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Acoustic rainbow trapping represents the phenomenon of strong acoustic dispersion similar to the

optical “trapped rainbow,” which allows spatial-spectral modulation and broadband trapping of

sound. It can be realized with metamaterials that provide the required strong dispersion absent in

natural materials. However, as the group velocity cannot be reduced to exactly zero before the for-

ward mode being coupled to the backward mode, such trapping is temporary and the local sound

oscillation ultimately radiates backward. Here, we propose a gradient metasurface, a rigid surface

structured with gradient perforation along the wave propagation direction, in which the inherent

thermal and viscous losses inside the holes are considered. We show that the gradually diminished

group velocity of the structure-induced surface acoustic waves (SSAWs) supported by the metasur-

face becomes anomalous at the trapping position, induced by the existence of the inherent losses,

which implies that the system’s absorption reaches its maximum. Together with the progressively

increased attenuation of the SSAWs along the gradient direction, reflectionless spatial-spectral

modulation and sound enhancement are achieved in simulation. Such phenomenon, which we call

as absorptive trapped rainbow, results from the balanced interplay among the local resonance inside

individual holes, the mutual coupling of adjacent unit cells, and the inherent losses due to thermal

conductivity and viscosity. This study deepens the understanding of the SSAWs propagation at a

lossy metasurface and may contribute to the practical design of acoustic devices for high perfor-

mance sensing and filtering. Published by AIP Publishing. https://doi.org/10.1063/1.4997631

I. INTRODUCTION

The concept of “rainbow trapping” or “trapped rain-

bow”1,2 originated from the studies in quantum optics and

nonlinear optics3 on how to slow down and trap light. It was

introduced to overcome the conflict subject to the causality

between high optical delay and broad bandwidth. Different

frequency components of broadband optical waves are decel-

erated until ultimately stopped at particular positions, lead-

ing to spatial-spectrally modulated and highly compressed

optical field. Acoustic rainbow trapping (ART)4–9 also

received considerable interests as it innovates applications

ranging from enhanced acoustic sensing and filtering6 to

broadband sound absorption.8 Yet, distinct from electromag-

netic waves, the lack of strong dispersion for sound in natu-

ral materials makes it more difficult to realize the trapped

rainbow in the acoustic system.

Acoustic metamaterials and phononic crystals,10–18 a

class of promising artificially structured materials that pos-

sess exotic properties absent in nature, open doors to the on-

demand dispersion engineering of acoustic waves. ART has

since been theoretically and experimentally demonstrated

with different metamaterial and phononic crystal designs.4,5

Further efforts have been dedicated to make better utilization

of space through space-coiling7 and micro-Mie resonance-

based units.9 However, the group velocity of acoustic wave

in these lossless metamaterial and phononic crystal models

cannot be reduced to exactly zero due to the intermodal cou-

pling between the forward and backward modes.19 As a

result, although the incident waves are slowed down and

compressed to some degree, those localized sound fields will

eventually radiate back rather than being permanently

trapped. On the other hand, more and more researchers came

to realize the importance of inherent losses on the perfor-

mance of acoustic metamaterials20–23 and spent great efforts

in making full use of them to achieve a series of promising

functions, e.g., deep subwavelength sound absorber,24–27

metadiffuser,28 and tunable asymmetric sound transmis-

sion.29 Yet, the effect of inherent losses on ART structures

has not been theoretically investigated in previous studies,

which hampers their development for practical applications.

Here, we would like to take the intrinsic viscosity and

thermal conductivity into consideration, to study a gradient

metasurface for ART. In this case, incident acoustic waves

parallel and close to the gradient metasurface can be effec-

tively converted into the structure-induced surface acoustic

mode with not only gradually compressed waveform but also

progressively varied attenuation. At the trapping position,

the inherent thermal and viscous losses dominate, playing an

important role to balance the interplay between the local

oscillation inside individual holes and the mutual coupling

among neighboring units. The resultant dissipation helps to

mitigate the backscattering so that a so-called absorptive

trapped rainbow phenomenon can be observed. The proposed
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gradient metasurface is a significant step towards the practical

introduction of ART in high performance acoustic sensing

and filtering. It may also help to design absorptive coatings to

delay the hypersonic boundary layer transition.30

II. STRUCTURE-INDUCED SURFACE ACOUSTIC
WAVES AT THE METASURFACE WITH INHERENT
LOSSES

To achieve ART with a perforated metasurface, the key

is to convert incident waves into the structure-induced sur-

face acoustic waves (SSAWs) and manipulate its propaga-

tion. SSAWs, also referred to as spoof or designer surface

acoustic waves and regarded as a counterpart of the

structure-induced electromagnetic waves,31 have been thor-

oughly investigated32–42 and utilized in applications such as

acoustic collimation,33,34 focusing,37 and imaging.38

However, the effect of practical intrinsic losses due to ther-

mal conductivity and viscosity on the SSAW propagation, a

non-trivial factor for resonance structures,20,21,23 has not

been discussed until a very recent study given by Schwan

et al.42 They developed the theoretical model based on plane

wave expansion and experimentally verified it, in which they

showed that the slow acoustic surface mode is accompanied

with strong attenuation, resulting in the diminished sound

field away from the source. In this section, we follow the

similar approach, but with a different way in obtaining the

dispersion relation, that is, through analyzing the divergen-

ces of the reflection coefficient.43 Here we focus on square

holes whose depth h is several times larger than the lattice

constant d, which is necessary for obtaining the enhanced

sound field required by the ART effect.4,6 As we demonstrate

in the following, under such circumstance, the dispersion

curve cannot reach the edge of the first Brillouin zone;

namely, the maximum real part of the wave vector of the

SSAWs ReðkxÞ is lower than p=d. The group velocity conse-

quently experiences an infinite point (a turning point in the

dispersion curve), suggesting that the system’s absorption

reaches its maximum.44,45

Consider a rigid surface perforated with subwavelength

square holes that are infinitely extended in x and y dimen-

sions as shown in Fig. 1. The background medium (air) has

density q0 and sound speed c0. The side length and depth of

the holes are a and h, respectively, with the period of the

unit cell being d. Assuming small-amplitude disturbance

with time dependence ejxt, the acoustic field of an arbitrary

incident plane wave penetrating to the surface can be

expressed as

pi ¼ e�jkxxe�jkyyejkzz; (1)

vz;i ¼ �
1

jxq0

@pi

@z
¼ � kz

q0x
e�jkxxe�jkyyejkzz; (2)

where pi is the incident pressure, vz;i is the z-component of

the particle velocity, and j ¼
ffiffiffiffiffiffiffi
�1
p

. We define q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
as the momentum parallel to the surface and kz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � q2
p

as the perpendicular momentum, in which k0 ¼ x=c0 is the

wavenumber with x being the angular frequency. The

reflected pressure field p
ðm;nÞ
r and z-component particle veloc-

ity v
ðm;nÞ
z;r of the ðm; nÞ-th order diffracted wave take the form

pðm;nÞr ¼ Rmne�jk
ðmÞ
x xe�jk

ðnÞ
y ye�jk

ðm;nÞ
z z; (3)

vðm;nÞz;r ¼ kðm;nÞz

q0x
Rmne�jk

ðmÞ
x xe�jk

ðnÞ
y ye�jk

ðm;nÞ
z z: (4)

Here, kðmÞx ¼ kx þ 2pm
d , k

ðnÞ
y ¼ ky þ 2pn

d , and kðm;nÞz

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � ðk
ðmÞ
x Þ2 � ðkðnÞy Þ2

q
, m; n ¼ �1…;�1; 0; 1;…;þ1.

Rmn is the reflection coefficient of the ðm; nÞ-diffraction

order, in which ð0; 0Þ corresponds to the specular reflection.

Now we consider the losses that arise from thermal con-

ductivity j and viscosity l inside the holes. As the side

length of the square hole is much smaller than the wave-

length (a� k), inside these narrow regions, fundamental

wave mode dominates at long wavelength limits, and the

effective density qh, compressibility Ch, and wavenumber kh

are complex and frequency-dependent in the presence of

losses. Thus, the sound pressure and z-component particle

velocity within the holes can be written as

ph ¼ C1e�jkhz þ C2ejkhz; (5)

vz;h ¼
kh

qhx
ðC1e�jkhz � C2ejkhzÞ: (6)

The complex coefficients in a tube of uniform cross-section

are given by46–48

qhðxÞ ¼ q0=W�; ChðxÞ ¼
c� ðc� 1ÞWt

q0c2
0

; (7)

k2
h ¼ x2qhðxÞChðxÞ ¼ k2

0

c� ðc� 1ÞWt

Wv
; (8)

in which for rectangular cross-section with side lengths a
and b (a ¼ b in our model)

FIG. 1. Schematic illustration of (a) the metasurface and (b) a single unit cell.

The metasurface is a rigid surface perforated with uniform subwavelength

square holes. It is immersed in the air of density q0 and sound speed c0. The

depth and side length of the holes are a and h, and the period of the unit cell is

d, respectively. Inside the holes, since the thermal conductivity j and viscosity

l are considered, the effective physical properties of density qh, compressibil-

ity Ch, and wavenumber kh are complex and frequency-dependent.
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Wi ¼ k2
i

X1
M¼0

1

aMM0

� �2

1� tan ðaMb=2Þ
aMb=2

� �"

þ 1

bMM0

� �2

1� tan ðbMa=2Þ
bMa=2

� ��
(9)

with

aM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

i � ð2M0=aÞ2
q

; bM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

i � ð2M0=bÞ2
q

;

M0 ¼ M þ 1

2

� �
p; ðM ¼ 0; 1; 2;…Þ;

and

k2
i ¼

k2
v ¼ �jx

q0

l
; viscous wave number

k2
t ¼ �jx

q0Cp

j
; thermal wave number:

8>><
>>: (10)

Subscript i is either v or t that denotes the effect of viscous

or thermal boundary layer. Here, c ¼ CP=CV is the ratio of

the specific heat at constant pressure CP and the specific heat

at constant volume CV .

The bottom of the hole is rigid (vz;hjz¼�h ¼ 0) and thus

we have C2 ¼ C1e2jkhh � Ce2jkhh. At the interface, the conti-

nuity condition of sound pressure for a� k requires that the

mean pressure over the opening area at z ¼ 0þ equals the

pressure inside the holes at z ¼ 0�, which is applied to

obtain

1

a2

ðx;y¼a=2

x;y¼�a=2

e�jkxxe�jkyy þ
Xþ1

m;n¼�1
Rmne�jk

ðmÞ
x xe�jk

ðnÞ
y y

 !
dxdy

¼ Cð1þ e2jkhhÞ: ð11Þ

After derivation, we have

Xþ1
m;n¼�1

ðdmn;00 þ RmnÞSmn ¼ Cð1þ e2jkhhÞ; (12)

where Smn ¼ a�2
Ð a

2

�a
2
e�jk

ðmÞ
x xdx

Ð a
2

�a
2
dy e�jk

ðnÞ
y y ¼ sincðkðmÞx a=2Þ

sincðkðnÞy a=2Þ is the overlap integral between the ðm; nÞ-th
order diffracted mode and the fundamental mode inside the

holes; dmn;00 is the Kronecker delta function defined as

dmn;00 ¼ 1 for ðm; nÞ ¼ ð0; 0Þ otherwise dmn;00 ¼ 0. The par-

ticle velocity vzjz¼0 must be continuous at the opening area

while equals to zero elsewhere

� kz

q0x
e�jkxxe�jkyy þ

Xþ1
m;n¼�1

kðm;nÞz

q0x
Rmne�jk

ðmÞ
x xe�jk

ðnÞ
y y

¼

kh

qhx
Cð1� e2jkhhÞ x; y 2 � a

2
;� a

2

� �

0 x; y 62 � a

2
;� a

2

� �
:

8>>><
>>>:

(13)

We multiply the above equation by ejk
ðrÞ
x xejk

ðsÞ
y y (r and s are

integers) and average over the unit cell area

1

d2

Xþ1
m;n¼�1

ðx;y¼d=2

x;y¼�d=2

kðm;nÞz

q0x
ðRmn � dmn;00Þ

� e�jðkðmÞx �k
ðrÞ
x Þxe�jðkðnÞy �k

ðsÞ
y Þydxdy

¼ 1

d2

ðx;y¼a=2

x;y¼�a=2

kh

qhx
Cð1� e2jkhhÞejk

ðrÞ
x xejk

ðsÞ
y ydxdy: (14)

Based on the orthogonality of the exponential function, Eq.

(14) can be derived as

Rrs ¼ drs;00 þ Cð1� e2jkhhÞ a2

d2

q0kh

qhk
ðr;sÞ
z

S�rs; (15)

where S�rs ¼ a�2
Ð a

2

�a
2
ejk
ðrÞ
x xdx

Ð a
2

�a
2
dy ejk

ðsÞ
y y ¼ sincðkðrÞx a=2Þ

sincðkðsÞy a=2Þ. Substituting Eq. (15) into Eq. (12) yields

2S00 þ Cð1� e2jkhhÞ q0a2

qhd2

Xþ1
r;s¼�1

kh

k
ðr;sÞ
z

S�rsSrs ¼ Cð1þ e2jkhhÞ:

(16)

The coefficient C is then determined as

C ¼ 2S00

ð1þ e2jkhhÞ � ð1� e2jkhhÞ q0a2

qhd2

Xþ1
r;s¼�1

kh

k
ðr;sÞ
z

S�rsSrs

: (17)

The reflection coefficients in Eq. (15) can thus be expressed

as

Rmn¼dmn;00þ
2ð1�e2jkhhÞa

2

d2

q0kh

qhk
ðm;nÞ
z

S�mnS00

ð1þe2jkhhÞ�q0a2

qhd2
ð1�e2jkhhÞ

Xþ1
r;s¼�1

kh

k
ðr;sÞ
z

S�rsSrs

:

(18)

Here, we note that �j tan ðkhhÞ ¼ 1�e2jkhh

1þe2jkhh and S�rs ¼ Srs

¼ sincðkðrÞx a=2ÞsincðkðsÞy a=2Þ. Equation (18) is simplified into

the form

Rmn ¼ dmn;00 �
2j tan ðkhhÞ q0a2

qhd2
S00Smn

kh

k
m;nð Þ

z

1þ j tan ðkhhÞ q0a2

qhd2
�
Xþ1

r;s¼�1

kh

k
r;sð Þ

z

S2
rs

: (19)

A structure-induced surface mode is propagative along

the parallel directions within the xy-plane, which requires

ReðqÞ > k0 > 0 with ReðkxÞ � 0 and ReðkyÞ � 0.

Meanwhile, it should be evanescent along the perpendicular

direction z so that ReðjkzÞ > 0. For the lossy case, the propa-

gation is with intrinsic attenuation, corresponding to ImðqÞ
< 0(ImðkxÞ 	 0 and ImðkyÞ 	 0). Therefore, setting jkðr;sÞz

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkðrÞx Þ2 þ ðkðsÞy Þ2 � k2

0

q
, the dispersion relation of the

SSAWs can be obtained by analyzing the divergences of the

ð0; 0Þ-th order reflection coefficient,43 namely, the zeros of

the denominator of Eq. (19)
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1� kh tan ðkhhÞ q0a2

qhd2
�
Xþ1

r;s¼�1

S2
rsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðqðr;sÞÞ2 � k2
0

q ¼ 0; (20)

where ðqðr;sÞÞ2 ¼ ðkðrÞx Þ
2 þ ðkðsÞy Þ2. Clearly, for the lossy

model in which qh and kh are complex, the wavenumber of

the SSAWs q must be complex too. The propagation of the

SSAWs is therefore with inherent attenuation owing to the

thermal and viscous losses. Another important characteristic

of the SSAW is that it becomes a leaky surface mode when

inherent losses are considered, namely, the coefficient jkz

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � k2

0

p
in e�jkzz is a complex number. Note that it radi-

ates energy to the fundamental mode inside the holes rather

than the bulk mode in the upper half space due to the fact

that Im
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � k2

0

p� �
< 0. Hence, without any leakage to the

upper half space, the attenuation of the SSAWs completely

stems from the inherent thermal and viscous losses within

the holes.

Now we conduct theoretical calculation based on Eq.

(20) to obtain the dispersion relation of the SSAWs at a

metasurface with uniform unit cells of a ¼ 3 mm, d ¼ 5 mm,

and h ¼ 25 mm.The physical properties of air at 20 
C and

standard atmospheric pressure are q0 ¼ 1:21 kg=m3, c0

¼ 343 m=s, j ¼ 0:0258 W=m � K, l ¼ 1:81� 10�5 kg=m � s,

Cp ¼ 1:005� 103 J=kg � K, and c ¼ 1:4. Meanwhile, we also

perform three-dimensional full-wave simulations using

COMSOL Multiphysics to examine the SSAW propagation

at an actual metasurface. In our simulation model, we

arrange 40 units along the wave propagation direction x to

approximately mimic a large enough metasurface. Periodic

boundary condition and perfectly matched layers are

employed to imitate the infinitely repeated units in the trans-

verse direction y and the semi-infinite half space z > 0,

respectively. The thermal and viscous losses inside the holes

are introduced through replacing the lossless acoustic proper-

ties with complex quantities given in Eqs. (7) and (8). To

effectively generate the surface mode,35,37–41 a line source is

applied near the edge of the metasurface (x ¼ 0 and z ¼ 0)

and infinitely extended in the y direction.

As shown in Fig. 2(a), at low frequency range, the real

part curve of the lossy model (red solid line) overlaps with

those of both the lossless case (blue solid line) and the back-

ground medium air (black solid line). It starts to deviate

from the air line as the frequency rises, while remaining sim-

ilar with the lossless case. But with the lossy metasurface, a

progressively increased imaginary part is presented (red

dashed line), indicating the attenuation of the propagating

SSAWs, as validated by the simulated sound field in Figs.

2(b) and 2(c). It is worth noting that for the SSAWs travel-

ling along the metasurface with inherent losses, the disper-

sion curve cannot approach the edge of the first Brillouin

zone; namely, the maximum real part of the wave vector

ReðkxÞ in the first Brillouin zone is smaller than p=d. This is

distinct from the dispersion curve of the lossless case: kx is a

purely real number in the first Brillouin zone; it increases

with frequency and reaches the maximum value at the edge

of the first Brillouin zone (kx ! p=d). It is also different

from the case of Ref. 42, in which a lossy metasurface with

relatively shallow holes still allows ReðkxÞ to approach the

zone edge. In our case, a turning point of dispersion curve

[the peak of the red solid line in Fig. 2(a)] that represents the

existence of infinite group velocity vg ¼ dx=dk!1 can be

observed, followed by a rapid decline. As pointed out by

Refs. 44 and 45, the group velocity in a lossy medium

becomes abnormal (e.g., infinite or negative) for the fre-

quency at which the attenuation is maximum. Since the

attenuation of the SSAWs completely comes from the

FIG. 2. Propagation characteristics of the structure-induced surface acoustic waves (SSAWs) at the metasurface with and without inherent losses. (a)

Calculated dispersion relation of the SSAWs. The curves of the lossless case (blue solid line) and the air line (black solid line) are also presented. Here f0 ¼
c0=4h is the cavity resonance frequency. The unit cell is designed to have a ¼ 3 mm, d ¼ 5 mm, and h ¼ 25 mm. (b)–(g) Simulated instantaneous acoustic

pressure fields at three different frequencies for both lossless and lossy cases. The star in each subfigure represents a line source that is applied near the edge of

the metasurface (x ¼ 0 and z ¼ 0) and infinitely extended in the y direction.
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inherent thermal and viscous losses, such group velocity

anomaly suggests that the absorption of the SSAWs reaches

its maximum at the turning point. As shown in Fig. 2(e), the

SSAWs are still propagative but with severe attenuation

stemming from the absorption inside the unit cell holes, in

stark contrast to the result of lossless model in Fig. 2(d).

Beyond this turning point, the overwhelming imaginary part

of the wavenumber becomes dominant, accounting for the

stopband of the SSAWs. Accordingly, the surface mode can

no longer be generated, as demonstrated in Figs. 2(f) and

2(g). For lossless case, the wavenumber is purely imaginary

within the bandgap.

The frequency-dependent thermal and viscous losses

can be directly tuned through adjusting the side length of the

holes a, manifested by the complex wavenumber of sound

waves travelling inside the holes kh. They are related to the

wavenumber of the SSAWs q through the dispersion relation

given by Eq. (20). However, for the SSAW propagation, the

side length a strongly affects not only the specific attenuation

2pImðqÞ=ReðqÞ but also the real part of the wavenumber

ReðqÞ. This is to say that we are not able to independently

tailor the attenuation without changing the real part of the

dispersion curve. To demonstrate this, we calculate the dis-

persion curves of the SSAWs when a is set to 2.5 mm, 3 mm,

and 3.5 mm, respectively (d ¼ 5 mm and h ¼ 20 mm). As

shown in Fig. 3, a smaller a (black solid lines) would help to

increase the attenuation of the SSAWs, but the highest value

of ReðqÞ becomes smaller at the same time, suggesting that

the SSAWs cannot be sufficiently slowed down and com-

pressed; a higher value of ReðqÞ can be obtained with a

larger hole size (blue solid lines), but with the downside of

lower attenuation. Therefore, to find a balance between

deceleration and attenuation of the SSAWs over a broad

bandwidth, we select a ¼ 3 mm for the gradient metasurface

in Sec. III.

III. ABSORPTIVE ACOUSTIC RAINBOW TRAPPING
WITH GRADIENT METASURFACE

By arranging the hole depth distribution in a graded way

along the wave propagation direction x as illustrated in Fig.

4(a), we construct the gradient metasurface that consists of

99 square holes with linear depth variation (0.25-mm step)

ranging from 0.5 mm to 25 mm. Other properties are the

same as those given above. It is worth mentioning that the

variation of hole depth between neighboring units Dh should

be much smaller than the lattice constant d to guarantee the

gradually changed wavenumber of the SSAWs along the

propagation direction. In other words, the propagation of the

SSAWs from one unit to next unit is with very little mis-

match of group velocity and attenuation. In our case,

Dh=d ¼ 1=20 is designed to meet this requirement. Such

arrangement is equivalent to the so-called gradient-index

design.37,39,49 The dispersion curves corresponding to a

series of uniform infinite metasurfaces constructed with dif-

ferent types of unit cells (different hole depths) are combined

to obtain the spatial distributions of group velocity and atten-

uation. As shown in Fig. 4(b), each calculated group velocity

of the SSAWs (solid lines) is equal to that of the background

medium at x ¼ 0 and gradually decreases to a non-zero mini-

mum with the increase of horizontal position x. It then

abruptly turns to infinity, suggesting that a cutoff corre-

sponding to the trapping point exists and the absorption

reaches maximum within this lossy system.44,45 Such group

velocity distribution is frequency dependent so that the

reflectionless spatial-spectral separation becomes possible.

Along with the strong attenuation of the SSAWs, the meta-

surface can act as an absorptive structure to mimic the

“permanently” trapped rainbow. Here the quote mark is used

to distinguish this trapping mechanism from the ideal ART

model built with the effective medium that gradually reduces

the group velocity to exactly zero.

We perform further numerical simulations to test the

hypothesis. The settings are the same as those used in the

model of metasurface with uniform holes except that the plane

wave of unit amplitude travels from left to right [Fig. 5(a)] and

interacts with the gradient metasurface.

As can be seen from the scattered and total instanta-

neous acoustic pressure fields at 5000 Hz in Figs. 5(b)–5(d),

the incident wave near the surface is effectively converted

into the SSAWs that are confined to the metasurface with the

wavelength being highly compressed along the propagation

direction, forming enhanced sound field. The maximum

compression appears at the trapping position where the

SSAWs cannot transmit further via diffractions so that the

near-surface sound field beyond this trapping point becomes

rather weak. Incident waves away from the surface cannot

interact with the metasurface and thus continue to propagate

without obvious wavefront change. For lossless case as

FIG. 3. Effects of different side lengths of the holes on the propagation char-

acteristics of the SSAWs. (a) The real part of the SSAW wavenumber. (b)

The specific attenuation of the SSAWs 2pImðqÞ=ReðqÞ. The unit cell is

designed to have d ¼ 5 mm and h ¼ 20 mm. Black, red, and blue solid lines

denote different side lengths of the holes 2.5 mm, 3.0 mm, and 3.5 mm,

respectively.
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shown in Figs. 5(c) and 5(e), the deceleration of the SSAWs

is restricted by the non-zero group velocity subject to inter-

modal coupling between forward and backward modes.19

Hence the trapping is only temporarily achieved and the

SSAWs are eventually reflected back to the half space. On

the contrary, no obvious backscattering happens in the lossy

model [Figs. 5(b) and 5(d)] so that an absorptive trapping

phenomenon is observed. Such reflectionlessness behavior

can be attributed to two facts: first, the conversion between

incident plane waves and SSAWs experiences a gradual pro-

cess as a result of the gradient distribution of group velocity

that slowly drops from c0 to the vicinity of zero with a very

little mismatch along the x direction; second, the attenuation

of the SSAWs also progressively increases during the propa-

gation and becomes dominant at the trapping position so that

the backward mode is nearly fully absorbed. It shows that

the inherent losses due to viscosity and thermal conductivity

help to rebuild the balanced interaction between the local

oscillation inside individual holes and the mutual coupling

among neighboring units.4

The simulated instantaneous and absolute total acoustic

pressure fields at several different frequencies in the pres-

ence of losses are displayed in Fig. 6. The operating fre-

quency increases linearly from Figs. 6(a) and 6(e) to Figs.

6(d) and 6(f). Incident waves of different frequencies are

compressed and slowed down in different manners, depend-

ing on the spatial group velocity distributions shown in Fig.

4(b). The trapping happens at deeper holes for lower fre-

quencies and at shallower holes for higher frequencies,

which are determined by the group velocity anomaly points

in space. The whole process generates hardly any backscat-

tering. Otherwise, clear interference patterns would appear

on the left-hand side of the absolute acoustic pressure fields

[Figs. 6(e)–6(h)]. The overall phenomenon is in line with our

theoretical expectation and confirms that the ART effect pre-

viously investigated in the lossless system4 is still valid in

the presence of inherent losses.

The spectral responses at the bottom of four holes

located at different horizontal positions are also presented in

Figs. 7(a) and 7(b). Compared to the lossless case (dashed

lines in Fig. 7(a)), the oscillatory rise of pressure amplitude

with respect to frequency is smoothed as a result of the van-

ished reflection. The enhancement of sound field, though

weakened by the losses, still produces pressure amplitude

more than ten times over the incident wave of unit amplitude.

FIG. 4. Absorptive acoustic rainbow trapping (ART) with gradient metasurface. (a) Schematic illustration of the gradient metasurface. It consists of 99 graded

square holes, whose depth linearly varied from 0.5 mm to 25 mm with a step 0.25 mm. (b) Group velocity and specific attenuation of the SSAWs along the gra-

dient metasurface. The solid lines denote the group velocity and the dashed lines the absolute value of the specific attenuation (attenuation per wavelength).

Red, green, and blue represent three different frequencies f1 ¼ 3860 Hz, f2 ¼ 4730 Hz, and f3 ¼ 6110 Hz. The group velocity anomaly (infinite) implies the

maximum absorption of the lossy system.44,45

FIG. 5. Comparison of simulated instantaneous acoustic pressure fields of

lossy and lossless models at 5000 Hz. (a) Background instantaneous acoustic

field. The incident plane wave of unit amplitude travels from left-hand side

to right-hand side. (b)–(e) Scattered and total instantaneous acoustic pressure

fields of lossy and lossless models. The upper and lower limits of the acous-

tic pressure are set to two times the amplitude of the incident wave to guar-

antee that the wave pattern above the gradient metasurface is clear enough.
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In each curve of Fig. 7(a), the rapid decline of pressure ampli-

tude after the peak forms a clear cutoff, indicating the so-

called trapping point. From the lossless model (solid curves)

to lossy model (dashed curves), these trapping points shift

slightly towards low frequency range. This phenomenon orig-

inates from the changed propagation characteristics of the

SSAWs caused by the inherent losses: the losses lead to com-

plex effective wavenumber kh and decreased speed of sound

inside the holes, which lowers the resonance frequency;20,21

since the SSAWs are a result of the interaction between the

local resonance and the mutual coupling via diffractions,

such change of resonance behavior consequently affects the

propagation characteristics of the SSAWs. This overall shift

is consistent with our theoretical prediction, as verified by the

extracted trapping curves of Fig. 7(c), in which the lossy

model offers a more accurate estimation as the losses are

inherent and cannot be neglected in practice. It also provides

a theoretical explanation to the deviation of the measured

results from the lossless model in Ref. 4.

To further examine the backscattering from the trapping

positions, we extracted the scattered pressure amplitude

absðpscatÞ at several different heights within the upper half

FIG. 6. Simulated instantaneous and absolute total acoustic pressure fields at several different frequencies in the presence of losses. (a)-(d) Instantaneous total

acoustic pressure fields. The upper and lower limits of the acoustic pressure are set to two times the amplitude of the incident wave to guarantee that the wave

pattern above the gradient metasurface is clear enough. (e)-(h) Absolute total acoustic pressure fields. The pressure amplitudes are normalized per the maxi-

mum among the results of the four frequencies.

FIG. 7. Simulated frequency responses at the hole bottoms of four different horizontal positions and the extracted trapping curves. (a) Absolute acoustic pres-

sure versus frequency. The results of lossless case are shown with dashed lines. (b) Instantaneous acoustic pressure versus frequency. In (a) and (b), different

colors denote different horizontal positions. (c) Extracted trapping frequency versus position. The red and blue solid lines represent the theoretical calculations

of lossy and lossless cases; circles and squares correspond to the simulation results of lossy and lossless cases.
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space where x ¼ 0. As shown in Fig. 8, the backscattering

from the trapping positions is rather weak throughout the

spectrum, which means that the SSAWs are truly trapped

and absorbed inside the gradient metasurface. In contrast, the

lossless perforated surface generates strong backscattering

(dashed lines in Fig. 8) within the same frequency band,

resulting from the intermodal coupling between the forward

and backward modes. For higher frequencies, the attenuation

of the SSAWs offered by the lossy metasurface becomes

lower due to the decreased inherent losses inside the

holes,46–48 giving rise to gradually emerged (yet still much

weaker than the lossless case) backscattering. Note that in

lossless case the reduced backscattering along with the

increased frequency comes from the weakened interaction

between the incident wave and the structured surface since

less units participate into the deceleration process. Such

large distinction between the lossy and lossless cases testifies

that the phenomenon presented in Figs. 5 and 6 is valid for a

wide frequency range. It is evident that the inherent thermal

and viscous losses play a key role to realize the absorptive

ART, leading to the reflectionless spatial-spectral splitting

and sound field enhancement.

From the physics point of view, the SSAWs are a result

of the interplay between the local oscillation inside individ-

ual holes and the mutual coupling among adjacent units. The

interplay forces the acoustic wave to travel in and out among

the holes through diffractions. For a lossless case, the local

oscillation experiences a process of periodic storage and

release of energy subject to the operating frequency and

strikes a balance with the mutual coupling at the resonance

frequency.4 While for a lossy case, the losses within the

holes participate in the process and dissipate energy into

heat. Such dissipation effect slowly becomes stronger along

the direction where the hole depth increases, namely, along

the wave propagation direction. At the trapping position, the

local oscillation reaches resonance and the dissipation domi-

nates, resulting in strong absorption of the surface mode.

Therefore, the fundamental reason to absorb the SSAWs is

the resonance behavior change of the units due to the

inherent losses, together with the spatial modulation of the

SSAWs offered by the gradient distribution of these units in

space.

IV. CONCLUSIONS

In this study, we proposed a lossy gradient metasurface

model to realize the absorptive acoustic rainbow trapping.

The metasurface is constructed by arranging subwavelength

square holes with a gradually increased depth along the

wave propagation direction on a rigid surface. The inherent

losses that originate from viscosity and thermal conductivity

within the holes are now taken into consideration. Slowly

diminished group velocity and progressively increased atten-

uation simultaneously happen along the metasurface for the

structure-induced surface acoustic waves that are converted

from the plane wave incidence. The group velocity becomes

anomalous at the trapping position, leading to spatial-

spectrally modulated and intensively enhanced sound field

with vanished backscattering. The so-called absorptive

trapped rainbow is thus realized. The proposed gradient

metasurface can be used to design more practical devices for

high performance sensing and detection. It may also provide

the theoretical support to the study of absorptive coatings for

stabilization of the hypersonic boundary layer.30
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