs (sit) as input. The first
RBM on top of the DAE is Gaussian-Bernoulli and the last
RBM is Bernoulli-Gaussian where the Gaussian hidden layer
is of small size. This creates a bottleneck layer (BN) from
which the low dimensional BN features can be extracted. The
BN features replace the MFCCs during i-vector extraction.

Except for the BN layer and the last layer of the DAE, all
hidden layers comprise sigmoid units. The output comprises
softmax nodes. More specifically, assume that there are K

distinct senones, the DNN outputs are given by

yk(x) =
ehk(x)∑K

k′=1 e
hk′ (x)

, k = 1, . . . ,K,

where x is the input to the DNN, hk is the activation of the
k-th output node, and yk(x) is the softmax output of node k.
The network is trained by minimizing the cross-entropy:

E(X ,Z, C) = −
∑K

r=1

∑Mr

j=1

∑K

k=1
zr,j,k log(yk(xr,j))

where zr,j’s are one-of-K vectors indicating to which senone
the input vector xr,j belongs and Mr is the number of vectors
from senone r. To be more precise, xr,j comprises contextual
frames of MFCCs, which has the same meaning as sit in Eq. 6.

To train the DNN, we need to collect all contextual frames
of MFCCs belonging to the same senone (indexed by r). To
avoid confusion, we use another symbol x and another set of
subscripts (r and j) to highlight the grouping procedure.

D. Senone I-vectors

The procedures in Sections II-B and II-C produce a new
variant of i-vectors: senone i-vectors. If the DAE–DNN can
be integrated into the i-vector extractor, the resulting senone
i-vectors should be noise robust. They should also outperform
the conventional i-vectors due to the phonetic information
from the BN layers.

Fig. 2 illustrates the procedure of senone i-vector extraction.
As we have discussed in Section II-B, only the 0th-, 1st-
and 2nd-order Baum-Welch statistics are needed for T-matrix
training, and the 0th- and 1st-order statistics are necessary
for i-vector extraction. The key idea in this work is to replace
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MFCCs by BN features and mixture posteriors from the UBM
by senone posteriors from the DAE–DNN.

Since the BN features are highly correlated, we used
principal component analysis (PCA) whitening to perform
decorrelation. The decorrelation process allows us to use
diagonal covariance matrices for the BN-based UBM.

Following the notation in Section II-B, the procedure for
training the T-matrix is as follows:

Step 1: Extract BN feature vectors: o(d)it = BN(sit)

Step 2: Compute senone posteriors: γ
(d)
c (sit) =

PDAE–DNN(c|sit), which is the output of the c-
th node in the softmax output layer.

Step 3: Compute Baum-Welch statistics:

N
(d)
ic =

∑
t
PDAE–DNN(c|sit)

f̃
(d)

ic =
∑

t

[
PDAE–DNN(c|sit)(BN(sit)− µ(d)

c )
]
,

S
(d)
ic =

∑
t

[
PDAE–DNN(c|sit)(BN(sit)− µ(d)

c )×

(BN(sit)− µ(d)
c )ᵀ

]
,

(7)

where

µ(d)
c =

∑
i

∑
t PDAE–DNN(c|sit)BN(sit)∑

iN
(d)
ic

.

Step 4: Compute the covariance matrices

Σ(d)
c =

∑
i S

(d)
ic∑

iN
(d)
ic

. (8)

Step 5: Replace f̃ ic, N ic and Σ(b)
c of Eq. 2 by f̃

(d)

ic , N (d)
ic

and Σ(d)
c in Eq. 7 and Eq. 8:

〈wi|O(d)
i 〉 = L

−1
i

C∑
c=1

T ᵀ
c (Σ

(d)
c )−1f̃

(d)

ic , (9a)

〈wiwi
ᵀ|O(d)

i 〉 = L
−1
i + 〈wi|O(d)

i 〉〈wi|O(d)
i 〉

ᵀ,
(9b)

Li = I +

C∑
c=1

N
(d)
ic T

ᵀ
c (Σ

(d)
c )−1T c,

(9c)

where i = 1, . . . , N . This constitutes the E-step of the
EM algorithm.

Step 6: Replace f̃ ic,N ic and 〈wi|Oi〉 of Eq. 3 by f̃
(d)

ic ,N (d)
ic

and 〈wi|O(d)
i 〉 in Eq. 7 and Eq. 9 to compute the T-

matrix:

T c =
[∑

i
f̃
(d)

ic 〈wi|O(d)
i 〉

ᵀ
]
×[∑

i
N

(d)
ic 〈wiwi

ᵀ|O(d)
i 〉

]−1
.

(10)

This constitutes the M-step of the EM algorithm.
Go back to Step 5 with the updated T-matrix until
convergency.
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Fig. 2. Procedure of senone i-vector extraction.
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Fig. 3. The SNR distributions of the original and noise contaminated test
utterances in NIST 2012 SRE (CC4, male). For the noise contaminated
utterances, babble noise was added to the original utterances at an SNR of
0dB, 6dB, and 15dB, respectively.

Once the T-matrix has been estimated, the i-vector
〈wi|O(d)

i 〉 representing the i-th utterance can be computed
according to Eq. 9a:

〈wi|O(d)
i 〉 = L

−1
i

C∑
c=1

T ᵀ
c (Σ

(d)
c )−1f̃

(d)

ic .

Therefore we can combine the BN features and DNN pos-
teriors to compute the senone i-vectors, and this combination
integrates the phonetic information in the DNN into the i-
vectors.

III. EXPERIMENTS

A. Speech Data and Feature Extraction

Speaker verification experiments were performed on the
NIST 2012 SRE under Common Condition 4 (CC4). This
common condition involves 723 target speakers with 7,116
target utterances from NIST 2006–2010 SREs and 3,900 test
utterances from NIST 2012 SRE, including 125,400 trials in
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core test. Each utterance is about 10 to 300 seconds long,
sampled at 8kHz, recorded by telephones, and spoken in
English. The baseline is a conventional i-vector/PLDA system,
where the acoustic features are MFCCs and the mixture
posteriors were obtained from GMM-based UBMs with 1024
and 2048 mixtures. The test utterances in CC4 has a wide
range of SNR, from 0dB to 50dB as shown in Fig. 3; therefore,
CC4 is appropriate for verifying the noise robustness and
denoising capability of the proposed algorithm.

To investigate the capability of various i-vector frameworks
under noisy environments, we used the FaNT tool [44] to add
babble noise to the target-speaker utterances and test utterances
at the SNR of 15dB, 6dB, and 0dB, respectively. Therefore, we
have four groups of training utterances and four groups of test
utterances, with the first group being the original utterances
and the last three groups having SNRs close to 15dB, 6dB,
and 0dB, respectively. Hereafter, we refer to these 4 groups
as SNR groups. The SNR distributions of the 4 groups of test
utterances in CC4 are shown in Fig. 3. Note that although
the target SNRs that we applied to FaNT are 0dB, 6dB, and
15dB, Fig. 3 shows that the peaks of the SNR distributions
do not align to these targets. The misalignment is due to
the discrepancy in the VAD decisions for adding noise and
for measuring SNRs. Specifically, FaNT has its own VAD
for estimating the amount of noise to be added to the clean
signals, whereas the measured SNRs in Fig. 3 were based on
the voltmeter function in FaNT and the decisions of our own
noise-robust VAD [45].

Because the babble noise poses a great challenge to voice
activity detection (VAD), we used the VAD decisions obtained
from the original test utterances for all of the test conditions.
Although this procedure may give over-optimistic perfor-
mance, it avoids the complications arising from wrong VAD
decisions. It also allows us to purely compare the capability
of different acoustic features and frame-posterior estimation
methods, as the comparisons will become meaningless when
too many non-speech frames are included in the i-vector
extraction processes.

Nineteen MFCCs and log-energy were computed for each
25-ms frame. Together with their 1st and 2nd derivatives, a
60-dimensional acoustic vector was obtained every 10ms.

B. I-vector Extraction

All i-vector extractors have 500 total factors. The PLDA
further reduces the speaker subspace to 150 dimensions. The
GMM–UBMs and the total-variability matrixes were trained
by using the utterances from the original 7,116 target telephone
utterances mentioned earlier and the microphone utterances
(interview speech) of the same set of target speakers in
NIST 2006–2010 SREs. The PLDA model was trained by
using the i-vectors derived from all of the original and noise
contaminated telephone utterances and from the interview
speech segments of NIST 2006–2010 SREs.

C. Senone Label Extraction

We used a DNN–HMM acoustic model trained on
SwitchBoard-1 release 2 to obtain the senone label for each

frame. This release contains approximately 290 hours of US
English telephone conversations spoken by 500 speakers. The
4,870 conversation sides were spliced into 259,890 utterances
for acoustic modeling. The original DNN has 6 hidden layers
with 2,048 nodes per layer, and a softmax output layer with
8,704 nodes, corresponding to 8,704 clustered states (senones).
We further clustered the 8,704 senones into 2,000 senones,
resulting in a DNN with 2,000 outputs nodes. The features are
13-dimensional cepstral mean-variance normalized (CMVN)
MFCCs, and they were extracted from speech data every 10ms
over a window of 25ms. For each frame, its neighbouring 4
frames were included and transformed by linear discriminative
analysis (LDA) to 40 dimensions, followed by maximum-
likelihood linear transformation. Speaker adaptation based on
feature-space maximum likelihood linear regression (fMLLR)
was also applied.

For each frame, the fMLLR-transformed vectors of the 5
preceding and 5 succeeding frames were fed to the DNN,
which outputs the posterior probabilities of different senones,
and the one with the highest posterior is the senone label for
the frame.

D. Training of the DAE–DNN
The input of the DAE–DNN comprises eleven 20-

dimensional MFCC vectors extracted from 11 contextual
frames, which amount to 20×11 = 220 input nodes. Element-
wise z-norm was applied to the 220 inputs so that Gaussian-
Bernoulli RBM pre-training can be applied. As shown in
Fig. 1, the DAE has a structure 220-256-256-256-220, where
the first and the last values are the numbers of inputs and
outputs, respectively. Only the first two layers of the DAE
needed to be pre-trained by contrastive divergence, and the
last two layers were stacked by flipping the first two RBMs.
The DAE’s output layer uses the linear activation function.
After RBM pre-training, the DAE was fine-tuned by back-
propagation (BP) using the the mean squared error criterion.

After BP fine-tuning, three RBMs were put on top of the
DAE, where the bottom one is a Gaussian-Bernoulli RBM
and the top one is a Bernoulli-Gaussian RBM. BP fine-tuning
was then applied to the combined DAE and RBMs using the
2000 senone labels (in one-hot format) as the target outputs
and cross-entropy as the minimization criterion. As shown in
Fig. 1, the final DAE–DNN has a structure 220-256-256-256-
220-256-256-60-2000, where the last softmax layer has 2000
nodes and the bottleneck layer has 60 nodes. Therefore the BN
features have a dimension of 60. The bottleneck layer uses the
linear activation function, and all the other hidden layers use
sigmoid nonlinearity.

The training set for training the DAE–DNN comprises 7,116
clean (original) utterances from NIST 2006–2010 SREs and
their 15dB, 6dB, and 0dB noise contaminated versions, which
amount to a total of 7, 116× 4 = 28, 464 training utterances.
These utterances were spoken by 723 target speakers in CC4 of
NIST 2012 SRE. The DAE on the left of Fig. 1 was trained to
produce the clean MFCCs of the utterances, given the clean or
noisy MFCCs as input. The DAE–DNN on the right of Fig. 1
was trained to produce the senone labels of the clean utterances
based on the ASR–DNN mentioned in Section III-C.
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TABLE I
Performance of various i-vector/PLDA systems on NIST 2012 SRE (CC4, male speaker, core task) with test utterances contaminated with babble noise at

different SNRs. DAE–DNN is DNN with DAE training (Fig. 1). DNN is a DNN pre-trained by RBMs. The UBM here refers to a speaker-independent GMM.
Denoised MFCC is the MFCC denoised by the DAE in Fig. 1 (left panel). BN features: Bottleneck features obtained from the DAE–DNN (Fig. 2)

Original 15dB 6dB 0dB
Acoustic Features Posteriors from EER minDCF actDCF EER minDCF actDCF EER minDCF actDCF EER minDCF actDCF

MFCC UBM(1024-mix) 2.62 0.285 0.835 3.58 0.336 0.847 3.27 0.372 0.871 4.84 0.501 0.915
MFCC UBM(2048-mix) 3.60 0.442 0.969 3.22 0.458 0.966 3.65 0.505 0.976 5.39 0.651 0.989
MFCC DNN 1.69 0.230 0.786 1.92 0.281 0.816 2.64 0.324 0.799 3.16 0.474 0.878
MFCC DAE–DNN 1.82 0.253 0.808 2.75 0.273 0.790 2.57 0.296 0.816 3.43 0.474 0.861

Denoised MFCC DAE–DNN 2.46 0.339 0.933 3.45 0.331 0.907 3.74 0.387 0.924 4.73 0.643 0.942
BN Features DAE–DNN 1.56 0.218 0.859 2.17 0.212 0.799 2.01 0.229 0.817 3.07 0.432 0.852

TABLE II
Performance of BN-based i-vector/PLDA systems on NIST 2012 SRE (CC4, male speaker, core task) with test utterances contaminated with different levels

of babble noise. DAE–DNN is DNN with DAE training (Fig. 1). The UBM here is a speaker-independent GMM trained by using BN features.

Original 15dB 6dB 0dB
Posteriors from EER minDCF EER minDCF EER minDCF EER minDCF

UBM(1024-mix) 3.19 0.357 4.11 0.350 3.73 0.358 4.70 0.484
UBM(2048-mix) 1.97 0.203 2.63 0.245 2.58 0.239 3.70 0.389

DAE–DNN 1.56 0.218 2.17 0.212 2.01 0.229 3.07 0.432

As the procedure in Section II-D and Fig. 2 show, we
can obtain the senone i-vectors by combining BN features
and senone posteriors. With the same PLDA back-end as the
baseline, we can compare the performance of senone i-vectors
with the conventional i-vectors.

E. Enrollment and Test Utterances
Because CC4 in 2012 SRE involves noise-contaminated test

utterances, this test condition covers a wide range of SNR
distribution, and we refer to this test condition as “original”.
In addition to this “original” test condition, we created three
test conditions based on the noise contaminated test utterances
by the FaNT tool as mentioned in Section III-A. Specifically,
for the 15dB test condition, test utterances added noise at
the SNR of 15dB by the FaNT tool were used for scoring,
and similarly for the 6dB and 0dB test conditions. For all
of the original, 15dB, 6dB and 0dB CC4 test conditions of
NIST 2012 SRE, we used the original target-speaker utterances
and their noise contaminated counterparts from the 6dB and
15dB SNR groups as enrollment utterances in order to keep
consistency. Therefore the enrollment utterances were the
same for different test conditions.

We have also performed experiments under CC5 of NIST
2012 SRE, including 62,845 trials in the core test and
1,558,788 trials in the extended test. Unlike the test segments
in CC4, the test segments in CC5 were intentionally collected
in a noisy environment. Therefore, the noisy speech in CC5
is more realistic. The test segments in CC5 have a wide range
of SNRs, from 10dB to over 40 dB. Because most of the test
segments in CC5 have SNR over 20dB, we only used the i-
vectors of the original enrollment segments (which also have
high SNR) to represent the target speakers during the scoring
stage.

F. Producing Likelihood-Ratio Scores
The PLDA model for scoring was trained by the the

original enrollment utterances and their noise contaminated

counterparts from the 0dB, 6dB and 15dB SNR groups. For
real-world deployment, it is desirable to have application-
independent decision thresholds [46] such that not only the
equal error rate (EER) and minimum detection cost (minDCF)
are minimized, but also the actual DCF (actDCF) at specific
thresholds are also small. To this end, all of the original
PLDA scores were subject to score calibration to produce true
likelihood-ratio scores using the Bosaris toolkit [47]:

S′ = w0 + w1S, (11)

where S is the original PLDA scores. This calibration step
only shifts and scales the original PLDA scores, which reduce
the actDCF (primary cost) without affecting the EER and
minDCF.

IV. RESULTS AND DISCUSSION

Table I shows the EER, minDCF and actDCF of various i-
vector/PLDA systems that use different acoustic features and
different ways of computing the senone posteriors or mixture
posteriors. To study the benefit of DAE training in more
details, in addition to the DAE–DNN, we also trained a DNN
without DAE pre-training but with RBM pre-training, i.e., all
hidden layers in Fig. 2 were initialized by RBMs. We refer to
this network as DNN. It has a structure of 220-256-256-256-
256-256-256-60-2000.

Surprisingly, a comparison between the first and the sec-
ond rows of Table I suggests that MFCC-UBM with 2048
mixtures performs worse than the one with 1024 mixtures.
Since the same amount of training data was used in these two
models, increasing the number of mixtures, i.e., increasing the
learning capacity of the model, does not necessarily improve
performance. Furthermore, for UBM with 2048 mixtures,
the misalignment of speech frames to mixture component
would be more severe under noisy conditions, causing further
performance degradation. Results from the first three rows
of Table I suggest that the i-vectors derived from senone
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TABLE III
Performance of various i-vector/PLDA systems on NIST 2012 SRE (CC4, male speaker, core task) with test utterances contaminated with different levels of

babble noise. DAE–DNN is DNN with DAE training (Fig. 1). DNN has a similar structure as DAE–DNN, but without DAE training.

Original 15dB 6dB 0dB
BN Features from Posteriors from EER minDCF EER minDCF EER minDCF EER minDCF

DAE–DNN DAE–DNN 1.56 0.218 2.17 0.212 2.01 0.229 3.07 0.432
DAE–DNN DNN 1.46 0.212 2.08 0.205 2.01 0.236 2.90 0.438

DNN DAE–DNN 1.30 0.220 2.12 0.200 2.05 0.227 3.08 0.425
DNN DNN 1.54 0.212 2.24 0.199 2.04 0.246 3.20 0.435

TABLE IV
Performance of various i-vector/PLDA systems on NIST 2012 SRE (CC5, male speaker, core task). DAE–DNN is DNN with DAE training (Fig. 1). DNN has

a similar structure as DAE–DNN, but without DAE training.

CC5 Core CC5 Extended
BN Features from Posteriors from EER minDCF EER minDCF

DAE–DNN DAE–DNN 2.18 0.251 2.15 0.248
DAE–DNN DNN 2.07 0.261 2.16 0.248

DNN DAE–DNN 2.24 0.278 2.19 0.253
DNN DNN 2.35 0.263 2.68 0.255

posteriors obtained from the DNN outperform the i-vectors
whose mixture posteriors γc(oit)’s are obtained from the
UBM. This confirms the findings in [27], [28], [34] that the
phonetic information in the senone i-vectors is beneficial for
speaker comparison. The comparison between the 3rd and the
4th rows suggest that the DAE training hurts the prediction
of senones except for noisy conditions, such as 6dB. The
poor performance of the denoised MFCCs in the 5th rows
of Table I may be due to the mismatch between the denoised
MFCCs extracted from the DAE (Fig. 1, left network) and the
senone posteriors obtained from the DAE–DNN (Fig. 1, right
network).

In Table I, the denoised MFCC and the senone posteriors of
each frame were extracted from the left- and right-networks
of Fig. 1, respectively. After DAE training of the left-network,
it was used for initializing the lower part of the right-network.
After backpropagation fine-tuning, the right-network is able
to produce the senone posteriors given a contextual window
of noisy MFCCs as input. For Row 4 of Table I, the right-
network was asked to compute the senone posteriors given
the noisy MFCCs, which are exactly the network input. As a
result, there is a perfect match between the acoustic features
(noisy MFCCs) and the senone posteriors. On the other hand,
for Row 5 of Table I, the right-network was asked to compute
the senone posteriors given the denoised MFCCs, which do
not agree with the network input. This causes mismatch
between the senone posteriors produced by the network and
the acoustic features (denoised MFCCs), which explains why
the performance in Row 5 is much poorer than that in Row
4 of Table I. Note that because of the backpropagation fine-
tuning, the output of the lower part of the right-network in
Fig. 1 cannot be considered as denoised MFCCs. As a result,
denoised MFCCs can only be extracted from the left-network.

On the other hand, the last row suggests that the denoised
senone i-vectors, in which both the BN features and posteriors
are obtained from the DAE–DNN, achieve the best perfor-

mance under all of the 4 SNR conditions. The good perfor-
mance of these BN-based senone i-vectors is attributed to the
fact that both the BN features and the senone posteriors are
obtained from the same network (the DAE–DNN). Therefore,
they work very well with each other. We conjecture that there
is a compromise between the robustification of BN features by
the DAE and the amount of speaker information loss. For the
BN-based senone i-vectors, the benefit of the former prevails.

Although we have performed score calibration by using the
logistic regression function in the Bosaris toolkit [47], all the
systems still have high actDCF. This is mainly caused by the
wide range of SNR in the training data for estimating the
calibration weights. The training data comprise the original
utterances and noise contaminated utterances at 0dB, 6dB and
15dB. More advanced calibration techniques [48], [49] are
needed to improve the actDCF performance.

Table II compares the performance of two BN-based i-
vector/PLDA systems. In the first two rows, the mixture
posteriors γc(oit)’s were obtained from the UBM; whereas
in the last row, the senone posteriors γc(sit)’s were obtained
from the DAE–DNN. The BN features were extracted from
the DAE–DNN shown in Fig. 2. The performance improves
significantly when the number of UBM mixtures increases
from 1024 to 2048. Because the DNN has 2000 outputs (each
representing a senone), it is reasonable that the BN features
have around 2000 clusters in the feature space. Therefore, the
UBM with 2048 mixtures is more appropriate for modeling the
BN features. On the other hand, each Gaussian in the 1024-
mixture UBM requires to model roughly two senone clusters,
which limits the performance of the BN i-vectors derived
from this UBM. Under all of the 4 SNR conditions, using the
posteriors from the DAE–DNN improves performance signif-
icantly. Although the performance of the system with senone
posteriors drops when the test utterances become noisier, it
is still superiors to the one with GMM mixture posteriors. It
shows that the DAE–DNN can estimate the senone posteriors
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TABLE V
Cross-entropy of DAE–DNN and DNN on the training set mentioned in

Section III-D and the noise contaminated test utterances from CC4 of NIST
2012 SRE. DAE–DNN is DNN with DAE training (Fig. 1). DNN has a

similar structure as DAE–DNN, but without DAE training.

Training Set 15dB CC4 6dB CC4
DAE–DNN 6.32 6.91 6.97

DNN 6.34 6.82 6.89

accurately under noisy conditions to some extent.
With DAE–DNN and DNN, we have four combinations of

BN features and senone posteriors as shown in Table III.
Comparing Row 2 and Row 4 of Table III suggests that
DAE training improves the performance of BN features if the
posteriors are from the DNN without DAE training. Similarly,
comparing Row 3 and Row 4 suggests that DAE training
becomes important for estimating the senone posteriors when
the BN features are obtained from the DNN without DAE
training. However, comparing Row 1 and Row 3 suggests
that DAE training is not necessary for extracting the BN
features if the posteriors are obtained from the DAE–DNN.
On the other hand, Row 1 and Row 2 suggest that DAE
training is not necessary for estimating the senone posteriors
when the BN features are obtained from the DAE–DNN.
In conclusion, the DAE training can benefit the senone i-
vector systems if one of the two components (BN feature
extraction and posterior computation) receives DAE training.
Overall speaking, the senone i-vectors whose phonetically
discriminative BN features are obtained from the DAE–DNN
and senone posteriors are obtained from the DNN without
DAE training (Row 2) achieve the best performance.

The performance of BN-based senone i-vectors under CC5
of NIST 2012 SRE (male speaker) is shown in Table IV.
The performance in Row 1 and Row 2 is significantly better
than the one in Row 3 and Row 4, which suggests that
DAE training benefits the BN features. However, comparisons
between Row 1 and Row 2 and between Row 3 and Row
4 of Table IV suggest that DAE training is more effective
for cleaning up BN features than for robustifying senone
posteriors. This conclusion is consistent with the one under
CC4, where the senone i-vectors with BN features from DAE–
DNN and senone posteriors from DNN (Row 2 in Table III)
achieve the best performance in Table III.

To verify the conclusion that DAE training is less beneficial
for senone posteriors estimation, we calculated the cross-
entropy of DAE–DNN and DNN on the training set mentioned
in Section III-D and on the noise contaminated test utterances
from CC4 of NIST 2012 SRE. The results are shown in
Table V. The results show that the cross-entropy on the
training set is almost the same regardless of whether DAE
training is applied. However, with DAE training, the cross-
entropies on the noise contaminated test utterances become
higher. This suggests that while DAE training can benefit BN
feature extraction, it reduces the generalization capability of
the network, causing less accurate senone posteriors on the
test utterances. This agrees with our conlcusions in Table I,
Table III and Table IV.
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Fig. 4. The DET performance (CC5 of NIST 2012 SRE) of two senone i-
vector systems based on BN features. In the legend, “BN from DAE–DNN”
and “BN from DNN” mean that the bottleneck features were obtained from
a DNN with and without DAE training, respectively. They correspond to Row
2 and Row 4 in Table IV, respectively. In both cases, the senone posteriors
were obtained from the DNN without DAE training.

The DET curves of the systems corresponding to Row 2
and Row 4 in Table IV are shown in Fig. 4. The senone
posteriors of both systems were obtained from a DNN without
DAE training. The results clearly show that DAE training is
beneficial to BN feature extraction, as the DET curve of “BN
from DAE–DNN” is below that of “BN from DNN” for a
wide range of decision thresholds.

V. CONCLUSIONS AND FUTURE WORKS

This paper has shown that robust BN features and frame
posteriors can be obtained from a denoising autoencoder–deep
neural network (DAE–DNN) formed by the combination of
a denoising autoencoders (DAE) and a deep neural network
(DNN). The DAE provides a good initial condition for the
backpropagation to find a DNN that can suppress noise in
MFCC vectors and enforces the frame alignments to respect
the phonetic context of input speech. No matter under the
GMM i-vector or the senone i-vector frameworks, the phonet-
ically discriminative BN features outperform MFCCs in the
speaker verification tasks, which suggests that the phonetically
discriminative BN features still contain speaker information.
We also demonstrated that the denoising capability of the DAE
is beneficial to the BN features in senone i-vectors but not to
the denoised-MFCC-based senone i-vectors.

By comparing the combinations of phonetically discrimi-
native BN features and senone posteriors with and without
DAE training, we validated that the DAE training is more
beneficial for BN features extraction than senone posteriors
estimation. The BN features extracted from DAE–DNN is
still rich in speaker information, while the DNN without DAE
training is good at estimating the speaker-independent senone
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posteriors, leading to better generalization power in senone
estimation on the test sets. This might be caused by the
different initial points before backpropagation fine-tuning for
DAE–DNN and DNN, respectively. The DAE training helps
DAE–DNN to keep speaker information until the fifth layer in
DAE–DNN, while DNN without DAE training can estimate
speaker-independent senone posteriors more accurately, but
loses more speaker information because no part of the network
is trained to keep speaker information.

Overall speaking, our experiment results show that the
demonised senone I-vectors whose BN features and senone
posteriors are both extracted from a DAE–DNN are com-
parable with the one whose senone posteriors are estimated
by a DNN, but the system involves only one neural network
and thus has the advantage in accelerating the extraction of
i-vectors and system implementation.

In our experiments the enrollment data were also used as
training data. Although the NIST SRE 2012 protocol allows
us to do this. In future work, it is better to use another pool
of speakers to train the UBM and TV matrix to verify the
generalization capability of the proposed methods.
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[46] D. Leeuwen and Niko Brümmer, “The distribution of calibrated
likelihood-ratios in speaker recognition,” in Interspeech 2013, 2013,
pp. 1619–1623.
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