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Abstract. Since the usage of Unmanned Aerial Vehicle (UAV) for civil 
applications is increasing, the localization accuracy in urban becomes an 
important issue for safety. However, the GNSS localization solution suffers a 
large error by the multipath effect. Since the multipath effect is unable to be 
completely solved but to mitigate, the multi-sensor integrated localization 
method is a common method to reduce this error. This study develops an adaptive 
Kalman filter adjusting the weighting between GNSS and INS measurements for 
different circumstance, further to improve the integration performance. The 
adaptation is based on supervised machine learning model classification, 
predicting the GNSS conditions with measurement features. The principle 
component analysis (PCA) is employed to aid selecting major features and 
labeling data for machine learning. Then, the supervised machine learning model 
is trained base on the decision tree and random forest (RF) learning algorithm 
with real operation data covering most situations. To reduce the miss-
classification error, the fuzzy logic algorithm is designed to avoid the 
classification result with rapid change. Besides, the process noise covariance is 
determined with Allan variance analysis. The localization performance of the 
proposed adaptive Kalman filter is compared with conventional Kalman filter 
and onboard localization solution provided by commercial fly controller. The 
results prove that the presented adaptive Kalman filter using random forest with 
fuzzy logic can achieve better GNSS condition classification outperforming other 
algorithms. The fuzzy logic in the proposed algorithm can mitigate jumping error 
causing by miss-classification. For urban areas, the overall localization result 
improves about 50% comparing with the onboard solutions. The maximum 
localization error can be reduced from 43.2 to 14.7 meters. The result verifies 
that the proposed adaptive Kalman filter can mitigate the localization error from 
multipath effect as well as achieving more accurate localization solution for UAV 
in urban areas. 

Keywords: UAV, Adaptive Kalman Filter, Supervised Machine Learning, 
Decision Tree, Random Forest, Fuzzy Logic. 

1 Introduction 

Unmanned aerial vehicles (UAV) have been widely employed in military as military 
reconnaissance, and recently, UAV are increasingly used in civilian applications, such 
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as disaster searching and rescuing [1], package delivering [2] and scientific research 
[3]. Since UAV has the advantages of high maneuvering capability and auto operation 
without pilot control, those missions can achieve higher safety and convenient with 
UAV. While more UAV participate into civilian applications, the operating 
environment is required closer to civilians where closely near urban cities or even inside 
the urban. The navigation system of UAV is usually guided by Global Navigation 
Satellite System (GNSS) localization, by receiving different satellite signals and further 
process all the signals, the distance between receiver and satellite can be calculated, and 
the current position of UAV can be further determined. The performance of GNSS 
localization is affected by serval factors, including satellite clock/orbit bias, 
atmospheric delay, receiver thermal noise and multipath delays, by nowadays 
technologies as clock calibration, atmosphere model correction, the error of GNSS 
localization can be reduced to 1-2 meters in open area. However, when the operating 
environment is close to urban area with buildings nearby or surrounding, the signals 
from satellites will be reflected by the surface of buildings and suffer a signal delay that 
further cause positioning error, namely, the multipath delay [4]. The multipath delay is 
commonly occurred effect and the dominate error in the urban area for GNSS 
localization, the multipath effect can be mitigated with improved antenna and signal 
processing methods. However, there has no complete solution to eliminate this error, 
even more, when the receiver is operating in the deep urban with dense building 
construction, the multipath effect will be severe and even able to introduce enormous 
error on localization. As Fig. 1 shows, the GNSS localization solution has large error 
with regarding to the true trajectory, where some of the error even exceeds 50 meters. 
Comparing the space between each building in urban, this error level is dangerous UAV 
to operate automatic missions and has high risk crushing on buildings due to the wrong 
localization result. Hence, more effective method is required to reduce the multipath 
introduced positioning error, in order to achieve higher safety and reliability for UAV 
operation in urban area. 

 
Fig. 1. Experimental UAV localization error in urban area, blue line as the true trajectory. 
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The common method to achieve better accuracy for UAV navigation positioning is to 
apply sensor fusion. For GNSS, the data receiving frequency is low and may subject to 
outages when process positioning, also the short-term noise is high, but it is stable 
during a long term and relatively accurate. On the other hand, the inertial navigation 
system (INS) has the characteristics to supply continuous data with high rate with low 
short-term noise, but suffering large accumulated error. Due to these complementary 
aspects between GNSS and INS, it is effective to integrate these navigation systems for 
positioning and achieve higher precision localization performance [5, 6]. Other high-
class sensors also been used to improve the localization accuracy for UAV by recent 
studies, such as vision sensor [7, 8] or light detection and ranging (LiDAR) with 
simultaneous localization and mapping (SLAM) technology aiding the navigation 
system when suffering a large GNSS positioning error or large outage. However, these 
high-class sensors usually have large weight may exceeds UAV`s payload capability, 
and also expensive for widely using. Moreover, the high computation load will further 
cause large power consumption that limits the UAV operation duration. Then, another 
effective method to improve the localization performance in urban is to improve the 
conventional GNSS/INS integration adapt into urban environment. 
 
The well-known Kalman filter [9, 10] is widely employed to integrate GNSS and INS 
with a tradeoff between two systems. Usually, the INS will be treated as prediction and 
GNSS as measurement, by comparing their localization result, the Kalman filter can 
update the position after each integration. The value of process noise covariance and 
measurement noise covariance can affect the Kalman gain, further control the 
weighting between prediction and measurement. For most application, the process 
noise covariance and measurement noise covariance are fixed values, then the 
weighting between INS and GNSS is static value. However, the operating environment 
is not static in urban area. During a single flight as shown in Fig. 2, the UAV will go 
through some area as A with dense buildings causing large GNSS error, it also will fly 
to some area as B, has better satellite view and achieve good GNSS positioning result. 
Then, constant covariance is unable to adapt all situations and may not able to achieve 
optimal performance, the adaptive Kalman filter (AKF) [11, 12] is required to adjust 
the weighting between GNSS and INS. In this study, we develop an adaptive Kalman 
filter to adjust the weighting between GNSS and INS, in order to achieve higher 
localization accuracy in urban area. Since the operating environment changing in urban 
scenario greatly influence the GNSS measurement rather than the INS measurement, 
the adaptation is based on the GNSS measurement condition to adjust the measurement 
noise covariance. The process noise covariance relating to INS is designed with an 
appropriate constant value. The GNSS also provides many other information while 
measuring position, such as position dilution of precision (PDOP), satellite numbers 
(nSat), etc. These measurements are highly relating to the GNSS measurement 
environment, and able to be used to estimate the measurement condition.  
 
Since there are several information and each of them has different meaning, it is hard 
to directly develop a complete model denoting the relationship. By employing the 
machine learning algorithm, the relationship can be derived by a learning model trained 
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with enough data [13]. Without studying the detail relationship, the well-trained model 
is able to predict the condition with an acceptable accuracy. Among different kinds of 
machine learning algorithm, the proposed adaptive Kalman filter employs the 
supervised machine learning algorithm as the decision tree (DT) [14] and the random 
forest (RF) [15] for prediction. The random forest algorithm is able to correct the 
overfitting problem from decision tree (DT) algorithm, improving the accuracy. Here, 
the random forest is trained with different measurement condition data and able to 
predict the condition. However, the machine learning model still occur 
misclassification as the out of sample error, which may still influence the overall 
integration performance. During the operation, the GNSS condition related value is 
slightly change, then the rapid changing classification result is more likely the 
misclassification error. In this study, we further employed the fuzzy control algorithm 
to smooth the rapid changing classification result and mitigate the misclassification 
error [16]. Based on the prediction, it is able to determine the measurement noise 
covariance value and further adjust the weighting between GNSS and INS during 
integration. The proposed GNSS/INS integration algorithm using the machine learning 
based adaptive Kalman filter is able to classify the GNSS condition with sufficient 
accuracy and adjust the weight to adapt different circumstance in urban. The 
performance of DT, RF and RF with fuzzy logic are also compared in the experiment, 
where the RF with fuzzy logic achieve better classification accuracy. The proposed 
algorithm is able to achieve higher localization accuracy than the conventional Kalman 
filter and the onboard positioning result, which can increase the safety during UAV 
operating inside urban area. 
 
The paper is organized as follows. Section II illustrates the system architecture of the 
proposed cooperative localization solution. In section III, the adaptive Kalman filter 
algorithm using different supervised machine learning is derived. The experiment setup 
and result are provided in Section IV. Finally, the conclusion is drawn in section V. 

 
Fig. 2. Different operating environment for UAV. 
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2 Navigation System 

The localization of UAV is usually based on the sensors onboard, such as the Global 
Navigation Satellite System (GNSS), Gyroscope, Accelerometers and others. Since the 
localization accuracy is highly related to the performance of UAV and safety operation, 
multiple sensors are commonly used and integrated to obtain more accurate integrated 
localization solution. The GNSS/INS integration is widely used in UAV for its 
reliability and system simplicity, the localization performance is accurate for UAV 
operation in open sky environment. In this study, we employed the loosely couple 
GNSS/INS integration algorithm for the UAV navigation system. 

2.1 Global Navigation Satellite System 

GNSS represents all the globally covered satellite navigation system that obtaining 
user`s position, velocity and time. By processing the signals transmitted from different 
satellites and ranging, GNSS can provide three-dimensional localization solution for 
the user receiver. Base on the principle that satellite signal transporting as the speed of 
light, the satellite-to-user range can be derived as following, namely the pseudorange. 

 𝜌𝜌𝑗𝑗 = (𝑡𝑡𝑠𝑠𝑠𝑠,𝑗𝑗 − 𝑡𝑡𝑠𝑠𝑠𝑠,𝑗𝑗)𝑐𝑐  (1) 

where 𝑡𝑡𝑠𝑠𝑠𝑠,𝑗𝑗 is the decoded signal transmission time and 𝑡𝑡𝑠𝑠𝑠𝑠,𝑗𝑗 is the measured arrival 
time for the 𝑗𝑗𝑡𝑡ℎ satellite, 𝑐𝑐 is the speed of light. 
 
After having at least 4 satellite measurements and each satellite position from 
ephemeris, we are able to apply satellite ranging localization algorithm to calculate 
user`s position [17]. For over 4 measurements, the position difference between initial 
position estimation can be obtained by least square iteration: 

 ∆𝐱𝐱 = (𝐇𝐇𝑇𝑇𝐇𝐇)−1𝐇𝐇𝑇𝑇∆𝛒𝛒 (2) 

∆𝛒𝛒 is the pseudorange difference vector, 𝐇𝐇 is the direction cosines matrix and ∆𝐱𝐱 is 
the displacement vector which needs to be solved to determine the user position. 
 
By correcting the initial position estimation with ∆𝐱𝐱 , the 3-dimensional absolute 
position of user receiver can be determined with regarding to earth. 

Multipath Error 
 

However, GNSS positioning performance is affected by several factors, including 
satellite clock/orbit bias, atmospheric delays, receiver thermal noise and multipath 
delays [18]. The measurement errors are originated from time delays since the error 
sources affect the transmitting time. The equation is given as following:  

 𝛿𝛿𝑡𝑡𝐷𝐷 = 𝛿𝛿𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛿𝛿𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝛿𝛿𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛿𝛿𝑡𝑡𝑚𝑚𝑚𝑚  (3) 
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The overall time offset 𝛿𝛿𝑡𝑡𝐷𝐷 is the summation of different signal delays, including the 
atmosphere errors 𝛿𝛿𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎, the receiver thermal noise 𝛿𝛿𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, satellite clock and orbit 
bias 𝛿𝛿𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 and the multipath offset 𝛿𝛿𝑡𝑡𝑚𝑚𝑚𝑚. There are several models are developed to 
mitigate or eliminate the errors above. The atmospheric delay is caused from the signal 
transporting through the ionosphere and troposphere layers, which can be eliminated 
by differential GPS (DGPS) [19]. In general, the receiver thermal noise in current 
device is less than the order of a decimeter, which is negligible compared to other errors. 
The satellite clock and orbit error can be decreased to a neglectable level via 
constellation update and synchronization corrections. 
 
Besides the errors above, the multipath error is caused by receiving the reflected signals 
as shown in Fig. 3. The green trajectory represents the direct transmitted satellite signal 
and the red trajectory represents the satellite signal reflected by the surface of building. 
Due to the extra traveling distance from reflection, the signal experiences a transporting 
time error which further influences the correctness of the pseudorange measurement. 
The multipath effect is highly depending on the surrounding environment, hence DGPS 
cannot mitigate it. There are several methods to coarsely mitigate multipath effects, 
such as sophisticated discriminator design and hardware enhanced antennas [20]. 
However, there is still no complete solution to eliminate this effect. When the UAV 
operation area is in urban area with many high buildings surrounding, the multipath 
effect will be very severe. Thus, multipath is the dominant factor for GNSS positioning 
accuracy in our target application. To ensure the safety of UAV application in urban, it 
is important to reduce the positioning error due to surrounding buildings multipath 
effect. An effective method is to integrate with other sensors, compensate multipath 
error with other more reliable measurements. 

 
Fig. 3. Multipath reflected signal with extra traveling distance in urban area, green line is the 

direction transporting signal and red line is the reflected signal 
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2.2 Inertial Navigation System (INS) 

Inertial Navigation System (INS) is a dead-reckoning navigation system, using the 
Inertial Measurement Units (IMU) measurement and navigation equations to update the 
current state of target, including attitude, velocity and position [9]. After given the 
initial state of target, the INS is able to update the attitude of vehicle by the angular 
measurement from IMU. The attitude will be further combined with specific force 
measurement from IMU to update the velocity. Finally, the position update can be 
achieved with velocity. The INS can update the state with a certain rate via iteration 
and navigate the vehicle during operation. Regarding to the ECEF coordinate frame, 
the velocity iteration is derived from the change rate of velocity as following: 

 𝐯𝐯𝑒𝑒𝑒𝑒𝑒𝑒 (+) ≈ 𝐯𝐯𝑒𝑒𝑒𝑒𝑒𝑒 (−) + (𝒇𝒇𝑖𝑖𝑖𝑖𝑒𝑒 + 𝒈𝒈𝑏𝑏𝑒𝑒 − 2𝛀𝛀𝑖𝑖𝑖𝑖
𝑒𝑒 𝐯𝐯𝑒𝑒𝑒𝑒𝑒𝑒 (−))𝜏𝜏𝑖𝑖   (4) 

Here, 𝒇𝒇𝑖𝑖𝑖𝑖𝑒𝑒  is the specific force derived above, 𝒈𝒈𝑏𝑏𝑒𝑒  is the gravitation force acceleration 
at a specific location, 2𝛀𝛀𝑖𝑖𝑖𝑖

𝑒𝑒 𝐯𝐯𝑒𝑒𝑒𝑒𝑒𝑒  is the Coriolis acceleration. 𝜏𝜏𝑖𝑖  is the time interval. 
Symbol (+)  denotes current epoch and (– )  denotes the previous epoch. By 
assuming the velocity varies linearly over the integration interval, the current position 
𝐫𝐫𝑒𝑒𝑒𝑒𝑒𝑒 (+) can be updated as: 

 𝐫𝐫𝑒𝑒𝑒𝑒𝑒𝑒 (+) = 𝐫𝐫𝑒𝑒𝑒𝑒𝑒𝑒 (−) + (𝐯𝐯𝑒𝑒𝑒𝑒𝑒𝑒 (−) + 𝐯𝐯𝑒𝑒𝑒𝑒𝑒𝑒 (+)) 𝜏𝜏𝑖𝑖
2

 (5) 

After obtaining the navigation parameters from INS iteration, the estimation will be 
further integrated with the GNSS measurement data by Kalman filter. 

2.3 Loosely Coupled Integration 

There are various levels of GNSS/INS integration for navigation, depending on how 
corrections are made to the inertial navigation system, GNSS measurement types and 
how INS aiding GNSS with integration algorithm. Commonly, the architecture can be 
categorized as loosely coupled integration (LC), tightly coupled integration (TC) and 
ultra-tightly coupled integration (UTC). In this study, the loosely coupled integration is 
employed in ECEF frame for simplicity, it uses the GNSS position and velocity solution 
as the measurement to correct INS prediction result.  
 
The state vector during integration includes the differences of attitude, velocity and 
position, also the biases of accelerometer and gyroscope are included, which makes the 
state vector as: 

 𝐱𝐱𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒 =

⎝

⎜⎜
⎛

δ𝚿𝚿𝑒𝑒𝑒𝑒
𝑒𝑒

δ𝐯𝐯𝑒𝑒𝑒𝑒𝑒𝑒

δ𝐫𝐫𝑒𝑒𝑒𝑒𝑒𝑒
𝐛𝐛𝑎𝑎
𝐛𝐛𝑔𝑔 ⎠

⎟⎟
⎞

 (6) 
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The superscript 𝑒𝑒 denotes the ECEF-frame, δ𝚿𝚿𝑒𝑒𝑒𝑒
𝑒𝑒  denotes the attitude error, δ𝐯𝐯𝑒𝑒𝑒𝑒𝑒𝑒  

denotes the velocity error, δ𝐫𝐫𝑒𝑒𝑒𝑒𝑒𝑒  denotes the position error, 𝐛𝐛𝑎𝑎  denotes the 
accelerometer biases and 𝐛𝐛𝑎𝑎 denotes the gyroscope biases.  
 
As for the assumption of Kalman filter that the time derivative of each state is a linear 
function of the other states and white noise sources, the dynamic model is constructed 
as: 

 𝐱̇𝐱(𝑡𝑡) = 𝐅𝐅(𝑡𝑡)𝐱𝐱(𝑡𝑡) + 𝐆𝐆(𝑡𝑡)𝐰𝐰𝑠𝑠(𝑡𝑡) (7) 

Where 𝐱𝐱(𝑡𝑡) is the true state vector, 𝐅𝐅(𝑡𝑡) is the system matrix, 𝐆𝐆(𝑡𝑡) is the system 
noise distribution matrix and 𝐰𝐰𝑠𝑠(𝑡𝑡) is the system noise vector, the system noise vector 
is assumed having a zero-mean Gaussian distribution. By applying the expected value 
to the dynamic model and first order approximation, the transition matrix 𝚽𝚽𝑘𝑘−1 for 
discrete Kalman filter can be derived as following: 

 𝚽𝚽𝑘𝑘−1 ≈ 𝐈𝐈 + 𝐅𝐅𝑘𝑘−1𝜏𝜏𝑠𝑠 (8) 

 𝐅𝐅𝑘𝑘−1𝑒𝑒 =

⎝

⎜⎜
⎛
−𝛀𝛀𝑖𝑖𝑖𝑖

𝑒𝑒 03 03 03 𝐂𝐂�𝑏𝑏𝑒𝑒

𝐅𝐅21𝑒𝑒 −2𝛀𝛀𝑖𝑖𝑖𝑖
𝑒𝑒 𝐅𝐅23𝑒𝑒 𝐂𝐂�𝑏𝑏𝑒𝑒 03

03 𝐈𝐈3 03 03 03
03 03 03 03 03
03 03 03 03 03⎠

⎟⎟
⎞

 (9) 

Where 

 𝐅𝐅21𝑒𝑒 = �−(𝐂𝐂�𝑏𝑏𝑒𝑒𝐟𝐟𝑖𝑖𝑖𝑖𝑏𝑏 ) ∧� (10) 

 𝐅𝐅23𝑒𝑒 = 2𝑔𝑔0(𝐿𝐿𝑏𝑏�)
𝑟𝑟𝑒𝑒𝑒𝑒
𝑒𝑒 (𝐿𝐿𝑏𝑏�)

𝐫𝐫�𝑒𝑒𝑒𝑒
𝑒𝑒

�𝐫𝐫�𝑒𝑒𝑒𝑒
𝑒𝑒 �

𝟐𝟐 𝐫𝐫�𝑒𝑒𝑒𝑒𝑒𝑒
𝑇𝑇 (11) 

−𝛀𝛀𝑖𝑖𝑖𝑖
𝑒𝑒  is the Earth-rate introduced attitude differences term and 𝐂𝐂�𝑏𝑏𝑒𝑒 is the gyroscope 

measurement bias term. 𝐅𝐅21𝑒𝑒  is the attitude error introduced velocity error term, 
−2𝛀𝛀𝑖𝑖𝑖𝑖

𝑒𝑒  is the Coriolis error term, 𝐅𝐅23𝑒𝑒  is the gravitation variation term with 𝑔𝑔0 as 
surface gravity and 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒  as geocentric radius and 𝐂𝐂�𝑏𝑏𝑒𝑒 denotes the accelerometer biases. 
 
The process noise covariance matrix 𝐐𝐐𝑘𝑘−1  is determined with the power spectral 
densities of the gyroscope random noise, gyroscope bias random walk, accelerometer 
random noise and accelerometer bias random walk respectively. By applying Allan 
variance analysis, the error characteristic of INS can be obtained and aid constructing 
the process noise covariance. 
The initial error covariance matrix 𝐏𝐏𝟎𝟎  is determined with the uncertainty of each 
variable in the state vector. For Kalman filter prediction phase, the propagation of state 
estimates 𝐱𝐱�𝑘𝑘− are zero for all states by close-loop corrections. The process estimate 
covariance is derived as follows: 

 𝐏𝐏𝑘𝑘− = 𝚽𝚽𝑘𝑘−1(𝐏𝐏𝑘𝑘−1+ + 1
2
𝐐𝐐𝑘𝑘−1)𝚽𝚽𝑘𝑘−1

T + 1
2
𝐐𝐐𝑘𝑘−1 (12) 



9 

During the measurement update phase, the measurement matrix 𝐇𝐇𝑘𝑘  is determined 
neglecting the coupling of attitude error and gyroscope biases into measurement. The 
measurement noise covariance 𝐑𝐑𝐺𝐺 can be constructed with the standard deviation of 
measurement noise per axis from position and velocity. Then, the Kalman gain can be 
derived as: 

 𝐊𝐊𝑘𝑘 = 𝐏𝐏𝑘𝑘−𝐇𝐇𝑘𝑘
T(𝐇𝐇𝑘𝑘𝐏𝐏𝑘𝑘−𝐇𝐇𝑘𝑘

T + 𝐑𝐑𝐺𝐺)−1 (13) 

The state estimates and state estimation error covariance matrix can be further updated 
as following 

 𝐱𝐱�𝑘𝑘+ = 𝐱𝐱�𝑘𝑘− + 𝐊𝐊𝑘𝑘𝛿𝛿𝒛𝒛𝐺𝐺,𝑘𝑘
−  (14) 

 P𝑘𝑘+ = (𝐈𝐈 − 𝐊𝐊𝑘𝑘𝐇𝐇𝑘𝑘)𝐏𝐏𝑘𝑘− (15) 

Where 𝛿𝛿𝐳𝐳𝐺𝐺,𝑘𝑘
−  is the difference of position and velocity between prediction and GNSS 

measurement. Finally, the close-loop correction is applied for the state vector of 
previous epoch and obtain the navigation solutions for the system. 

3 Positioning Error Classification 

In order the adjust the measurement noise covariance with different circumstance, it is 
important to classify the GNSS measurement condition first. Since Pixhawk is a well-
known autopilot system collecting the GNSS information relates to its operating 
condition, we are able to use available GNSS features to classify the corresponding 
GNSS conditions. The adaptive tuning can base on difference GNSS conditions from 
classification. 

3.1 Principle Component Analysis (PCA) 

For the Pixhawk autopilot system, the GNSS measurement data containing not only 
position solution but also features relating to GNSS condition, which are transformed 
into its own format. The measurement features and corresponding meanings from 
Pixhawk GNSS log data are shown as Table 1. However, some of the features may have 
no relationship for classification and even influence the classification accuracy. 
Therefore, the PCA technique is employed to select major related features and aid 
classification. 
 
Principle component analysis (PCA) is a statistical method to observe the main 
parameters from the dataset in the transformed dimension. By using the orthogonal 
transformation, a set of correlated parameters can be converted into a set of linear 
uncorrelated parameters, namely the principle components. The PCA can be employed 
to extract the main characteristic components of the data and have been widely used in 
dimensionality reduction for high dimensional data. The algorithm of PCA can be 
illustrate as Algorithm 1. 
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Table 1. Pixhawk GNSS measurement output features 

GPSTime Time data with GPS week/second format 
Fix GPS fixed mode 

EPH Standard deviation of horizontal positioning error 
EPV Standard deviation of vertical positioning error 
Lat Latitude solution 
Lon Longitude solution 
Alt Altitude solution 

VelN Velocity along N-axis in NED frame 
VelE Velocity along E-axis in NED frame 
VelD Velocity along D-axis in NED frame 
nSat Number of satellites for positioning 

N GPS noise 
J GPS jamming 

Algorithm 1: Principle Component Analysis (PCA) 

STEP1: Input the raw data with 𝑘𝑘  sets and 𝑛𝑛 parameters as 𝑛𝑛 × 𝑘𝑘 
matrix 𝐀𝐀 

STEP2: Apply zero mean normalization for each of the 𝑛𝑛𝑡𝑡ℎ parameters 
with 𝑘𝑘 data 

STEP3: Calculate the covariance matrix 𝐂𝐂 = 1
𝑘𝑘
𝐀𝐀𝐀𝐀T 

STEP4: Calculate the eigenvalue and corresponding eigenvector of the 
covariance matrix 𝐂𝐂 

STEP5: 
Construct the transformation matrix 𝐓𝐓  sorted by the 
eigenvector for the first 𝜂𝜂 rows according to the corresponding 
eigenvalue.   

STEP6: The raw data matrix 𝐀𝐀 converts to 𝐁𝐁 which is reduced to 𝜂𝜂 
dimensions with uncorrelated parameters by 𝐁𝐁 = 𝐓𝐓𝐓𝐓 

 
For a raw data with 𝑘𝑘 sets and 𝑛𝑛 parameters requiring dimension reduction, all of the 
data can be applied zero mean normalization and constructed as matrix 𝐀𝐀: 

 𝐀𝐀 =

⎣
⎢
⎢
⎡
𝑎𝑎�1,1 𝑎𝑎�1,2 ⋯ 𝑎𝑎�1,𝑘𝑘
𝑎𝑎�2,1 𝑎𝑎�2,2 ⋯ 𝑎𝑎�2,𝑘𝑘
⋮ ⋮ ⋱ ⋮

𝑎𝑎�𝑛𝑛,1 𝑎𝑎�𝑛𝑛,2 ⋯ 𝑎𝑎�𝑛𝑛,𝑘𝑘⎦
⎥
⎥
⎤
 (16) 

Where 

 𝑎𝑎�𝑛𝑛,𝑘𝑘 = 𝑎𝑎𝑛𝑛,𝑘𝑘 −
∑ 𝑎𝑎𝑛𝑛,𝑖𝑖
𝑘𝑘
𝑖𝑖=1
𝑘𝑘

 (17) 
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𝑎𝑎�𝑛𝑛,𝑘𝑘 is the element in matrix 𝐀𝐀 after zero mean normalization, 𝑎𝑎𝑛𝑛,𝑘𝑘 is the element in 
raw data matrix. The covariance matrix of 𝐀𝐀 can be obtained by 

 𝐂𝐂 = 1
𝑘𝑘
𝐀𝐀𝐀𝐀T (18) 

The diagonal elements in 𝐂𝐂 are the variance for each parameter, and others are the 
covariance. In order to apply dimensional reduction on data, the information from the 
raw data should be retained as much as possible, which requires the data projection of 
the converted dimension to be separated from each other. It means achieving a 
maximum variance value after dimensional reduction. However, to include much 
information by different dimension, it is also required each dimension is not containing 
repetition of information. This can be illustrated as it is not correlated between different 
dimensions after the dimensional reduction, which means achieving zero covariance 
after the reduction. Thus, the transformation matrix 𝐓𝐓 is required to diagonalize the 
transformed covariance matrix, and further obtained with symmetric matrix 
characteristics as following, e𝑛𝑛 is each eigenvector from the covariance matrix 𝐂𝐂. 

 𝐓𝐓 = (e1 e2 ⋯ e𝑛𝑛)T (19) 

Since the PCA technique is able to reduce the dimension of a multiple variables data 
and convert the data into more major dimensions for evaluation, the features of GNSS 
has been processed with PCA to analysis the relationship between positioning error 
[21]. The GNSS localization condition can be separated with several classes after 
applying the PCA and plotted into the principle component dimensions. By selecting 
first three principle component as the major three dimensions, the data after dimension 
transformation can be visualized as Fig. 4. The color of each point indicates the 
corresponding GNSS localization error with ground truth. According to the PCA result, 
the GNSS localization can be separated with 4 class for classification as Table 2. The 
PCA eigenvalue and eigenvector result is shown as Table 3, hence the major feature 
relating to GNSS positioning error level are EPH, EPV, nSat, N and J. By learning the 
physical meaning of these features and tested into supervised machine learning model, 
the feature of EPH, EPV and N are more related to the GNSS health condition, which 
will be further used into supervised machine learning features. 
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Fig. 4. The GNSS localization error distribution after PCA transformation from GNSS features, 

the color of each point indicates the corresponding localization error. 

Table 2. Definition of GNSS condition classification 

Class Positioning error 
Health (HL) below 5 meters 

Slightly shift (SS) 5 to 13 meters 
Inaccurate (IA) 13 to 23 meters 

Danger (DG) over 23 meters 

Table 3. PCA eigenvalue and eigenvector result 
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3.2 Supervised Machine Learning 

For the GNSS condition classification, it is hard to derive a specific function between 
features and condition classes. Since the development of computer science, a feasible 
method is to employ machine learning technique. By training with enough amount and 
comprehensive data, the machine learning model can provide accurate decision and 
classification for GNSS condition by new coming features. The Machine Learning 
technique is commonly divided into three types, supervised learning, unsupervised 
learning and reinforcement learning. In supervised learning, the learner observes 
training examples with inputs and corresponding desire outputs, and then obtain a 
general decision rule in order to predict outputs from new inputs. For the efficiency, we 
employed the supervised machine learning technique to predict the GNSS positioning 
error level, further to aid adaptive tuning the measurement noise covariance value in 
integration process. In this study, the decision tree method and random forest 
supervised machine learning method are applied for their simplicity and relatively good 
accuracy. 

Decision Tree 
 
The decision tree learning technique have been widely used in supervised learning 
problems, it represents a model which takes the input containing attribute values as a 
vector and returns an output value, namely the decision. For a Boolean classification 
case as Fig. 5, all outputs are defined as positive or negative. The node is an arbitrary 
feature and the branch is the value to split the input examples. The split example with 
mixed output will be further treated as a node with another feature for splitting, until 
all the branches have pure separation with positive and negative. The major task is to 
explore an arrangement of feature nodes that split the examples well, the arrangement 
becomes a model further used to make prediction with new inputs. 

 
Fig. 5. Decision Tree model for positive and negative label data. 

To determine the arrangement order of the nodes, the Shannon Entropy is employed to 
evaluate the information importance. The Shannon Entropy is the expected value of the 
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information containing in each of the message and is further used to calculate the 
information gain for determining the splitting nodes order. For GNSS positioning error 
level classification, the inputs are continuous value of different features, such as EPH, 
EPV, N etc., then the information gain of can be derived as: 

 𝐼𝐼𝑘𝑘 = 𝐸𝐸(𝑆𝑆𝑘𝑘) −∑
�𝑆𝑆𝑘𝑘
𝑖𝑖 �

|𝑆𝑆𝑘𝑘|
𝐸𝐸(𝑆𝑆𝑘𝑘𝑖𝑖 )𝑖𝑖∈𝐿𝐿,𝑅𝑅  (20) 

 𝑆𝑆𝑘𝑘 = 𝑆𝑆𝑘𝑘𝐿𝐿 ∪ 𝑆𝑆𝑘𝑘𝑅𝑅 (21) 

The 𝑘𝑘𝑡𝑡ℎ feature of GNSS measurement data for splitting examples is denoted as 𝑆𝑆𝑘𝑘, 
when examples are split by a specific value for a testing feature, the continuous input 
of that feature will be separated into two parts, left and right, denoted as 𝑆𝑆𝑘𝑘𝐿𝐿 and 𝑆𝑆𝑘𝑘𝑅𝑅 
respectively. The function 𝐸𝐸 denotes the Shannon Entropy. 
 
The selection of the attribute, or the splitting node is to evaluate all the attributes with 
corresponding information gain, and then choose the attribute with highest information 
gain. By continuing explore and select the attribute with highest Information Gain, the 
node will keep splitting with branches until all examples are separated as pure output. 
Finally, the order of nodes is the training result for decision tree learning, which able 
to predict or classify the output for new input data. After training with GNSS 
measurement examples with positioning error label, a decision tree learning model can 
be obtained and employed to classify the positioning error by a given set of GNSS 
features. 

Random Forest 
 
The Random Forest technique is an ensemble learning method for classification, 
regression etc., it is processed with constructing multiple decision trees with a subset 
of features or examples and obtain a model for new data prediction. As for decision tree 
learning, it suffers from overfitting to the training set, which can be corrected by using 
random forest method. 
 
For 𝑏𝑏 = 1  to 𝐵𝐵  decision trees and given training examples 𝑋𝑋 = 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛  with 
corresponding output as 𝑌𝑌 = 𝑦𝑦1, … ,𝑦𝑦𝑛𝑛, a bootstrap sample from 𝑋𝑋 and 𝑌𝑌 as 𝑋𝑋𝑏𝑏 and 
𝑌𝑌𝑏𝑏 can be trained by a decision tree 𝑇𝑇𝑏𝑏 . The training result of the subset of examples 
represents as a model of classification makes 𝑌𝑌𝑏𝑏 = 𝑔𝑔𝑏𝑏(𝑋𝑋𝑏𝑏). The final model of the 
random forest is the ensemble of trees as {𝑇𝑇𝑏𝑏}1𝐵𝐵, which made by processing average to 
all individual decision tree, and finally able to predict the class for the following new 
data input 𝑥𝑥′. The ensemble function can be derived as following: 

 𝑔𝑔� = 1
𝐵𝐵
∑ 𝑔𝑔𝑏𝑏(𝑥𝑥′)𝐵𝐵
𝑏𝑏=1  (22) 

The bootstrapping process improve the performance of model because the variance of 
the model is decreasing with it, but the bias is not increasing. Each random tree is 
determined by a random set of data which is highly uncorrelated, then by processing 
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the average of tress, the variance can be canceled and not sensitive to the noise in 
training sets. To determine the random forest size 𝐵𝐵, the cross-validation is able to 
evaluate the performance of model and found an optimal number of trees. cross-
validation is to exclude a small subset of data during model training and use that subset 
to verify the model accuracy. 
 
For GNSS positioning error level prediction, the random forest model is trained with 
several GNSS data with features as inputs and the corresponding positioning error level 
calculated with ground truth as the desire output. After obtaining the random forest 
model consisting of multiple decision trees, the new GNSS data feature will go through 
each tree in the forest and obtain a prediction individually for each tree. By averaging 
all the individual predictions of each tree, the mean value of prediction represents the 
final prediction from the given GNSS feature, which is able to be a continuous number 
between each defined class, makes the prediction closer to the true level of positioning 
error situation. 

4 Adaptive Kalman Filter 

For conventional Kalman filter of GNSS/INS integration, the state propagation is 
always based on fixed values of the process noise covariance matrix 𝐐𝐐𝐼𝐼𝐼𝐼𝐼𝐼  and the 
measurement noise covariance matrix 𝐑𝐑𝐺𝐺, further to determine the Kalman gain 𝐊𝐊𝑘𝑘 
as a static value. The invariable Kalman gain is leading to a static weighting between 
the estimation and measurement during propagation, regardless to all the circumstance. 
In most applications that the UAV operating in a known and open area, the environment 
for the sensors’ characteristic can be treated as unchanged during operation, makes the 
static Kalman gain become effective. Due to the GNSS much outperforming than INS 
in open area, the conventional Kalman filter is always designed with high weighting 
for GNSS to correct INS. 
 
However, when the UAV is used for applications close or even in the urban area, such 
as disaster rescuing or package delivering, it has to operation with a restricted 
environment with skyscrapers and obstacles. Even though the IMU has little 
dependency for the environment, the GNSS can be highly influenced with a harsh 
environment and introduce inevitable large error by multipath effect. Since the GNSS 
error can be quite larger than INS error, the conventional GNSS/INS integration make 
the navigation system correcting the result seriously based on the large error solution. 
Hence, the UAV may execute a wrong action with incorrect navigation and crash on 
nearby buildings. Then an innovative Kalman filter is required to automatically identify 
the environment and determine an appropriate Kalman gain between estimation and 
measurement from INS and GNSS, namely an adaptive Kalman filter (AKF). 
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4.1 System Architecture 

Different from the conventional Kalman filter, the presented adaptive Kalman filter is 
required to identify the operation environment for GNSS measurement, and further base 
on the identification to tune different measurement noise covariance matrix 𝐑𝐑𝐺𝐺 for 
integration. For this purpose, a supervised machine learning method is employed for 
the identification of environment, also the consistence residual and fuzzy logic are used 
to further avoid rapid correction and smooth changes. The architecture of the AKF is 
shown as Fig. 6. The IMU measurement as angular rate and specific force will be 
processed with navigation equation and obtain the attitude, velocity and position of the 
UAV, namely the estimate state. The measurement from GNSS as velocity and position 
are the measurement state for Kalman filter as conventional integration, however, the 
GNSS also output the values of serval features related to the operating environment. 
By collecting the data of features, a pre-trained machine learning model is employed to 
classify the operating environment with those features, the environment classification 
result will further process to obtain a particular measurement noise covariance matrix 
with fuzzy logic and used into the Kalman filter to achieve adaptive tuning. 

 
Fig. 6. The architecture for adaptive Kalman filter 

4.2 Misclassification Mitigation 

The fuzzy logic control can be process with steps, mainly including fuzzification 
interface, decision making logic and defuzzification interface. In this study, the fuzzy 
logic is employed to identify enormous change of GNSS condition from machine 
learning classification, which is abnormal for the actual GNSS operation. Hence, the 
last epoch GNSS condition estimation and current epoch GNSS condition classification 
are applied with fuzzy logic algorithm, the current epoch GNSS condition estimation is 
calculated based on these inputs as Fig. 7. By designing appropriate decision logic, the 
fuzzy logic technique can mitigate the abnormal error and smooth the output closer to 
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the true value. The fuzzification interface is to convert a crisp sensor value into a fuzzy 
singleton, the probabilistic number is converted into fuzzy numbers with the knowledge 
base. The fuzzification can be processed based on a linear distribution.  

 
Fig. 7. Fuzzy logic fundamental procedure, 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒−  is last epoch`s GNSS condition estimation, 
CL𝑚𝑚𝑚𝑚

+  is the GNSS condition classification result from machine learning model and CL𝑒𝑒𝑒𝑒𝑒𝑒+  is 
the current epoch`s GNSS condition estimation. 

 
Since the fuzzy logic is designing to employ previous epoch classification into current 
epoch GNSS positioning error level classification, the data base for determination is 
designed as Fig. 8 with 4 classification sets from PCA. The four classes are defined as 
1) health (HL); 2) slightly shift (SS); 3) inaccurate (IA); 4) danger (DG) for the error 
level of previous epoch estimation, current epoch measurement and the current epoch 
estimation.  

 

Fig. 8. Fuzzy logic data base, DOM is the degree of membership. 
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Table 4. The fuzzy logic rule base 

 
To determine the classification by both previous epoch and current epoch, a rule base 
is designed as Table 4, the 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒+  can be calculated with the experience or expectation. 
For the 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒−  and 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚+  are continuous values transferred as a fraction of different 
class, each of the combination of the two epochs` condition is able to determine a class. 
The determination is based on the fraction for last epoch estimation and current epoch 
prediction, which is the degree of fulfillment of the rule promise, derived as: 

 𝛼𝛼𝑘𝑘 = 𝜇𝜇𝑘𝑘(𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒− ) ∧ 𝜇𝜇𝑘𝑘(𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚+ ) (23) 

Where 𝜇𝜇𝑘𝑘 denotes the degree of membership for each input with rule 𝑘𝑘. The ensemble 
of all possible combinations is the distribution of each situation, the defuzzification 
process is to calculate the output value from the distribution by following equation: 

 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒+ = 𝛼𝛼1𝑠𝑠1+𝛼𝛼2𝑠𝑠2+𝛼𝛼3𝑠𝑠3+𝛼𝛼4𝑠𝑠4
𝛼𝛼1+𝛼𝛼2+𝛼𝛼3+𝛼𝛼4

 (24) 

Where 𝑠𝑠  denotes the value of different classes, the 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒+  is a weighted average 
output estimation result. Hence, the fuzzy logic technique can correct the machine 
learning misclassification error via the designed rule base. 

4.3 Adaptive Tuning 

For Kalman filter, the measurement noise covariance 𝑅𝑅 determines the confidence 
coefficient between GNSS and INS, which will further influence the integrated 
localization performance. A relatively small 𝑅𝑅  make the system more rely on the 
GNSS measurement, while a large 𝑅𝑅  value makes the system neglect GNSS 
measurement and more rely on INS result. A fine-tuned or appropriate 𝑅𝑅 value can 
help to improve the performance of localization, hence an adaptive algorithm for 
determination of 𝑅𝑅 is developed. By testing the integration algorithm with fixed value, 
an appropriate 𝑅𝑅 value for different situation as HL, SS, IA, DG from fuzzy logic can 
be found. Since the output classification for GNSS positioning error level is a 
continuous value, the value in between is based on linear distribution from 1 to 3.5. The 
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level over a threshold of 3.5 is considered as a severe error case, which sets an enormous 
𝑅𝑅 to neglect the GNSS measurement for localization. The relationship between fuzzy 
logic classified value 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒+  and 𝑅𝑅 is shown as Fig. 9. 

 
Fig. 9. The measurement noise covariance matrix R value for (a) position and (b) velocity in 

adaptive GNSS/INS integration with regarding to supervised machine learning prediction class 

5 Experiment Result 

5.1 Experiment Setup 

In this study, the UAV platform is a 99 x 99 mm size quadrotor UAV. The autopilot 
hardware is using the Pixhawk 2 and the GNSS receiver is using the Ublox NEO-M8N 
GNSS Modular as Fig. 10. During a flight, the autopilot system will store all the flight 
information as log file, including the IMU raw measurement data, GNSS measurement 
data and other sensors. The verification of the proposed adaptive Kalman filter 
performance is to post-process the raw data from the log file with corresponding time. 
The raw collected data as IMU data and GNSS positioning data will be processed as 
the input for Kalman filter, the corresponding GNSS feature data is processed as the 
input for supervised machine learning prediction. The autopilot system also equips with 
an inboard GNSS/INS integration algorithm, which can be compared with the proposed 
localization algorithm regarding to the ground truth for evaluation. 

 

Fig. 10. (a) Pixhawk 2 (Autopilot hardware); (b) Ublox NEO-M8N GNSS modular. 
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The experiment is setup in the Tsim Sha Tsui, Hong Kong where has a great amount of 
skyscrapers, in order to evaluate the performance of the proposed adaptive Kalman 
filter for dense urban area. Since the UAV is banned for real flight in the urban area in 
Hong Kong, the UAV is lifted by human and moved following a designed trajectory. 
To verify the performance, one trajectory with open sky scenarios and one trajectory 
with building surroundings are designed. 

5.2 Open Sky Localization Result  

To evaluate the performance of the proposed adaptive Kalman filter for normal 
operation, an open sky GNSS operation scenario is designed to verify the AKF is able 
to maintain the precise localization performance with accurate GNSS measurement. 
The designed trajectory is shown as Fig. 11 with the key locations shown in Table 5. 
The operation environment is clean without building surrounding, which has nearly 
noun multipath effect. The trajectory is from START to END marker as a straight line. 

Table 5. Key location for open sky localization scenario 

Key Location START END 
Latitude 22.297977º 22.297457º 
Longitude 114.179264º 114.178622º 

 

 
Fig. 11. Experiment trajectory for open sky localization scenario. 

5.3 Urban localization Result 

The experiment for evaluating the performance of proposed adaptive Kalman filter 
localization in urban is designed as Fig. 12 with key locations as Table 6. The trajectory 
is begin from START and straight to TURNING point, then the platform will 
experienced an 180º turning and following the same route to the END. The buildings 
are distributing along two sides of the trajectory. 
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Fig. 12. Experiment trajectory for urban localization scenario. 

Table 6. Key location for urban localization scenario 

Key Location START, END TURNING 
Latitude 22.298304º 22.298659º 
Longitude 114.178896º 114.178554º 

 
For the urban localization scenario, the localization result is shown as different 
trajectories for different method (Fig. 13), including the ground truth (Truth), the 
localization result from Pixhawk original integration (PX4), the localization with a 
tuned fixed R value (FR), the localization result from AKF with decision tree learning 
model (DT), the localization result from AKF with random forest model (RF) and the 
localization result from random forest and fuzzy logic (RFFL). Comparing with the 
ground truth, the RF and RFFL method achieve better localization trajectory. 

 

Fig. 13. Localization resulting trajectories for urban localization scenario. 
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Fig. 14. GNSS positioning error level classification result on GNSS trajectory. 

 
The classification result of supervised machine learning model is shown as Fig. 14, 
comparing with the truth classification, decision tree, random forest and random forest 
with fuzzy logic. The classification distribution along GNSS epoch is also compared 
with Fig. 15. The result shows the DT model only output the fixed number for the GNSS 
positioning error level, while the random forest is able to predict a continuous number 
closer to the truth. The fuzzy logic can mitigate the large sudden change of the GNSS 
error level, making the result more satisfied to the real distribution of GNSS condition. 
The proposed RFFL model can achieve a better classification result than all above. 

 
Fig. 15. GNSS positioning error level classification distribution during operation. 
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Fig. 16. The measurement noise covariance matrix R value distribution during operation for 

position and velocity. 

 

 
Fig. 17. The localization error distribution for different algorithm in urban localization 

scenario. 

The corresponding measurement noise covariance matrix value R for position and 
velocity are shown as Fig. 16 respectively, the FR condition denotes the integration 
using a fixed R value in order to maintain a specific confident coefficient between 
GNSS and INS as conventional Kalman filter, while DT, RF and RFFL are using 
supervised machine learning algorithm to adaptively adjust R value. From the result, 
FR maintains a specific value while other algorithms adjust the R with a small value 
for good GNSS condition and a large value for bad GNSS condition respectively. 
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The localization error distribution with respect to the ground truth during operation is 
shown as Fig. 17, the mean error and STD are shown in Table 7. The original Pixhawk 
localization result experienced a large localization error exceeds 40 meters, having a 
mean value as 10.2 m and STD as 12.7 m, which is dangerous for UAV operation in 
urban area. The manually tuned R value can decrease the localization error highly, but 
still not appropriate for all the conditions during operation. The DT model use 
supervised machine learning algorithm to adjust the R value adaptive to the GNSS 
measurement condition and achieve lower positioning error and RF model improves 
the classification accuracy of DT model. The proposed RFFL adaptive Kalman filter 
algorithm is able to achieve better GNSS measurement condition prediction with its 
characteristics and mitigate the large sudden change for GNSS error level, it also helps 
to mitigate the mis-classification introduced error during operation. The proposed 
algorithm sustains the localization error under 15 meters with mean value as 4.2 m and 
STD as 3.9 m, which improves the conventional localization method over twice, 
achieves a safer UAV operation in urban area. 

Table 7. Localization error mean value and STD for urban localization B 

 PX4 FR DT RF RFFL 
Mean Localization 
Error (m) 10.2 5.8 5.1 4.4 4.2 

STD (m) 12.7 5.4 4.7 4.2 3.9 
 

6 Conclusion 

In this study, the conventional Kalman filter for UAV localization is improved to obtain 
a better localization solution for operations in urban area, where has a large multipath 
error on GNSS positioning solution and may crash on obstacles with the wrong 
position. The Adaptive Kalman Filter is developed to automatically adjust the 
measurement noise covariance with the GNSS measurement features, to mitigate the 
GNSS large localization error by multipath effect. The Allan Variance Analysis 
technique is employed to study the characteristics of the IMU sensors on experiment 
platform, obtaining the random walks and bias instability values for sensors, further 
adjust the process noise covariance matrix in the proposed adaptive Kalman filter as 
power spectral density. To evaluate the GNSS measurement condition, the supervised 
machine learning algorithm is used to predict the GNSS condition with a pre-defined 
error evaluation level. The supervised machine learning in this study is including the 
decision tree learner and random forest, each of the model is trained with 5 days’ data 
covered almost all possible situations in the experiment area as TST, Hong Kong. The 
supervised machine learning models can classify most of the GNSS measurement 
condition correctly. Then, the fuzzy logic is further developed to mitigate the large 
sudden change of GNSS measurement condition from machine learning models, by 
considering the current epoch and last epoch classification result, the final classification 
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result can be smooth to mitigate the sudden change and large classification error, which 
can improve the accuracy for evaluating the current GNSS measurement condition for 
GNSS/INS integration. The classification result from fuzzy logic is further linear 
corresponding to the measurement noise covariance into the proposed adaptive Kalman 
filter, with a threshold to input a great R value to estimate the position regardless to the 
GNSS measurement and mainly based on the INS estimation. By cooperating an 
appropriate process noise covariance matrix and an adaptive measurement noise 
covariance matrix from GNSS feature, the proposed integration algorithm is able to 
adjust the confident coefficient between GNSS and INS from learning the feature of 
measurement accuracy, improving the localization solution in urban area. From the 
experiment results, the proposed adaptive Kalman filter for GNSS/INS integration of 
UAV platform can effectively identify the GNSS error conditions with multipath effect, 
and improve the localization result for UAV, which help the UAV applications ensure 
the safety for urban operations. 
 
However, the presented GNSS/INS integration algorithm with adaptive Kalman filter 
still has the following drawbacks: 1) the supervised machine learning model still occurs 
some mis-classification cases and may influence the localization accuracy of adaptive 
Kalman filter; 2) the proposed algorithm is still based on post-processing rather than 
real-time operation. Hence, the future works are including improving the supervised 
machine learning algorithm to achieve lower out of sample error or develop with other 
improved machine learning algorithm for more accurate classification result. The 
proposed algorithm is also able to be developed into real-time localization with UAV 
platform and verify the performance with on-board operation.  
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