1	TITLE: Transmissibility and waveform purity of whole-body vibrations in older adults
2	
3	Laboratory: Neurorehabilitation laboratory, Department of Rehabilitation Sciences, The
4	Hong Kong Polytechnic University, Hong Kong, China
5	
6	Authors: Freddy Man Hin Lam ¹ , PhD, Chak-yin Tang ² , PhD, Timothy Chi Yui Kwok ³ , MD,
7	Marco Yiu Chung Pang ¹ , PhD
8	
9	Affiliations and addresses:
10	1. Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong
11	Kong
12	2. Department of Industrial and Systems Engineering, The Hong Kong Polytechnic
13	University, Hong Kong
14	3. Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University
15	of Hong Kong, Hong Kong
16	
17	Corresponding author:
18	Freddy M.H. Lam
19	Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong.
20	Email: freddy.lam@connect.polyu.hk
21	
22	Abstract word count: 244 words

23 Main text word count: 3959 words

24 ABSTRACT

25	Background: This study examined the transmission power and waveform purity of vertical
26	(synchronous) whole-body vibrations upon its propagation in the human body among older
27	adults.

28

29 Methods: Forty community-dwelling older adults participated in the study (33 women; mean 30 age: 60.3 (SD 5.7) years). Four vibration frequencies (25, 30, 35, 40 Hz), two amplitudes (0.6 31 and 0.9mm), and six different postures were tested. Skin-mounted tri-axial accelerometers 32 were placed at the medial malleolus, tibial tuberosity, greater trochanter, third lumbar 33 vertebra, and forehead. The transmissibility of vibration was computed as the ratio of the 34 root-mean-square-acceleration at different body sites to that of the platform. Signal purity 35 was expressed by the percentage of total transmitted power within 1 Hz of the nominal 36 frequency delivered by the platform. 37 38 Findings: Vibration frequency and amplitude were inversely associated with transmissibility 39 in all anatomical landmarks except the medial malleolus. Amplification of signals was noted 40 at the medial malleolus in most testing conditions. The effect of posture on whole-body 41 vibration transmission depends on its frequency and amplitude. In general, toe-standing led to 42 the lowest transmissibility. Single-leg standing had the highest vibration transmission to the

hip, while erect standing had the highest transmissibility to the head. The purity of waveform
of the vibration signals was well conserved as the vibrations were transmitted from the feet to
the upper body.

46

47 Interpretation: Whole-body vibration transmissibility was highly influenced by signal

- 48 frequency, amplitude and posture. These parameters should be carefully considered when
- 49 prescribing whole-body vibration to older adults.
- 50
- 51 Keywords: Aging; therapeutic; osteoporosis; exercise; skeletal muscle

1. INTRODUCTION

53	Whole body vibration (WBV) is gaining increasing interest as a treatment modality in
54	geriatric rehabilitation. WBV is usually delivered to the human body while the individual is
55	standing on the vibration platform. Several studies have reported an increase in lower limb
56	muscle activity during exposure to WBV, likely due to the activation of the tonic vibration
57	reflex (Burke and Schiller, 1976; Lam et al., 2016; Machado et al., 2010). WBV was also
58	found to improve proprioception (Fontana et al., 2005), modulate spinal reflex excitability
59	(Armstrong et al., 2008), and modify motor cortex excitability (Mileva et al., 2009). WBV is
60	also a form of dynamic mechanical loading that is a potent stimulation for osteogenesis
61	(Turner et al., 2011). These proposed mechanisms may explain the improvement in lower
62	limb muscle strength, balance, and bone health in the elderly after WBV intervention
63	(Furness et al., 2010; Lam et al., 2012; Lau et al., 2011; Merriman and Jackson, 2009).
64	However, two important issues have been raised regarding the application of WBV. The first
65	is the lack of consensus on which WBV protocols are optimal for modifying different
66	treatment outcomes (Lam et al., 2012; Lau et al., 2011; Marín et al., 2011; Marín and Rhea,
67	2010; Merriman and Jackson, 2009). The second issue is the safety of WBV applications
68	(Bochnia et al., 2005; Ishitake et al., 1998; Lam et al., 2012). Established standards for WBV
69	exposure limits, such as the British Standard (BS 6841) and the International Organization
70	for Standardization (ISO 2631), focus on occupational exposure and cannot be fully applied
71	as strict guidelines for WBV training. Investigating WBV transmissibility is thus important in
72	identifying effective treatment protocols (effective transmission to lower limbs and spine),
73	while ensuring safety (minimizing resonance and transmission to head).
74	

- WBV transmission is complex, as vibration signal propagation is greatly influenced by
- nonlinearities in body biomechanics (Kiiski et al., 2008), WBV frequency and amplitude, and

77	postures assumed while on the platform (Rubin et al., 2003). Previous studies have identified
78	peak resonance frequencies <20 Hz (Kiiski et al., 2008; Pollock et al., 2010; Rubin et al.,
79	2003), and decrease in vibration signal transmissibility with increasing frequency (Cook et
80	al., 2011; Kiiski et al., 2008; Pollock et al., 2010; Rubin et al., 2003). However, effects of
81	body posture and WBV amplitude are relatively understudied. Only effects induced by
82	changes in knee angles during squat positions have been examined previously (Abercromby
83	et al., 2007; Avelar et al., 2013; Cook et al., 2011; Muir et al., 2013; Rubin et al., 2003;
84	Tankisheva et al., 2013), and 5 of these 6 studies have small sample sizes ($n \le 16$)
85	(Abercromby et al., 2007; Cook et al., 2011; Muir et al., 2013; Rubin et al., 2003; Tankisheva
86	et al., 2013). Regarding WBV amplitude, only one study has compared the transmissibility of
87	vertical vibration signals of multiple amplitudes in the legs (Cook et al., 2011). In addition,
88	only one has examined signal purity as vibrations are transmitted up the body during erect
89	standing (Kiiski et al., 2008). This is an important issue, as the degree of signal distortion
90	may directly affect therapeutic efficacy.
91	
92	Despite the rising interest in the use of WBV in older adults as reflected by the increase in
93	number of WBV clinical trials conducted in this population across different countries (Lam et
94	al., 2012; Orr, 2015), most human studies on WBV transmission reported in the literature
95	were conducted in young adults. During aging, musculoskeletal system changes occur, which
96	may result in undesirable conditions, such as sarcopenia and osteoporosis (Keller and
97	Engelhardt, 2013; McGregor et al., 2014; Zebaze et al., 2010). Since muscle and bone are the
98	major pathways through which the WBV is transmitted, WBV transmissibility could be
99	different between young and old adults.

101	To address these knowledge gaps, this study investigated the main effects and interactions of
102	WBV frequency, amplitude, and body posture on WBV transmissibility, as well as signal
103	purity during transmission, among older adults. We hypothesized that the transmissibility of
104	the vibration signals would be affected by 1) WBV frequency; 2) WBV amplitude; 3) posture
105	assumed on the vibration platform. We also hypothesized that 4) there would be significant
106	interaction among WBV frequency, amplitude, and postures on WBV transmissibility.
107	
108	2. METHODS

109 2.1 Experimental Approach to the Problem

- 110 A one-group experimental study with cross-over design was adopted. The transmission of
- 111 WBV to the medial malleolus, tibial tuberosity, and greater trochanter on the right leg, third
- 112 lumbar vertebra (L3), and forehead of older adults were measured when they were exposed to
- 113 WBV of different frequencies and amplitudes while assuming different body postures.
- 114 Therefore, the dependent variables were the transmissibility and waveform purity of WBV
- signals at various body parts, while the independent variables were WBV frequency,
- amplitude, and body posture.
- 117

118 2.2 Subjects

- 119 2.2.1 Sampling
- 120 Community-dwelling older adults were recruited via advertising in Hong Kong from
- 121 September 2013 to April 2014. Inclusion criteria were 1) aged ≥50 years, 2) medically stable,
- 122 3) able to stand for at least 1 minute with minimal hand support, and 4) able to understand
- 123 simple verbal commands. Exclusion criteria were: 1) any neurological conditions (e.g.,
- 124 stroke), 2) significant musculoskeletal conditions (e.g., amputation), 3) metal implants in the

125	leg, 4) previous leg fracture, 5) osteoporosis, 6) vestibular disorders, 7) peripheral vascular
126	disease, and 8) other serious illnesses or contraindications to exercise.
127	
128	2.2.2 Sample size estimation
129	Studies that compared transmissibility among different WBV frequencies in younger adults
130	yielded large effect sizes (Cohen's d = 1.6–2.4) (Rubin et al., 2003). An analysis of variance
131	(ANOVA) indicated that 34 participants were needed to detect differences with an effect size
132	$f = 0.35$, α of 0.05, and power of 0.8.
133	
134	2.2.3 Ethical approval
135	This study conforms to the ethical principles of the World Medical Association Declaration
136	of Helsinki — Ethical Principles for Medical Research Involving Human Subjects. Ethical
137	approval of the study was granted by the Human Research Ethics Subcommittee of the
138	university. Written informed consent was obtained from each participant.
139	
140	2.2.4 Demographic characteristics
141	Forty community-dwelling older adults were enrolled (33 women; mean age: 60.3 (SD=5.7)
142	years). Demographic data are shown in Table 1. The age and body mass index (BMI) of men

- 143 and women showed no significant difference ($P \ge 0.557$).
- 144

145 Table 1. Demographic data of participants

		Mean (SD)		
	Male (n=7)	Female (n=33)	All (n=40)	p-value
Age (years)	59.9 (8.4)	60.1 (5.6)	60.3 (5.7)	0.728
Body mass index (kg/m ²)	22.9 (3.8)	23.7 (3.2)	23.6 (3.3)	0.577

148	2.3 Procedures	
149	2.3.1 Testing conditions	
150	All participants attended a single session of experiment. A vibration platform (Fitvibe	
151	Medical, GymnaUniphy NV, Bilzen, Belgium) that generated vibration frequencies of 25Hz,	
152	30Hz, 35Hz, and 40 Hz and amplitudes of approximately 0.6mm and 0.9mm was used for	
153	testing. As vibration frequency increased, the protocol yielded platform peak acceleration of	
154	1.70 units of gravitational constant (G=9.81ms ⁻²), 2.25G, 2.90G, and 3.65G if an amplitude	
155	of 0.6mm was used, and 2.50G, 3.40G, 4.35G, and 5.50G if an amplitude of 0.9mm was	
156	used.	
157		
158	During WBV exposure, participants assumed six different postures: (1) erect standing (knee	
159	flexion, 20°), (2) semi-squat (knee flexion, 45°), deep squat (knee flexion, 70°), (4) toe-	
160	standing, (5) forward lunge, (6) single-leg standing (right leg knee flexion, 20°) (Fig. 1). An	
161	electronic goniometer monitored participants' knee angle (Twin Axis Goniometer SG150;	
162	Biometrics Ltd, Newport, UK). The selected postures were commonly used in previous	
163	studies (Lam et al., 2012; Lau et al., 2011). During testing, participants held onto the rail	
164	lightly for safety and were asked not to put weight on it unless they lost balance. A new trial	
165	would be done if the subject lost balance during testing. In postures with bilateral stance, feet	
166	were placed shoulder-width apart. Participants stood barefoot on the platform to avoid	
167	external damping. The body posture, frequency, and amplitude combinations yielded 48	
168	conditions. For each condition, WBV was sustained for 10s. To minimize potential order-	
169	effect bias, the testing conditions were randomly sequenced. Participants rested intermittently	
170	to minimize fatigue.	

a. Erect standing

b. Semi-squat

c. Deep squat

e. Toe-standing

- Fig. 1 Demonstration of the six postures 172
- 173

- 174
- 175

176 2.3.2 Measurement of acceleration

177	After calibration, five tri-axial accelerometers (Dytran 7523A5; Dytran Instruments, Inc.,
178	CA) were attached to the vibration platform with double-sided tape to measure accelerations
179	at the platform level, for 10 seconds for each of the 8 frequency and amplitude combinations.
180	A total of five trials were performed and the average was used as the platform acceleration.
181	The platform acceleration was measured in both unloaded and loaded conditions. In the
182	former condition, nobody was standing on the platform. In the latter condition, a 50kg person
183	was standing on the platform in a single leg standing posture (the most unstable posture in the
184	testing protocol). The platform acceleration ratios in the unloaded and loaded conditions were
185	similar (ranging from 1.01 to 1.04) across the eight frequency $ imes$ amplitude combinations. We
186	had also checked the accelerations generated by the platform regularly during the course of
187	the study, and found that the output was consistent over time.
188	
189	During the experiment, tri-axial accelerometers were attached to the medial malleolus, tibial
190	tuberosity, and greater trochanter on the right leg, third lumbar vertebra (L3), and forehead.
191	The body sites were selected to allow the measurement of acceleration at common target
192	areas in WBV therapy (lower limb and spine), and also in the head where safety
193	consideration was particularly important. These body sites were also commonly used in
194	previous studies conducted in younger individuals (Kiiski et al., 2008; Tankisheva et al.,
195	2013). The accelerometers were fixed by double-sided tape. Omnifix dressing retention tape
196	and Coban self-adherent wrap were used to minimize skin translation. Acceleration data were
197	acquired through an AD-converter using a sampling frequency of 1000 Hz. The platform
198	acceleration was not measured in conjunction with the acceleration at the body site because
199	the interface used in this study contained only 15 channels and could only acquire data from
200	5 triaxial accelerometers for the 5 body sites simultaneously.

202 2.3.3 Data Processing

203	The data obtained in the middle 3s of the 10s recording period for each condition (i.e., 75-200
204	vibration cycles depending on WBV frequency) was used in analysis, to eliminate the data
205	captured during the accelerating and decelerating phases of the platform. Resultant calibrated
206	accelerations were obtained from the three measurement axes of accelerometers to represent
207	vibration signals for each testing condition. For measurements of accelerations at the
208	platform level, the data acquired from the five trials were averaged to provide a reference
209	platform vibration signal for each vibration condition (Kiiski et al., 2008). Transmissibility at
210	each body site was computed as the ratio of the root-mean-square resultant acceleration (rms-
211	acceleration) of the vibration signals measured at the body site to the rms-acceleration of
212	vibration signals measured at the platform with acceleration from gravity eliminated (Kiiski
213	et al., 2008). To evaluate the signal purity, Fast-Fourier transform analysis with a Hamming
214	window was used to analyze the power spectra of site-specific vibration signals separately for
215	each axis (Kiiski et al., 2008). The proportion of signal power within 1 Hz of the nominal
216	frequency (e.g. signal between 29Hz and 31Hz for a nominal frequency of 30Hz) was
217	computed to assess the degree of sinusoidal waveform distortion as vibrations were
218	transmitted to different body sites (Kiiski et al., 2008). This proportion was calculated as:
219	100% × [(power of signal within 1 Hz of x-axis nominal frequency + power of signal within
220	1 Hz of <i>y</i> -axis nominal frequency + power of signal within 1 Hz of <i>z</i> -axis nominal frequency)
221	/ (total <i>x</i> -axis power + total <i>y</i> -axis power + total <i>z</i> -axis power)]. The greater the nominal
222	frequency percentage power, the lesser the signal distortion.

223

224 2.4 Statistical Analysis

- 225 Statistical analysis was performed with SPSS (version 20.0, Armonk, NY). The demographic
- 226 variables (age, BMI) were compared between men and women using Mann-Whitney U Test
- 227 because of the small number of men (n=7) in our sample. Histogram was used to examine the
- 228 normality of the variables. Given that the histograms showed a largely normally distributed
- sample without outliers, and that skewed distributions have very little effect on the level of
- 230 significance and power (Glass & Hopkins, 1996), a three-way, repeated-measures ANOVA
- 231 was conducted to examine the influence of amplitude, frequency, and posture on
- 232 transmissibility at each site. Contrast analysis using the Bonferroni paired *t*-test was
- 233 performed for any overall significant results. Among the 9,000 mean transmissibility values
- 234 obtained (2 amplitudes \times 4 frequencies \times 6 postures \times 5 body sites \times 40 subjects), 99 of them
- 235 were missing due to technical error. The missing data were not specific to any subjects or
- testing conditions. Significance was set at P < 0.05. To examine the association of age and
- 237 body composition with transmissibility, Pearson's correlation coefficient was used. A more
- stringent significance level was set for the correlation analysis (*P*<0.01), because of the many
- 239 correlation coefficients generated.
- 240

241 **3. RESULTS**

- 242 The transmissibility across frequencies, amplitudes, and postures ranged between 0.93–2.55,
- 243 0.14–1.22, 0.05–0.77, 0.05–0.41, and 0.07–0.50 at the medial malleolus, tibial tuberosity,
- 244 greater trochanter, L3, and forehead respectively (Table 2). No adverse effects were reported
- 245 during the experiments.
- 246
- 247 3.1 Effect of vibration frequency
- 248 A significant main effect of WBV frequency at all anatomical sites (F=72.787-164.190,
- 249 P < 0.001, partial $\eta^2 = 0.651 0.808$). Increased WBV frequency significantly increased

Commented [A1]: Should this be 9600? Not 9000? Please verify. S0 the percentage is not 1.1%?

- transmissibility at the medial malleolus, with the opposite trend at the tibial tuberosity,
- 251 greater trochanter, L3, and forehead, where increased WBV frequency significantly
- decreased transmissibility (Fig. 2 and 3). Post-hoc analysis revealed significant differences in
- transmissibility for all comparisons across different frequencies at all sites ($P \le 0.008$), except
- between 35 Hz and 40 Hz at the tibial tuberosity (*P*=0.084).

255 Table 2. Transmissibility in all testing conditions* 256 Exact standing

	Erect standing		Semi-squat		Deep squat		Forward lunge		Toe-standing		Single-leg Standing	
Amplitude	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High
Medial mall	eolus											
25Hz	1.78 (0.34)	1.88 (0.47)	1.68 (0.29)	1.77 (0.34)	1.58 (0.32)	1.71 (0.43)	1.28 (0.36)	1.66 (0.32)	1.06 (0.23)	0.96 (0.28)	1.47 (0.26)	1.62 (0.31)
30Hz	2.06 (0.45)	2.20 (0.57)	1.86 (0.35)	2.01 (0.42)	1.74 (0.37)	1.86 (0.41)	1.65 (0.29)	1.90 (0.32)	1.22 (0.31)	1.15 (0.36)	1.77 (0.32)	1.91 (0.39)
35Hz	2.39 (0.63)	2.40 (0.55)	2.19 (0.56)	2.26 (0.51)	1.94 (0.59)	2.12 (0.68)	2.01 (0.41)	2.06 (0.41)	1.25 (0.33)	1.12 (0.38)	2.12 (0.50)	2.19 (0.46)
40Hz	2.55 (0.58)	2.34 (0.74)	2.42 (0.55)	2.50 (0.77)	2.11 (0.62)	2.32 (0.71)	2.10 (0.47)	2.04 (0.55)	1.09 (0.32)	0.93 (0.27)	2.33 (0.47)	2.47 (0.50)
Tibial tuber	osity											
25Hz	0.94 (0.30)	0.96 (0.36)	0.87 (0.29)	0.85 (0.33)	0.85 (0.25)	0.86 (0.33)	0.86 (0.33)	0.98 (0.36)	0.25 (0.08)	0.24 (0.07)	1.22 (0.51)	1.19 (0.34)
30Hz	0.77 (0.30)	0.80 (0.33)	0.64 (0.21)	0.62 (0.24)	0.63 (0.23)	0.62 (0.23)	0.77 (0.32)	0.79 (0.32)	0.25 (0.13)	0.23 (0.08)	0.85 (0.29)	0.82 (0.30)
35Hz	0.77 (0.31)	0.77 (0.26)	0.54 (0.20)	0.56 (0.26)	0.51 (0.15)	0.49 (0.17)	0.72 (0.31)	0.69 (0.34)	0.21 (0.08)	0.19 (0.07)	0.70 (0.23)	0.74 (0.25)
40Hz	0.80 (0.30)	0.74 (0.30)	0.53 (0.21)	0.54 (0.25)	0.45 (0.18)	0.48 (0.19)	0.68 (0.31)	0.67 (0.28)	0.17 (0.06)	0.14 (0.06)	0.69 (0.22)	0.72 (0.22)
Greater troc	<u>hanter</u>											
25Hz	0.40 (0.17)	0.37 (0.21)	0.26 (0.19)	0.22 (0.16)	0.27 (0.14)	0.23 (0.12)	0.26 (0.11)	0.23 (0.12)	0.18 (0.07)	0.15 (0.07)	0.77 (0.33)	0.67 (0.29)
30Hz	0.28 (0.14)	0.26 (0.15)	0.17 (0.12)	0.15 (0.08)	0.22 (0.23)	0.16 (0.09)	0.21 (0.15)	0.19 (0.15)	0.12 (0.06)	0.11 (0.04)	0.54 (0.28)	0.45 (0.21)
35Hz	0.21 (0.17)	0.20 (0.13)	0.12 (0.09)	0.11 (0.07)	0.16 (0.10)	0.13 (0.08)	0.16 (0.11)	0.14 (0.11)	0.08 (0.04)	0.08 (0.04)	0.36 (0.19)	0.32 (0.17)
40Hz	0.19 (0.15)	0.16 (0.12)	0.11 (0.10)	0.10 (0.10)	0.11 (0.06)	0.10 (0.06)	0.13 (0.10)	0.12 (0.09)	0.06 (0.03)	0.05 (0.02)	0.31 (0.17)	0.24 (0.11)
<u>L3</u>												
25Hz	0.38 (0.12)	0.41 (0.18)	0.28 (0.08)	0.24 (0.09)	0.23 (0.08)	0.19 (0.06)	0.30 (0.09)	0.29 (0.12)	0.13 (0.05)	0.11 (0.04)	0.33 (0.11)	0.31 (0.10)
30Hz	0.31 (0.13)	0.32 (0.14)	0.21 (0.08)	0.20 (0.08)	0.18 (0.06)	0.15 (0.04)	0.25 (0.10)	0.23 (0.11)	0.10 (0.04)	0.09 (0.03)	0.26 (0.10)	0.25 (0.12)
35Hz	0.27 (0.13)	0.29 (0.13)	0.18 (0.07)	0.17 (0.08)	0.14 (0.05)	0.12 (0.04)	0.22 (0.10)	0.20 (0.11)	0.08 (0.03)	0.07 (0.02)	0.22 (0.10)	0.23 (0.12)
40Hz	0.25 (0.13)	0.25 (0.13)	0.17 (0.07)	0.15 (0.07)	0.12 (0.04)	0.10 (0.03)	0.19 (0.09)	0.16 (0.08)	0.06 (0.02)	0.05 (0.02)	0.18 (0.08)	0.18 (0.10)
Forehead												
25Hz	0.50 (0.25)	0.45 (0.02)	0.24 (0.12)	0.19 (0.10)	0.22 (0.08)	0.18 (0.08)	0.27 (0.13)	0.24 (0.10)	0.20 (0.08)	0.18 (0.08)	0.30 (0.12)	0.27 (0.11)
30Hz	0.36 (0.14)	0.34 (0.15)	0.18 (0.10)	0.12 (0.06)	0.16 (0.07)	0.14 (0.06)	0.22 (0.11)	0.19 (0.08)	0.16 (0.07)	0.13 (0.04)	0.23 (0.09)	0.20 (0.10)
35Hz	0.28 (0.10)	0.27 (0.11)	0.13 (0.05)	0.10 (0.05)	0.13 (0.04)	0.11 (0.04)	0.16 (0.08)	0.13 (0.06)	0.11 (0.04)	0.10 (0.04)	0.17 (0.06)	0.16 (0.06)
40Hz	0.24 (0.10)	0.19 (0.09)	0.11 (0.05)	0.10 (0.04)	0.11 (0.04)	0.10 (0.04)	0.12 (0.04)	0.11 (0.06)	0.08 (0.03)	0.07 (0.03)	0.14 (0.05)	0.11 (0.05)

* Values are presented as mean (SD).

259 Fig. 2 Transmissibility of whole-body vibration signals at the medial malleolus, tibial

tuberosity, and greater trochanter

263 Fig. 3 Transmissibility of whole-body vibration signals at the third lumbar vertebra and the

262

271 **3.2 Effect of vibration amplitude**

272	The 0.9mm-amplitude yielded significantly greater transmissibility at the medial malleolus
273	(F=14.561, P<0.001, partial η^2 =0.272) than did the 0.6mm-amplitude (Fig. 2). The effect of
274	amplitude was not significant at the tibial tuberosity (F<0.001, p=0.991, partial $\eta^2\!\!<\!\!0.001$). In
275	the greater trochanter, L3, and forehead, the 0.6mm-amplitude resulted in significantly
276	greater transmissibility (F=41.600–54.283, <i>P</i> \leq 0.011, partial η^2 =0.516–0.582) (Fig. 2 and 3).

277

278 3.3 Effect of body posture

279 A significant effect of posture was observed at all sites (F=66.805-109.146, P<0.001, partial 280 η^2 =0.631–0.737). Toe-standing yielded the lowest transmissibility at all anatomical sites 281 $(P \le 0.02)$ (Fig. 2 and 3). The other postures resulted in similar transmissibility at the medial 282 malleolus and tibial tuberosity. At the greater trochanter, single-leg standing yielded the 283 highest transmissibility, followed by erect standing. Both postures resulted in significantly 284 greater transmissibility than did other postures (P < 0.001) (Fig. 2). The trend was reversed at 285 the L3 and forehead, where erect standing had greater transmissibility than all other postures 286 (P<0.001). Single-leg standing was second, with greater transmissibility than all remaining postures (P < 0.001) except forward lunge ($P \ge 0.131$) (Fig. 3). 287

288

289 3.4 Interaction effects

- 290 The effect of frequency on transmissibility was found to be dependent on posture in all
- anatomical positions (*P*<0.001). The effect of amplitude was also dependent on posture at the
- 292 medial malleolus (P<0.001), greater trochanter (P<0.001), and L3 (P=0.005), but not tibial
- tuberosity (P=0.746) and forehead (P=0.404). The amplitude \times frequency interaction
- 294 (P=0.001) and amplitude × frequency × posture interaction (P<0.001) was only significant at
- the medial malleolus.

296 3.5 Frequency domain analysis

297	The nominal percentage power ranged from 93.4% to 96.2% at the platform (Table 3). The
298	average nominal percentage power across amplitudes, frequencies, and postures at the medial
299	malleolus, tibial tuberosity, greater trochanter, L3, and forehead were 90.5%, 83.6%, 78.7%,
300	81.7%, and 77.8% respectively. Change in frequency did not affect signal purity across
301	different anatomical sites. The 0.6mm-amplitude yielded slightly better signal purity than did
302	the 0.9mm amplitude at the medial malleolus (difference: 2.9%) and tibial tuberosity (5.2%).
303	This trend was reversed at the greater trochanter (-4.5%), L3 (-3.8%), and forehead (-6.8%).
304	The maximal difference in nominal frequency percentage power among different postures
305	was relatively small at the medial malleolus (5.5%) and tibial tuberosity (5.1%) and larger at
306	greater trochanter (12.9%), L3 (24.5%) and forehead (20.6%). Erect and single-leg standing
307	position best retained the original sinusoidal waveform of signals across different anatomical
308	sites (\geq 83.0%). Deep squats (70.5–79.1%) and toe-standing (63.7–73.7%) resulted in the

- 309 lowest signal purity at the greater trochanter, L3 and forehead.
- 310

311 **3.6** Association of age and BMI with transmissibility

- 312 Of the possible 240 correlation coefficients generated (4 frequencies \times 2 amplitudes \times 6
- 313 postures \times 5 body sites), only 3 and 7 were significant for age and BMI respectively
- 314 (P<0.01). These significant correlations were not specific to any WBV parameters or body
- 315 sites.

316	Table 3. Percentage of nominal signal po	ower (signal purity) in a	all testing conditions*
317	Erect standing	Semi-squat	Deen squat

	Erect standing		Semi	squat	Jat Deep squat		Forward lunge		Toe-standing		Single-leg Standing	
Amplitude	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High
Platform												
25Hz	95.5 (0.1)	95.8 (0.0)	95.5 (0.1)	95.8 (0.0)	95.5 (0.1)	95.8 (0.0)	95.5 (0.1)	95.8 (0.0)	95.5 (0.1)	95.8 (0.0)	95.5 (0.1)	95.8 (0.0)
30Hz	96.2 (0.0)	95.9 (0.0)	96.2 (0.0)	95.9 (0.0)	96.2 (0.0)	95.9 (0.0)	96.2 (0.0)	95.9 (0.0)	96.2 (0.0)	95.9 (0.0)	96.2 (0.0)	95.9 (0.0)
35Hz	93.4 (0.0)	95.7 (0.0)	93.4 (0.0)	95.7 (0.0)	93.4 (0.0)	95.7 (0.0)	93.4 (0.0)	95.7 (0.0)	93.4 (0.0)	95.7 (0.0)	93.4 (0.0)	95.7 (0.0)
40Hz	93.4 (0.0)	96.0 (0.0)	93.4 (0.0)	96.0 (0.0)	93.4 (0.0)	96.0 (0.0)	93.4 (0.0)	96.0 (0.0)	93.4 (0.0)	96.0 (0.0)	93.4 (0.0)	96.0 (0.0)
Medial malle	olus	. ,			. ,					. ,	. ,	
25Hz	89.9 (5.6)	83.3 (12.3)	91.0 (4.9)	86.4 (8.1)	89.9 (5.2)	81.5 (13.3)	91.3 (5.4)	88.3 (6.2)	94.7 (2.3)	94.3 (5.0)	91.5 (4.0)	88.0 (6.2)
30Hz	93.1 (2.7)	89.1 (6.3)	92.8 (2.2)	90.5 (6.6)	91.9 (3.0)	89.3 (5.5)	92.5 (4.1)	89.1 (7.4)	95.3 (1.0)	94.3 (1.8)	93.1 (3.0)	92.2 (3.7)
35Hz	91.5 (4.2)	87.9 (5.7)	92.1 (4.0)	89.7 (5.7)	91.4 (2.8)	87.5 (7.4)	90.8 (4.8)	87.9 (7.6)	92.3 (1.2)	94.1 (1.7)	92.8 (3.5)	92.1 (3.8)
40Hz	90.4 (5.0)	85.7 (7.9)	91.2 (3.9)	87.4 (7.2)	90.8 (3.4)	85.9 (6.9)	90.8 (3.7)	86.6 (6.7)	92.4 (1.0)	94.7 (1.4)	92.2 (3.1)	90.5 (4.4)
Tibial tubero	osity											
25Hz	84.4 (7.4)	75.4 (11.8)	84.8 (7.0)	75.2 (10.9)	86.7 (10.9)	78.1 (10.6)	86.3 (7.5)	75.6 (11.9)	82.5 (6.9)	87.4 (7.7)	84.7 (9.1)	76.2 (15.2)
30Hz	87.3 (5.6)	80.6 (10.4)	85.1 (6.3)	78.2 (12.7)	86.6 (7.6)	79.4 (9.8)	87.2 (4.4)	80.6 (8.9)	87.3 (6.2)	90.6 (3.8)	84.1 (7.4)	80.2 (10.5)
35Hz	88.9 (2.9)	80.6 (8.0)	86.6 (5.5)	80.6 (8.3)	86.2 (5.3)	80.1 (9.4)	85.7 (6.5)	79.9 (9.6)	86.0 (6.5)	90.1 (6.5)	86.7 (6.4)	81.5 (13.0)
40Hz	87.0 (5.1)	80.2 (6.8)	87.1 (4.5)	79.7 (8.1)	85.6 (10.4)	79.3 (7.7)	86.6 (5.6)	80.9 (6.6)	85.5 (8.3)	89.0 (8.7)	88.6 (5.0)	84.5 (7.1)
Greater troc	<u>hanter</u>											
25Hz	84.7 (4.6)	81.5 (8.0)	79.2 (4.5)	83.9 (9.4)	72.8 (4.8)	81.9 (10.4)	79.2 (4.8)	83.3 (8.8)	84.0 (1.2)	81.0 (10.0)	83.2 (3.6)	77.8 (11.5)
30Hz	84.9 (2.3)	81.9 (10.8)	77.4 (2.0)	81.2 (12.2)	71.3 (2.7)	81.7 (12.2)	77.1 (4.1)	83.2 (9.4)	67.2 (0.9)	77.9 (10.2)	84.5 (2.0)	82.6 (9.1)
35Hz	82.8 (3.6)	81.9 (11.0)	74.8 (3.2)	80.8 (11.7)	71.9 (2.7)	78.6 (15.8)	76.0 (4.2)	81.8 (10.0)	61.6 (0.4)	73.5 (14.7)	85.4 (1.2)	84.6 (6.6)
40Hz	83.5 (4.1)	82.6 (9.6)	75.6 (2.1)	79.0 (16.6)	71.5 (1.6)	83.0 (10.0)	76.6 (2.0)	82.7 (11.4)	54.9 (0.0)	69.2 (15.8)	87.3 (1.2)	86.6 (6.0)
<u>L3</u>												
25Hz	85.3 (10.6)	84.7 (6.7)	83.9 (9.4)	86.5 (5.9)	76.0 (12.1)	82.0 (10.8)	85.3 (8.5)	87.2 (6.6)	53.1 (18.9)	70.1 (13.5)	87.1 (6.7)	87.0 (10.7)
30Hz	87.6 (4.7)	85.1 (9.8)	84.6 (9.6)	86.2 (7.9)	76.5 (14.7)	82.0 (9.2)	87.3 (5.5)	88.1 (8.3)	57.1 (17.9)	71.5 (14.3)	87.5 (9.0)	88.1 (10.0)
35Hz	88.2 (5.5)	85.9 (8.7)	85.0 (12.4)	86.3 (11.6)	73.9 (14.6)	81.5 (10.8)	87.2 (7.2)	87.2 (10.7)	60.0 (16.2)	72.3 (14.9)	87.2 (8.0)	90.2 (4.5)
40Hz	87.4 (7.3)	86.1 (7.9)	87.2 (11.7)	86.0 (12.2)	77.6 (14.0)	83.5 (11.4)	86.8 (9.8)	87.7 (10.6)	55.3 (20.5)	69.8 (20.9)	87.3 (8.3)	90.4 (4.9)
Forehead												
25Hz	87.8 (9.8)	86.2 (9.9)	64.6 (23.3)	67.8 (24.6)	58.2 (25.5)	64.9 (27.4)	75.1 (16.4)	84.7 (8.1)	69.6 (16.8)	79.3 (13.4)	80.2 (12.9)	84.0 (12.4)
30Hz	88.4 (10.9)	89.6 (8.0)	63.2 (23.4)	69.3 (23.7)	60.4 (24.7)	76.2 (19.4)	77.0 (18.7)	85.1 (10.7)	70.7 (16.2)	80.7 (13.2)	83.6 (10.2)	87.5 (8.2)
35Hz	90.0 (5.2)	90.8 (3.2)	66.8 (21.1)	69.4 (24.7)	69.3 (19.3)	79.7 (15.6)	75.2 (15.5)	82.3 (14.2)	66.9 (17.5)	80.5 (12.3)	79.6 (15.1)	88.2 (6.2)
40Hz	91.0 (3.6)	91.4 (3.5)	71.5 (21.4)	78.2 (23.1)	70.7 (19.6)	84.1 (9.3)	74.8 (16.4)	84.5 (11.9)	66.4 (14.8)	75.1 (16.7)	83.1 (11.0)	88.2 (7.0)

* Values are presented as mean (SD). The value of the platform was obtained by the average of 25 readings (5 accelerometers tested 5 times).

318 4. DISCUSSION

319 4.1 Signal amplification and attenuation

320 Amplification of WBV signals was noted at the medial malleolus for most testing conditions. 321 This site-specific resonance effect was previously observed in the younger populations 322 (Kiiski et al., 2008; Tankisheva et al., 2013). The average transmissibility of up to 2.55 323 reported here was close to the range of transmissibility values previously reported in the 324 semi- and high-squat postures (range: 1.5-3) among young adults (Tankisheva et al., 2013). 325 326 Otherwise, attenuation of WBV occurred in other sites. Generally, transmissibility decreased 327 as the WBV signals traveled from the ankles upward to the head. This phenomenon found in 328 the elderly population was also highly consistent with that in young adults (Tankisheva et al., 329 2013). The damping occurred as the signals propagated through shock absorbers of the body. 330 The foot arch and the flexibility at the knee and hip also helped cushion the impact generated 331 from the vibration platform (Ker et al., 1987; Lafortune et al., 1996). The muscle activity 332 needed to maintain the body posture, which may also be enhanced by WBV, could also 333 effectively dampen the signal (Bressel et al., 2010). The change in these factors may explain 334 the difference in transmissibility across the various testing conditions, which is discussed in 335 more detail in the following sections.

336

337 4.2 Effects of vibration frequency on transmissibility

Higher frequencies led to greater transmissibility at the medial malleolus. This trend was
reversed when the signals reached the tibial tuberosity and above, corresponding well to
findings in previous studies in young adults (Cook et al., 2011; Harazin and Grzesik, 1998;
Kiiski et al., 2008; Muir et al., 2013; Rubin et al., 2003). Our first hypothesis was thus
supported. When signals were transmitted above the ankle joint and passed through major

343	muscle groups that act as shock absorbers (e.g., the gastrocnemius), vibration signal
344	propagation was complicated by muscle damping (Bressel et al., 2010; Cardinale and
345	Wakeling, 2005; Pollock et al., 2010). As muscle activation increased with increasing
346	vibration frequency (Liao et al., 2014; Pollock et al., 2010), active damping of the vibration
347	signals could have increased with frequency (Wakeling et al., 2002; Wakeling and Nigg,
348	2001). Muscle-damping effects may have out-weighed the better transmissibility associated
349	with higher-frequency signals, reversing trends for transmissibility at the tibial tuberosity and
350	above.

352 **4.3 Effects of vibration amplitude on transmissibility**

353 The high amplitude (0.9mm) used in this study resulted in greater transmissibility than did 354 the low amplitude (0.6mm) at the medial malleolus. This trend was reversed at the greater 355 trochanter, L3, and forehead. The results thus supported our second hypothesis. Cook et al. 356 (2011) also showed that transmissibility from platform to shank, as well as from platform to 357 thigh, was higher for low-amplitude (1.5mm) than for high-amplitude vibration (3mm). No 358 data from previous studies were available for comparing the effect of amplitude in upper 359 body sites. Similar to the effect of frequency, muscle tuning effects may apply here, as higher 360 vibration amplitude may give rise to greater muscle activation (Hazell et al., 2007; Lam et al., 361 2016; Marín et al., 2009).

362

363 4.4 Effect of posture on transmissibility

364 Different postures significantly impacted on WBV transmissibility, thus supporting our third
365 hypothesis. By including postures with unequal weight-bearing between the two legs (i.e.,
366 single-leg standing, forward lunge), we are the first to investigate the effect of weight-bearing
367 on transmissibility. An interesting observation was noted for single-leg standing. At the tibial

368	tuberosity, transmissibility was similar between single-leg and erect standing. However, at
369	the greater trochanter, transmissibility during single-leg standing was 1.5–1.9 times greater
370	than that during erect standing at all vibration frequencies and amplitudes. The increase in
371	weight-bearing, which may increase compression force at the knee, hence lower-limb rigidity
372	(Marouane et al., 2015), appeared to be the primary cause of this observation. This explained
373	the greater signal transmission to the greater trochanter as it was the first measured body site
374	reached after signals have passed through the knee joint. Transmissibility during erect
375	standing exceeded that during single-leg standing at the L3 vertebra and head because signals
376	transmitted from both legs joined at the lumbar region.
377	
378	The effect of the knee angle on transmissibility could be deduced from comparing three
379	postures (i.e., erect standing [20°], semi-squat [45°], and deep squat [70°]). We found that
380	erect standing (20°) yielded significantly greater transmissibility than that for semi-squat and
381	deep squat at all measured sites. These findings were consistent with previous studies in
382	younger adults (Avelar et al., 2013; Muir et al., 2013; Tankisheva et al., 2013). The effect of
383	knee angle was the most prominent at L3. Bending the knee while maintaining an erect upper
384	body inevitably increased the hip flexion angle, thereby augmenting the damping effect as the
385	signals were transmitted further up to the lumbar spine. The effect of knee angle on
386	transmissibility may also be attributed to the greater degree of leg muscle activation
387	associated with a deeper squat, as discussed previously (Avelar et al., 2013; Pollock et al.,
388	2010; Wakeling et al., 2002).
389	
390	Toe-standing yielded the lowest transmissibility. Direct body contact with the vibration

- $391 \qquad \text{platform is considerably smaller in the toe-standing posture (i.e., forefoot) than in other}$
- 392 postures (i.e. whole plantar aspect of the foot). The arch of the human foot has spring-like

393	properties (Ker et al., 1987). In the toe-standing position, a large part of the feet are lifted off
394	the platform and the metatarsal joints are free to move. This allows the elastic soft tissues in
395	the arch (e.g., plantar aponeurosis, ligaments) to better store and release energy to damp the
396	vibration signals. Movements in the ankle joint also become possible and may help in further
397	damping the signals. Furthermore, greater activation of the gastrocnemius muscle during toe-
398	standing may also augment the damping effect (Wakeling et al., 2002; Wakeling and Nigg,
399	2001).
400	
401	The above factors (e.g., weightbearing, joint angle, contact area with platform, muscle
402	activity) may also explain why the change in posture would modify the effect of WBV
403	frequency and amplitude on transmissibility (i.e., interaction effect), thus supporting our
404	fourth hypothesis. Thus, apart from WBV frequency, amplitude, the posture assumed should
405	also be carefully considered when prescribing WBV exercise to older adults.
406	
407	4.5 Signal purity
408	Vibration signal purity was largely retained during its transmission from the platform to the
409	head. Only Kiiski et al. (2008) have investigated WBV signal purity in a small group of
410	young adults during erect standing. With a similar WBV amplitude (1mm) at 30 Hz and 40
411	Hz, the proportion of signal power within 1 Hz of the nominal frequency at the greater
412	trochanter reported in their study (78-92%) was similar to our findings (82-85%). However,
413	the signal purity reported at the medial malleolus (35-38%), tibial tuberosity (64-70%), and
414	L3 (50–75%) in their study was generally lower than what we found (medial malleolus: 86–
415	93%, tibial tuberosity: 80-89%, L3: 85-88%). Variability in signal purity data reported in
416	their study (SD, 2–38%) was also considerably higher than in ours (SD, 1–12%). The smaller
417	sample size used in their study and different characteristics of the participants (e.g., young vs.

418	old) may partially explain these differences. Details regarding the frequency domain analysis,
419	signal purity at the platform level, and methods used to monitor the posture of the
420	participants were not reported in Kiiski et al. (2008). Therefore, it was difficult to make a
421	direct comparison between their study and ours.
422	
423	4.6 Association of age and BMI with transmissibility
424	No previous research has examined the association of WBV transmissibility with age and
425	BMI. The results of our correlation analysis were largely insignificant. Out of the 240
426	correlation coefficients generated for each variable, only 3 and 7 were found to be significant
427	for age and BMI respectively. There was no reasonable physiological explanation as to why
428	age and BMI were only correlated with only a few specific posture \times frequency \times amplitude
429	\times body site combinations but not the majority of others. Moreover, the significant
430	correlations also followed no identifiable pattern. A more plausible explanation is that the
431	few "significant" correlations found were likely related to the increased chance of
432	committing a type I error as a large number of correlation coefficients were generated.
433	
434	4.7 Study limitations
435	The results can be generalized only to older adults who shared similar characteristics of our
436	subjects. Muscle activity was not examined in conjunction with transmissibility. The
437	correlation between muscle activation and transmissibility could thus not be evaluated to
438	verify muscle tuning effects. The platform accelerations were not measured synchronously
439	with the accelerations at the body parts. We acknowledge this as a limitation but it should
440	have little impact on our results, given the small difference in platform accelerations in
441	loaded and unloaded condition as well as the consistent output over time.
442	

443	Skin-mounted accelerometers were used in this study; thus, translations of the accelerometers
444	on the skin could not be totally ruled out, despite efforts to ensure secure mounting. More
445	invasive assessment (e.g., implantation of transcutaneous pins (Rubin et al., 2003)) was not
446	implemented to ensure patient safety. Skin mounted accelerometers were also the most
447	commonly used method to measure accelerations in similar studies, which also facilitate
448	comparison of results across studies (Cook et al., 2011; Kiiski et al., 2008; Tankisheva et al.,
449	2013). Our sample includes more women than men. Due to the small number of men, we did
450	not perform subgroup analysis to compare the transmissibility between men and women.
451	However, considering that BMI and age showed no significant difference between the two
452	subgroups (Table 1) and that these two factors were not strongly associated with
453	transmissibility, the impact of biological sex on transmissibility, if any, should be minimal.
454	However, this postulation will need to be confirmed in future research.
455	

456 **4.8 Practical applications**

457 WBV transmissibility to the head was greatly dampened at the head, which largely eased the 458 safety concern of WBV treatment. Lower vibration frequencies and amplitudes are better at 459 retaining signal power during propagation in the human body and may be more appropriate if 460 the goal was to provide mechanical strains to bone structures in the lower extremities/lumbar 461 spine to maintain or improve bone health among older adults. However, the decreased 462 transmissibility to the upper body associated with higher vibration frequencies and amplitude 463 was possibly due to the muscle tuning effects (Wakeling et al., 2002; Wakeling and Nigg, 464 2001), which may imply a better lower-limb muscle training effect. Static erect standing 465 posture should be avoided, as its transmissibility to the head is much greater than that for 466 other postures. In view of its good signal transmission to the greater trochanter and lumbar 467 spine and its ability to retain signal purity, single-leg standing strikes the best balance

468	between achieving therapeutic effect on bone health (i.e., good transmissibility to the lower
469	limbs and spine) and ensuring safety (i.e., low transmissibility to the head). Finally,
470	considering that amplification of signals occurred at the medial malleolus, the protocols
471	adopted in the current study should not be used in the treatment of people with ankle
472	pathology.
473	
474	4.9 Conclusions
475	Resonance was observed only at the medial malleolus. Above the knee joint, lower WBV
476	frequencies and amplitudes yielded better transmissibility. Single-leg standing yielded the
477	highest WBV transmission to the hip without augmenting transmission to the head.
478	Nevertheless, signal transmissibility depended on the interaction between frequency and
479	posture and, to a lesser extent, the interaction between amplitude and posture. Signal purity
480	was well conserved during WBV transmission.
481	
482	Funding: Freddy M. H. Lam was granted a full-time research scholarship by the Hong Kong
483	Polytechnic University (RTSF); Marco Y. C. Pang was provided with a research grant by the
484	Hong Kong Polytechnic University (G-YJ41); The vibration device was provided by the
485	SOOST Ltd; The funder had no role in the study design, data collection, data analysis,
486	interpretation of data, or preparation of the manuscript.
487	
488	Contributors

- 489 Study design: FMHL, CYT, and MYCP. Study conduct: FMHL. Data collection: FMHL.
- 490 Data analysis: FMHL. Data interpretation: FMHL, CYT, TCYK, and MYCP. Drafting
- 491 manuscript: FMHL. Revising manuscript content: FMHL and MYCP. Approving final

492 version of manuscript: FMHL, CYT, TCYK, and MYCP. FMHL takes responsibility of the

493 integrity of the data analysis.

494

495 **REFERENCES**

- 496 Abercromby, A.F.J., Amonette, W.E., Layne, C.S., Mcfarlin, B.K., Hinman, M.R., Paloski,
- 497 W.H., 2007. Vibration Exposure and Biodynamic Responses during Whole-Body
- 498 Vibration Training. Med. Sci. Sport. Exerc. 39, 1794–1800.
- 499 doi:10.1249/mss.0b013e3181238a0f
- 500 Armstrong, W.J., Nestle, H.H.N., Grinnell, D.C., Cole, L.D., van Gilder, E.L., Warren, G.S.,
- 501 Capizzi, E.A., 2008. The acute effect of whole-body vibration on the hoffmann reflex. J.
- 502 Strength Cond. Res. 22, 471–476. doi:10.1519/JSC.0b013e3181660605
- 503 Avelar, N.C.P., Ribeiro, V.G.C., Mezêncio, B., Fonseca, S.F., Tossige-Gomes, R., da Costa,
- 504 S.J., Szmuchrowski, L., Gripp, F., Coimbra, C.C., Lacerda, A.C.R., 2013. Influence of
- 505 the knee flexion on muscle activation and transmissibility during whole body vibration.
- 506 J. Electromyogr. Kinesiol. 23, 844–50. doi:10.1016/j.jelekin.2013.03.014
- 507 Bochnia, M., Morgenroth, K., Dziewiszek, W., Kassner, J., 2005. Experimental vibratory
- damage of the inner ear. Eur. Arch. Otorhinolaryngol. 262, 307–13.
- 509 doi:10.1007/s00405-004-0799-8
- 510 Bressel, E., Smith, G., Branscomb, J., 2010. Transmission of whole body vibration in
- 511 children while standing. Clin. Biomech. 25, 181–186.
- 512 doi:10.1016/j.clinbiomech.2009.10.016
- 513 Burke, D., Schiller, H.H., 1976. Discharge pattern of single motor units in the tonic vibration
- reflex of human triceps surae. J. Neurol. Neurosurg. Psychiatry 39, 729–741.
- 515 doi:10.1136/jnnp.39.8.729
- 516 Cardinale, M., Wakeling, J., 2005. Whole body vibration exercise: are vibrations good for

- 517 you? Br. J. Sports Med. 39, 585–589. doi:10.1136/bjsm.2005.016857
- 518 Cook, D.P., Mileva, K.N., James, D.C., Zaidell, L.N., Goss, V.G., Bowtell, J.L., 2011.
- 519 Triaxial modulation of the acceleration induced in the lower extremity during whole-
- 520 body vibration training: a pilot study. J. Strength Cond. Res. 25, 298–308.
- 521 doi:10.1519/JSC.0b013e3181be3003
- 522 Fontana, T.L., Richardson, C.A., Stanton, W.R., 2005. The effect of weightbearing exercise
- 523 with low frequency, whole body vibration on lumbosacral proprioception: A pilot study
- 524 on normal subjects. Aust. J. Physiother. 51, 259.
- 525 Furness, T.P., Maschette, W.E., Lorenzen, C., Naughton, G.A., Williams, M.D., 2010.
- 526 Efficacy of a whole-body vibration intervention on functional performance of
- 527 community-dwelling older adults. J. Altern. Complement. Med. 16, 795–797.
- 528 doi:10.1089/acm.2009.0366
- 529 Harazin, B., Grzesik, J., 1998. The Transmission of Vertical Whole-Body Vibration To the
- 530 Body Segments of Standing Subjects. J. Sound Vib. 215, 775–787.
- 531 doi:10.1006/jsvi.1998.1675
- 532 Hazell, T.J., Jakobi, J.M., Kenno, K.A., 2007. The effects of whole-body vibration on upper-
- and lower-body EMG during static and dynamic contractions. Appl. Physiol. Nutr.
- 534 Metab. 32, 1156–1163. doi:10.1139/H07-116
- 535 Ishitake, T., Ando, H., Miyazaki, Y., Matoba, F., 1998. Changes of visual performance
- induced by exposure to whole-body vibration. Kurume Med. J. 45, 59–62.
- Keller, K., Engelhardt, M., 2013. Strength and muscle mass loss with aging process. Age and
 strength loss. Muscles. Ligaments Tendons J. 3, 346–50.
- 539 Ker, R.F., Bennett, M.B., Bibby, S.R., Kester, R.C., Alexander, R.M., 1987. The spring in the
- arch of the human foot. Nature 325, 147–149. doi:10.1038/325147a0
- 541 Kiiski, J., Heinonen, A., Järvinen, T.L., Kannus, P., Sievänen, H., 2008. Transmission of

- 542 Vertical Whole Body Vibration to the Human Body. J. Bone Miner. Res. 23, 1318–
- 543 1325. doi:10.1359/jbmr.080315
- 544 Lafortune, M.A., Hennig, E.M., Lake, M.J., 1996. Dominant role of interface over knee angle
- for cushioning impact loading and regulating initial leg stiffness. J. Biomech. 29, 1523–
 1529. doi:10.1016/0021-9290(96)00081-4
- 547 Lam, F.M.H., Lau, R.W.K., Chung, R.C.K., Pang, M.Y.C., 2012. The effect of whole body
- vibration on balance, mobility and falls in older adults: A systematic review and meta-
- analysis. Maturitas 72, 206–213. doi:10.1016/j.maturitas.2012.04.009
- 550 Lam, F.M.H., Liao, L.R., Kwok, T.C.Y., Pang, M.Y.C., 2016. The effect of vertical whole-
- body vibration on lower limb muscle activation in elderly adults: Influence of vibration
- frequency, amplitude and exercise. Maturitas 88, 59–64.
- 553 doi:10.1016/j.maturitas.2016.03.011
- Lau, R.W.K., Liao, L.-R., Yu, F., Teo, T., Chung, R.C., Pang, M.Y., 2011. The effects of
- 555 whole body vibration therapy on bone mineral density and leg muscle strength in older
- adults: a systematic review and meta-analysis. Clin. Rehabil. 25, 975–988.
- 557 doi:10.1177/0269215511405078
- 558 Liao, L.-R., Lam, F.M.H., Pang, M.Y.C., Jones, A.Y.M., Ng, G.Y.F., 2014. Leg muscle
- activity during whole-body vibration in individuals with chronic stroke. Med. Sci.
- 560 Sports Exerc. 46, 537–45. doi:10.1249/MSS.0b013e3182a6a006
- 561 Machado, A., García-López, D., González-Gallego, J., Garatachea, N., 2010. Whole-body
- vibration training increases muscle strength and mass in older women: A randomized-
- 563 controlled trial. Scand. J. Med. Sci. Sport. 20, 200–207. doi:10.1111/j.1600-
- 564 0838.2009.00919.x
- 565 Marín, P., Martín-López, A., Vicente-Campos, D., Angulo-Carrere, M., García-Pastor, T.,
- 566 Garatachea, N., Chicharro, J., 2011. Effects of vibration training and detraining on

567	balance and muscle strengt	th in older adults. J. S	Sport. Sci. Med. 10, 559–564.
			,

- 568 Marín, P.J., Bunker, D., Rhea, M.R., Ayllón, F.N., 2009. Neuromuscular activity during
- 569 whole-body vibration of different amplitudes and footwear conditions: implications for
- 570 prescription of vibratory stimulation. J. Strength Cond. Res. 23, 2311–2316.
- 571 doi:10.1519/JSC.0b013e3181b8d637
- 572 Marín, P.J., Rhea, M.R., 2010. Effects of vibration training on muscle power: a meta-
- analysis. J. Strength Cond. Res. 24, 871.
- 574 Marouane, H., Shirazi-Adl, A., Adouni, M., 2015. Knee joint passive stiffness and moment in
- 575 sagittal and frontal planes markedly increase with compression. Comput. Methods
- 576 Biomech. Biomed. Engin. 18, 339–350. doi:10.1080/10255842.2013.795555
- 577 McGregor, R.A., Cameron-Smith, D., Poppitt, S.D., 2014. It is not just muscle mass: a
- 578 review of muscle quality, composition and metabolism during ageing as determinants of
- 579 muscle function and mobility in later life. Longev. Heal. 3, 9. doi:10.1186/2046-2395-3-
- 580

- 581 Merriman, H., Jackson, K., 2009. The effects of whole-body vibration training in aging
- adults: a systematic review. J. Geriatr. Phys. Ther. 32, 134–145.
- 583 Mileva, K.N., Bowtell, J.L., Kossev, A.R., 2009. Effects of low-frequency whole-body
- vibration on motor-evoked potentials in healthy men. Exp. Physiol. 94, 103–16.
- 585 doi:10.1113/expphysiol.2008.042689
- 586 Muir, J., Kiel, D.P., Rubin, C.T., 2013. Safety and severity of accelerations delivered from
- whole body vibration exercise devices to standing adults. J. Sci. Med. Sport 16, 526–31.
 doi:10.1016/j.jsams.2013.01.004
- 589 Orr, R., 2015. The effect of whole body vibration exposure on balance and functional
- 590 mobility in older adults: A systematic review and meta-analysis. Maturitas 80, 342–358.
- 591 doi:10.1016/j.maturitas.2014.12.020

- 592 Pollock, R.D., Woledge, R.C., Mills, K.R., Martin, F.C., Newham, D.J., 2010. Muscle
- activity and acceleration during whole body vibration: effect of frequency and
- 594 amplitude. Clin. Biomech. 25, 840–846.
- 595 Rubin, C., Pope, M., Fritton, J.C., Magnusson, M., Hansson, T., McLeod, K., 2003.
- 596 Transmissibility of 15-hertz to 35-hertz vibrations to the human hip and lumbar spine:
- 597 determining the physiologic feasibility of delivering low-level anabolic mechanical
- 598 stimuli to skeletal regions at greatest risk of fracture because of osteoporosis. Spine
- 599 (Phila. Pa. 1976). 28, 2621–7. doi:10.1097/01.BRS.0000102682.61791.C9
- 600 Tankisheva, E., Jonkers, I., Boonen, S., Delecluse, C., van Lenthe, G.H., Druyts, H.L.J.,
- 601 Spaepen, P., Verschueren, S.M.P., 2013. Transmission of whole-body vibration and its
- 602 effect on muscle activation. J. Strength Cond. Res. 27, 2533–41.
- 603 doi:10.1519/JSC.0b013e31827f1225
- Turner, S., Torode, M., Climstein, M., Naughton, G., Greene, D., Baker, M.K., Fiatarone
- 605 Singh, M.A., 2011. A Randomized Controlled Trial of Whole Body Vibration Exposure
- on Markers of Bone Turnover in Postmenopausal Women. J. Osteoporos. 2011, 1–10.
- 607 doi:10.4061/2011/710387
- Wakeling, J.M., Nigg, B.M., 2001. Modification of soft tissue vibrations in the leg by
- 609 muscular activity. J Appl Physiol 90, 412–420.
- 610 Wakeling, J.M., Nigg, B.M., Rozitis, A.I., 2002. Muscle activity damps the soft tissue
- 611 resonance that occurs in response to pulsed and continuous vibrations. J. Appl. Physiol.
- 612 93, 1093–1103. doi:10.1152/japplphysiol.00142.2002
- 613 Zebaze, R.M.D., Ghasem-Zadeh, A., Bohte, A., Iuliano-Burns, S., Mirams, M., Price, R.I.,
- 614 Mackie, E.J., Seeman, E., 2010. Intracortical remodelling and porosity in the distal
- radius and post-mortem femurs of women: a cross-sectional study. Lancet 375, 1729-
- 616 36. doi:10.1016/S0140-6736(10)60320-0