
Task Scheduling with Progress Control

Chung-Lun Li

Department of Logistics and Maritime Studies,

The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong

Email: chung-lun.li@polyu.edu.hk

Weiya Zhong1

Department of Business Administration,

School of Management, Shanghai University,

Shanghai, People’s Republic of China

Email: wyzhong@i.shu.edu.cn

February 18, 2017

Revised June 12, 2017

Final Version: September 8, 2017

1Corresponding author

This is an Accepted Manuscript of an article published by Taylor & Francis in IISE Transactions on 04 Dec 2017 (Published online), available online:
http://www.tandfonline.com/10.1080/24725854.2017.1380334.

This is the Pre-Published Version.

Task Scheduling with Progress Control

Abstract

Tasks with long duration often face the requirement of having their progress to be re-

ported periodically to process controllers. Under this requirement, working teams that

simultaneously process multiple tasks need to schedule their work carefully in order to

demonstrate satisfactory progress of each unfinished task. We present a single-machine

scheduling model that reflects this requirement. Our model has multiple milestones at

which the tasks are penalized if their progress is below satisfactory levels. We develop

polynomial solution methods for the general case with convex nonlinear penalty func-

tions and for the special case with linear penalty functions. Extensions of our model

are also discussed.

Keywords: Scheduling; multitasking; polynomial time algorithm; progress milestones

February 18, 2017

Revised June 12, 2017

Final Version: September 8, 2017

1 Introduction

Tasks with long duration often face the requirement of having their progress to be reported period-

ically to process controllers. For example, office administrators need to report the progress of their

ongoing tasks to their supervisors on a daily or weekly basis. Academics need to submit progress

reports of their research projects to funding agencies annually. Professional service providers need

to report the progress of their services to their clients on certain predetermined dates. To fulfill this

requirement, working teams that simultaneously process multiple tasks need to schedule their work

carefully so as to demonstrate satisfactory progress of each unfinished task. To do so, a task may

need to be split into subtasks. After completing one subtask, the working team needs to switch to

a subtask of a different task, and so on. This is a form of “multitasking” which is inevitable under

such requirement.

Hall et al. (2015) have identified five principal motivations for multitasking in administrative

and business processes: (i) a need to feel or appear productive; (ii) a need to demonstrate progress

on different tasks or treat task owners equitably; (iii) anxiety about the processing requirements

of waiting tasks; (iv) a need for variety in work; and (v) interruption by routine scheduled ac-

tivities. This paper specifically deals with motivation (ii). We model this motivation as a single

machine scheduling problem with job preemption, and the performance measure is not based on the

completion time of the given jobs but depends on the progress of each job at some given milestones.

1.1 Literature review

Different mathematical models for operations scheduling with multitasking have been developed

and analyzed by various researchers. Hall et al. (2015) present a scheduling model with multi-

tasking in which all unfinished tasks can interrupt a primary task when the primary task is being

processed, and a switching time is incurred when an interruption occurs. They analyze the com-

putational complexity of their model under different scheduling objectives. Under this model, the

cost increase and value gained due to multitasking are analyzed. Sum and Ho (2015) apply the

model introduced by Hall et al. (2015) and consider the total completion time and total weighted

completion time objectives. They derive the expected optimal total cost of the multitasking model

1

when the job processing times are uniformly distributed, and compare it with the expected opti-

mal total cost when multitasking is absent, so as to measure the effect of multitasking. Hall et

al. (2016) develop another scheduling model with multitasking for the “a need for variety in work”

motivation and a model for the “interruption by routine scheduled activities” motivation. They

analyze the computational complexity of these two models and develop algorithms for them. Zhu

et al. (2017a,b,c) study several extensions of Hall et al.’s (2015) multitasking model by introducing

deterioration effect and rate-modifying activities. Liu et al. (2017) extend Hall et al.’s (2015) model

by introducing a common due date related objective. Our work differs from these works in that we

consider specifically the motivation of multitasking where there is a need to demonstrate progress

on different tasks or to treat the task owners equitably, and we develop and analyze a mathematical

model for this motivation.

Our work is related to job splitting in machine scheduling, since the key decision of our model

is to split the given tasks into subtasks and to assign the subtasks to different time intervals.

Job splitting has been studied by many researchers with a focus on splitting jobs into sublots

so that the sublots can be processed simultaneously on parallel, uniform, or unrelated machines;

see, for example, Serafini (1996), Xing and Zhang (2000), Yalaoui and Chu (2003), Logendran

and Subur (2004), and Correa et al. (2015). Lot streaming, which refers to splitting production

lots into sublots so as to accelerate the flow of the products through a multiple-stage production

system, has also been studied extensively; see Chang and Chiu (2005) and Cheng et al. (2013)

for comprehensive reviews. Some works have considered job splitting in a single-machine setting.

Eynan and Li (1997) consider the splitting of a single job with learning effects, where the net present

value collected by the delivery of each sublot is maximized. Serin and Kayaligil (2003) consider

two extensions of Eynan and Li’s model. The first extension includes a revenue requirement, while

the second extension involves multiple item types and the sequencing of shipments for different

customers. To the best of our knowledge, none of the works on operations scheduling with job

splitting decisions has considered an objective function that measures the progress of the jobs at

different milestones.

2

Models with progress milestones have been studied in job shop scheduling. In a job shop

scheduling problem, each job has a technological sequence of machines to be processed, and the

processing of a job on a machine is called an operation. The milestones studied in these job shop

scheduling models are called “operation due dates” (see Philipoom et al. 1989), where a due date is

imposed on every operation of a job. Keskinocak and Tayur (2004) provide an overview of schedul-

ing research with operation due dates. Our model differs from these job shop scheduling models

in that the milestones in our model are not associated with different operations of a multistage

system. Instead, the milestones in our model are used to monitor the amount of each task that has

been processed.

Models with multiple milestones have also appeared in project scheduling, where the activities of

a project have predetermined precedence relationships, and progress control is linked to milestones

that are defined by completion of certain activities. These include models that use predetermined

progress milestones to represent the completion of different phases of a project (see, e.g., Ghoddousi

et al. 2017), models that minimize the tardiness of certain milestone activities (see, e.g., Choi

and Park 2015), and models that have payment milestones and cash flow considerations (see, e.g.,

Dayanand and Padman 2001). Unlike these project scheduling models, our model does not consider

precedence relationships of tasks. It focuses on task splitting decisions that maximize the tasks’

performance at their progress milestones.

1.2 Model description

Our problem can be described mathematically as follows. Using the terminology in traditional

scheduling, we refer to the working team as a “machine” and the tasks as “jobs.” We are given n

jobs J1, J2, . . . , Jn to be scheduled on a single machine. Each job Ji has a processing time pi ∈ Z
+

and qi milestones τi1, τi2, . . . , τiqi
∈ Z

+∪{0}, where 0 ≤ τi1 ≤ τi2 ≤ · · · ≤ τiqi
, and Z

+ is the set of all

positive integers. We refer to τik as the kth milestone of job Ji. All jobs are available for processing

at time 0 and can be split into subjobs with integer processing times. For any i = 1, 2, . . . , n and

k = 1, 2, . . . , qi, let xik ∈ Z
+ ∪ {0} be the amount of time the machine spends on processing Ji

during the time interval [0, τik]. Job Ji incurs a penalty of fik(xik) ∈ Z
+ ∪{0} at the milestone τik,

3

where fik is a nonincreasing convex function such that fik(x) = 0 for x ≥ pi, and function fik can be

evaluated in constant time. The objective is to determine xik for i = 1, 2, . . . , n and k = 1, 2, . . . , qi

such that 0 ≤ xi1 ≤ xi2 ≤ · · · ≤ xiqi
and that the total penalty incurred,

∑n
i=1

∑qi

k=1 fik(xik),

is minimized. We denote this problem as problem P. For notational convenience, we denote

P =
∑n

i=1 pi and Q =
∑n

i=1 qi. Table 1 provides a summary of the notation used in this model.

In this model, the quantity xik is the cumulative amount of time that job Ji is processed by the

kth milestone. The penalty of job Ji at the kth milestone, fik(xik), is a function of this cumulative

processing time. The monotonicity of penalty function fik implies that getting more work done

for Ji by time τik is no worse than getting less work done. The convexity of penalty function fik

implies that the drop in penalty, or equivalently the additional benefit gained, by having more work

done for Ji by time τik diminishes as the percentage of Ji completed becomes higher.

Note that the performance measure of this model is rather general. It allows each job i to

have its own penalty functions fi1, fi2, . . . , fiqi
. It also allows each milestone of a job to have its

own penalty function. For example, if we wish to set a satisfactory progress level of Ji at the kth

milestone and penalize Ji only when this progress level is not met, then we can define function fik

in such a way that fik(x) = 0 for x ≥ x̄ik, where x̄ik is a given parameter representing the targeted

amount of Ji to be completed by τik. If we expect Ji to complete all its work by its final milestone,

Table 1: Summary of notation

Notation for problem P:
n number of jobs

Ji the ith job
pi processing time of Ji

qi number of milestones for Ji

τik the kth milestone of Ji

xik amount of time the machine spends on Ji during
the time interval [0, τik] (decision variable)

fik(·) penalty function for Ji at milestone τik

P =
∑n

i=1 pi

Q =
∑n

i=1 qi

Notation for special case P1:
q number of milestones

τk the kth milestone for each job

4

then we can define x̄iqi
= pi. If we wish to put tighter control on jobs at their final milestones, then

we may set the function values of fiqi
to be larger than the function values of fi1, fi2, . . . , fi,qi−1.

The rest of the paper is organized as follows. In Section 2, we first transform problem P into a

simpler problem and then present efficient solution methods for solving the transformed problem.

In Section 3, we consider a special case of problem P and discuss how this special case can be solved

more efficiently. In Section 4, two extensions of problem P are discussed. Section 5 concludes this

study and suggests some future research directions.

2 Solution Methods

We let P1 denote the special case of problem P in which all jobs have the same milestones; that

is, q1 = q2 = · · · = qn and τ1k = τ2k = · · · = τnk for all k. In problem P1, we denote q = q1 = q2 =

· · · = qn and τk = τ1k = τ2k = · · · = τnk for k = 1, 2, . . . , q (see Table 1).

Given any instance of problem P, we can transform it into an instance of problem P1 by

changing the parameters of the jobs as follows. Let p̂i = pi for i = 1, 2, . . . , n. Arrange the

milestones τ11, τ12, . . . , τ1q1
; τ21, τ22, . . . , τ2q2

; . . . ; τn1, τn2, . . . , τnqn in ascending order and remove

all duplicated ones. Let (τ̂1, τ̂2, . . . , τ̂q) denote the sorted list of these distinct milestones. For

k = 1, 2, . . . , q and i = 1, 2, . . . , n, if τ̂k is a milestone of Ji in problem P, say τ̂k = τij for some

j, then define f̂ik(x) = fij(x) for x ≥ 0. If τ̂k is not a milestone of Ji in problem P, then define

f̂ik(x) = 0 for x ≥ 0. Solving problem P1 with n jobs, q milestones, and input parameters p̂i,

τ̂k, and f̂ik (i = 1, 2, . . . , n; k = 1, 2, . . . , q) optimally yields the optimal solution to the original

problem P. Therefore, in this section, we focus on solving problem P1.

Denote τ0 = 0 and xi0 = 0 for i = 1, 2, . . . , n. Note that for k = 1, 2, . . . , q, given xi,k−1, the

penalty function fik depends on how much time is allotted to each job during the time interval

[τk−1, τk] and is independent of the processing sequence of the subjobs assigned to this time interval.

5

2.1 Convex integer programming formulation

One straightforward solution approach for problem P1 is to solve the problem as a nonlinear integer

program. The nonlinear integer programming formulation is given as follows:

P
′
1 : Minimize

∑n
i=1

∑q
k=1 fik(xik) (1)

subject to
∑n

i=1 xik ≤ τk, k = 1, 2, . . . , q (2)

xi,k−1 − xik ≤ 0, i = 1, 2, . . . , n; k = 1, 2, . . . , q (3)

xik is integer, i = 1, 2, . . . , n; k = 1, 2, . . . , q (4)

Objective function (1) is a separable convex function. Constraint (2) ensures that the amount of

time that the machine spends on jobs J1, J2, . . . , Jn during the time interval [0, τk] is no more than

τk. Constraint (3) ensures that 0 ≤ xi1 ≤ xi2 ≤ · · · ≤ xiq for all i. Note that constraints (2)–(4)

do not prohibit the machine from processing Ji for more than pi time units. However, because

fik(x) = 0 for x ≥ pi, there exists an optimal solution to P′
1 in which xik is no greater than pi for

all i = 1, 2, . . . , n and k = 1, 2, . . . , q.

Let Iq×q denote the q × q identity matrix. Let Bq×q denote the following q × q matrix:

Bq×q =

1 0 · · · 0 0 0

−1 1 · · · 0 0 0
...

...
...

...
...

0 0 · · · −1 1 0

0 0 · · · 0 −1 1

.

Let A denote the following (q + nq)× nq matrix:

A =

−Iq×q −Iq×q · · · −Iq×q

Bq×q 0 · · · 0

0 Bq×q · · · 0
...

...
. . .

...

0 0 · · · Bq×q

,

6

which comprises n copies of submatrix −Iq×q, n copies of submatrix Bq×q , and n2 −n copies of the

q × q zero submatrix. Problem P′
1 can be written as min{

∑n
i=1

∑q
k=1 fik(x) | Ax ≥ b, x integer},

where x is the nq-vector of the xik variables and b is an integer (q + nq)-vector.

Theorem 1 Matrix A is totally unimodular.

Proof. Let Ai
j denote the (q(i − 1) + j)th column of A for i = 1, 2, . . . , n and j = 1, 2, . . . , q. A

necessary and sufficient condition for a matrix with entries 0, 1, or −1 to be totally unimodular

is that each collection of columns of the matrix can be split into two parts so that the sum of the

columns in one part minus the sum of the columns in the other part is a vector with entries only

0, 1, and −1 (see Schrijver 1986, p. 269). In the following, we show that matrix A satisfies this

condition.

Clearly, each entry of matrix A is 0, 1, or −1. Let Γ be any collection of columns of A. We

partition the set Γ into two groups Γ1 and Γ2 using the following method. We start off with |Γ|

groups, where each group contains one column from Γ. For i = 1, 2, . . . , n and j = 1, 2, . . . , q − 1,

if both Ai
j and Ai

j+1 are in Γ, then merge the group that contains column Ai
j and the group that

contains Ai
j+1 into a single group. Let G1, G2, . . . , Gs denote the column groups obtained.

For k = 1, 2, . . . , s, let Vk denote the (q + nq)-vector obtained by summing all the columns in

Gk, and let V̄k denote the q-vector obtained by truncating the last nq entries of Vk. Note that

the above grouping operation only merges adjacent columns of matrix A, and does not merge Ai
q

with the Ai+1
1 for any i = 1, 2, . . . , n − 1. Hence, each entry of V̄k is either 0 or −1, and the −1

entries are consecutive. Let V̄ = (V̄1, V̄2, . . . , V̄s), which is a q × s matrix. Then, −V̄ is an interval

matrix, which is totally unimodular (Schrijver 1986, p. 279). This implies that V̄ is also totally

unimodular. By the above necessary and sufficient condition, the columns of matrix V̄ can be split

into two parts so that the sum of the columns in one part minus the sum of the columns in the

other part is a vector with entries only 0, 1, and −1. Let {V̄π(1), V̄π(2), . . . , V̄π(h)} be the first part

and {V̄π(h+1), V̄π(h+2), . . . , V̄π(s)} be the second part, where (π(1), π(2), . . . , π(s)) is a permutation

of (1, 2, . . . , s) and 0 ≤ h ≤ s.

Now, we split the columns in Γ into two parts as follows. If a column belongs to a column

7

group Gk and k ∈ {π(1), π(2), . . . , π(h)}, then this column belongs to the first part Γ1; otherwise,

it belongs to the second part Γ2. Then, for any l = 1, 2, . . . , q, the sum of the lth entry of the

columns in Γ1 minus the sum of the lth entry of the columns in Γ2 is 0, 1, or −1. Next, we consider

any l = q + 1, q + 2, . . . , q + nq. There are two possible cases. Case 1: There is zero or one column

in the set Γ where the lth entry is nonzero. In this case, the sum of the lth entry of the columns in

Γ1 minus the sum of the lth entry of the columns in Γ2 is 0, 1, or −1. Case 2: There are exactly

two columns in the set Γ where the lth entry is nonzero. Then, the lth entry of one of these two

columns is −1, and the lth entry of the other column is 1. Furthermore, these two columns must

be adjacent columns of matrix A and belong to the same group Gk, and hence either both of them

belong to Γ1 or both belong to Γ2. Thus, in this case, the sum of the lth entry of the columns in

Γ1 minus the sum of the lth entry of the columns in Γ2 is 0. Therefore, by the above necessary and

sufficient condition, matrix A is totally unimodular.

Hochbaum and Shanthikumar (1990) have presented an algorithm for the nonlinear integer

program min{F (x) | Ax ≥ b, x integer}, where F is a separable convex function. Their algorithm,

which solves a series of linear programs iteratively, has a polynomial running time when A is

totally unimodular. Specifically, let T (ν, µ, ∆) be the complexity of solving the linear program

min{cx | Ax ≥ b, 0 ≤ x ≤ 1} with a µ × ν coefficient matrix A, where ∆ is the bound on the

absolute value of a subdeterminant of A. If A is a totally unimodular matrix (thus ∆ = 1) and F

is a separable convex function, then the nonlinear integer program min{F (x) | Ax ≥ b, x integer}

can be solved in O
(⌈

log(µ
ν ‖b‖∞)

⌉

·T (4ν2, µ, 1)
)

time via Hochbaum and Shanthikumar’s algorithm.

In problem P′
1, µ = q + nq, ν = nq, and ‖b‖∞ ≤ P . Therefore, problem P′

1, and hence problem

P1, can be solved in O(T (4n2q2, q + nq, 1) · logP) time.

2.2 Convex cost network flow formulation

Next, we show that problem P1 can be modeled as a minimum convex cost network flow problem

and solved more efficiently. For ease of presentation, we assume that τq = P . This assumption is

made without loss of generality. This is because if τq > P , then we can add a dummy job Jn+1

8

to the problem, where pn+1 = τq − P and fn+1,k ≡ 0 for k = 1, 2, . . . , q. On the other hand, if

τq < P , then we can add a dummy milestone τq+1 = P , where the penalty function of each job at

this dummy milestone is zero.

Consider the network diagram depicted in Figure 1. In this network, each arc is associated with

an ordered pair (f(x), u), where f(x) is the cost incurred when the arc has x units of flow, and

u is the capacity of the arc. Note that the objective value of problem P1 is independent of the

processing sequence of the jobs after time τq. Clearly, there exists an optimal solution to P1 in

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

� �

� �

�

�

�

Figure 1: Network diagram for problem P1.

9

which there is no machine idle time during the time period [0, τq]. Thus, it suffices to consider the

job schedule in the time interval [0, τq]. Hence, in Figure 1, the source vertex v has an inflow of τq,

and the sink vertex v′′′ has an outflow of τq. For k = 1, 2, . . . , q, there is an arc v → v′k with capacity

τk − τk−1. The flow along this arc represents the total amount of job processing time assigned to

the time interval [τk−1, τk]. For k = 1, 2, . . . , q and i = 1, 2, . . . , n, there is an arc v′k → v′′ik. The flow

along this arc represents the amount of time allotted to Ji during the time interval [τk−1, τk]. For

k = 1, 2, . . . , q and i = 1, 2, . . . , n, there is an arc v′′ik → v′′i,k+1. The flow along this arc represents

the amount of time allotted to Ji during the time interval [0, τk]. Thus, the flow along this arc is

xik, and the cost incurred by the flow is fik(xik). For i = 1, 2, . . . , n, there is an arc v′′i,q+1 → v′′′

with capacity pi, which ensures that the total processing time of Ji during time interval [0, τq] is

no more than pi.

The convex cost network flow problem with integral flow can be solved in O((µ logU)S(ν, µ, C))

time, where ν is the number of vertices, µ is the number of arcs, U is the largest supply/demand

or finite arc capacity, C is the largest arc cost, and S(ν, µ, C) is the time required for solving a

shortest path problem on the network (Ahuja et al. 1993, p. 560). In the network depicted in

Figure 1, ν = O(nq), µ = O(nq), and U = O(P). The best known strongly polynomial time bound

for S(ν, µ, C) is O(µ + ν log ν) (Ahuja et al. 1993, p. 123). Hence, problem P1 can be solved in

O(n2q2 lognq logP) time. This implies that problem P can be solved in O(n2Q2 log Q logP) time.

3 The Case with Linear Penalty Functions

In this section, we consider the special case of problem P where the penalty functions are linear.

Specifically, we consider the case where function fik is of the form

fik(x) = λik(pi − x)

for 0 ≤ x ≤ pi, where λik ≥ 0, for i = 1, 2, . . . , n and k = 1, 2, . . . , q. Same as Section 2.2, we

first transform the given problem into problem P1 in which all jobs have the same milestones and

assume that τq = P .

10

�

�

�

�

�

�

Figure 2: Network diagram for the case with linear penalty functions.

Note that for this special case, the network diagram in Figure 1 becomes a linear cost network,

where the unit cost of arc v′′ik → v′′i,k+1 is −λik for i = 1, 2, . . . , n and k = 1, 2, . . . , q, and the objective

value of this linear minimum cost flow problem differs from that of the original problem by a constant

∑n
i=1

∑q
k=1 λikpi. The linear minimum cost flow model is solvable in O((µ log ν)(µ+ν log ν)) time,

where ν is the number of vertices and µ is the number of arcs (Ahuja et al. 1993, p. 395). Thus, this

special case can be solved via this approach in O(n2q2 log2 nq) time. In the following, we propose

a more efficient solution method for this special case.

Let

cik = −

q
∑

j=k

λij.

Consider the n × q transportation problem with a network diagram depicted in Figure 2. For

i = 1, 2, . . . , n, the supply at node vi is pi, which represents the total number of units of Ji to be

processed in the time interval [0, τq]. For k = 1, 2, . . . , q, the demand at node v′k is τk − τk−1, which

represents the number of units available for processing during the time interval [τk−1, τk]. A flow

of yik units along the arc vi → v′k represents the allocation of yik time units in the time interval

[τk−1, τk] to job Ji. Since all supply and demand parameters of this transportation problem are

integers, there exists an optimal solution with integer flows.

11

Consider any feasible solution to this transportation problem with integer flows {yik | i =

1, 2, . . . , n; k = 1, 2, . . . , q}. For i = 1, 2, . . . , n and k = 1, 2, . . . , q, we let xik =
∑k

j=1 yij . Clearly,

xik satisfies constraints (2)–(4). Thus, {xik | i = 1, 2, . . . , n; k = 1, 2 . . . , q} is a feasible solution to

problem P1. The total cost of this transportation problem solution is

n
∑

i=1

q
∑

k=1

cikyik = −
n

∑

i=1

q
∑

k=1

q
∑

j=k

λijyik = −
n

∑

i=1

q
∑

k=1

λik

k
∑

j=1

yij = −
n

∑

i=1

q
∑

k=1

λikxik =
n

∑

i=1

q
∑

k=1

fik(xik)−K,

where K =
∑n

i=1

∑q
k=1 λikpi. Hence, minimizing the total cost of this transportation problem

yields a feasible solution of the given problem P1 with a minimum total penalty.

The ν1 × ν2 transportation problem with κ feasible arcs can be solved in O((ν1 log ν1)(κ +

ν2 log ν2)) time using Kleinschmidt and Schannath’s (1995) algorithm when ν1 ≥ ν2. Thus, P1 can

be solved in O(max{(n logn)(nq + q log q), (q log q)(nq + n logn)}) time. Since n ≤ Q and q ≤ Q,

problem P with linear penalty functions can be solved in O(nQ2 logQ) time.

4 Extensions

In this section, we consider two generalizations of problem P.

4.1 Jobs release dates

In problem P, it is assumed that all tasks are available for processing at time 0. A more general

model would allow positive job release dates. For i = 1, 2, . . . , n, let ri be the release date of job Ji

before which Ji cannot be processed, where ri ∈ Z
+ ∪ {0} and ri < τi1. We denote this extended

problem as P2.

It is not difficult to modify the solution methods presented in Sections 2 and 3 for solving

problem P2. First, the convex integer programming formulation P
′
1 can be modified for problem

P2 as follows. For each i = 1, 2, . . . , n, we add a milestone ri to the problem. Then, we transform

the problem into problem P1 and set up the convex integer program P′
1. Let (τ̂1, τ̂2, . . . , τ̂q) be the

sorted list of distinct milestones in problem P1. In the convex integer programming formulation

P
′
1, we add a new constraint “xik = 0” if τ̂k = ri, for i = 1, 2, . . . , n and k = 1, 2, . . . , q. This new

12

constraint prohibits xik from having a positive value if the kth milestone is the release date of Ji. It

is easy to show that Theorem 1 remains valid after adding these constraints to P′
1. Hence, problem

P2 can be solved optimally in polynomial time using the modified convex integer program.

Next, we show that the convex cost network flow formulation in Section 2.2 can also be modified

for problem P2. Similar to the method above, we add a milestone ri to each job Ji and transform

the problem into problem P1. Let (τ̂1, τ̂2, . . . , τ̂q) be the sorted list of distinct milestones. We set

up the nonlinear cost network as shown in Figure 1. For i = 1, 2, . . . , n and k = 1, 2, . . . , q, we

change the capacity of the arc v′′ik → v′′i,k+1 to zero if τ̂k = ri, so that xik = 0 if the kth milestone

is the release date of Ji. Since the optimal solution to problem P2 no longer possesses the “no

machine idle time” property, we add an arc v → v′′′ with zero cost and infinite capacity so that

the total amount of flow through the network via other arcs is allowed to be less than min{P, τq}.

Note that for i = 1, 2, . . . , n and k = 1, 2, . . . , q, because fik is a nonincreasing function, the cost of

arc v′′ik → v′′i,k+1 is nonincreasing in the flow along this arc. Thus, more cost saving can be obtained

by assigning flows to arc v′′ik → v′′i,k+1 than assigning flows to arc v → v′′′, unless the flow along arc

v′′ik → v′′i,k+1 has reached a level x such that fik(x) = 0. Hence, there exists an optimal solution

in which flows are assigned to arc v → v′′′ only when they cannot be assigned to the other paths

connecting v and v′′′. Solving this modified minimum cost network flow problem yields an optimal

solution to problem P2.

A similar approach may be used to modify the transportation problem formulation in Section 3

for problem P2 when the penalty functions are linear. We add a milestone ri to each job Ji,

transform the problem into problem P1, and then set up the transportation problem as shown in

Figure 2. For each arc vi → v′k, we change the unit transportation cost to +∞ if τ̂k ≤ ri, so that

no time unit in the time interval [0, ri] can be assigned to job Ji. Since the optimal solution to

problem P2 no longer possesses the “no machine idle time” property, we add a dummy supply

node v0 and a dummy demand node v′0 to the transportation network, where the supply at node

v0 and the demand at node v′0 are both equal to some large number M . The arcs v0 → v′0, v0 → v′k

(for k = 1, 2, . . . , q), and vi → v′0 (for i = 1, 2, . . . , n) have zero costs. Note that cik ≤ 0 for

13

i = 1, 2, . . . , n and k = 1, 2, . . . , q. Thus, more cost saving can be obtained by assigning flows to

arc vi → v′k (i, k 6= 0) than assigning flows to arc v0 → v′k or v0 → v′0. Hence, there exists an

optimal solution in which flows are assigned to arcs v0 → v′k and v0 → v′0 only when they cannot

be assigned to other arcs. Solving this modified transportation problem yields an optimal solution

to problem P2 when the penalty functions are linear.

4.2 Job rejection

Another interesting extension of problem P is to allow the rejection of jobs, where a penalty

is incurred when a job is rejected. Scheduling problems with job rejection have been studied

extensively; see Slotnick (2011) and Shabtay et al. (2013) for recent reviews. For i = 1, 2, . . . , n, let

γi ∈ Z
+ denote the penalty incurred when Ji is rejected. Let yi be a binary decision variable such

that yi = 1 if Ji is rejected, and that yi = 0 if Ji is accepted. Then, the extended model has an

objective of minimizing
∑n

i=1

∑qi

k=1 fik(xik)(1− yi) +
∑n

i=1 γiyi. We denote this extended problem

as P3. Unfortunately, the following theorem implies that the existence of a polynomial time or

pseudo-polynomial time algorithm for problem P3 is unlikely.

Theorem 2 Problem P3 is NP-hard in the strong sense.

Proof. We transform Exact Cover by 3-Sets (X3C) to the decision version of problem P3. Given

a set X with 3u elements, where u ∈ Z
+, and a collection Γ of 3-element subsets of X , X3C asks

if there exists a subset Γ′ of Γ where every element of X occurs in exactly one member of Γ′?

X3C is known to be NP-complete in the strong sense (Garey and Johnson 1979). For notational

convenience, we denote X = {1, 2, . . . , 3u} and m = |Γ|, and for i = 1, 2, . . . , m, we denote the ith

element of Γ as Γi = {ai1, ai2, ai3}, where ai1 < ai2 < ai3. Note that in any “yes” instance of X3C,

|Γ′| = u.

Given an arbitrary instance of X3C, we construct a corresponding instance of problem P3 as

follows:

• Number of jobs: n = m

• Processing time of Ji: pi = ai1 + ai2 + ai3

14

• Number of milestones of Ji: qi = 3

• The kth milestone of Ji: τik = 1
2aik(aik + 1)

• Penalty function of Ji at milestone τik: fik(x) = max
{

m
(
∑k

l=1 ail − x
)

, 0
}

• Rejection penalty of Ji: γi = 1

Let L = m − u be a threshold value on the total penalty. It is easy to see that this instance of P3

can be constructed in polynomial time, and all the parameter values are bounded by a polynomial

in m and u. We will show that this constructed instance has a feasible solution with a total penalty

no greater than L if and only if there exists Γ′ ⊆ Γ such that every element of X occurs in exactly

one member of Γ′.

(“If” part) Suppose that there exists Γ′ ⊆ Γ such that every element of X occurs in exactly one

member of Γ′. Then, u = |Γ′|. We consider the following solution of the constructed instance of

P3: For i = 1, 2, . . . , n, accept Ji if Γi ∈ Γ′, and reject Ji otherwise. For each accepted job Ji and

for k = 1, 2, 3, process aik units of Ji in the time interval [12(aik − 1)aik,
1
2aik(aik + 1)].

In this solution, the u accepted jobs are divided into 3u portions, and these portions are pro-

cessed in the time intervals [0, 1], [1, 3], [3, 6], . . . , [12(3u−1)3u, 1
23u(3u+1)]. Because every element

of X occurs in exactly one member of Γ′, these 3u time intervals are occupied by the 3u job por-

tions with exactly one job portion per interval. Thus, for each accepted job Ji and for k = 1, 2, 3,

a total of
∑k

l=1 ail time units of Ji are processed by time τik. Since fik(
∑k

l=1 ail) = 0, the penalty

of accepted job Ji at the kth milestone is 0. Hence, the accepted jobs do not incur any penalty.

Therefore, the total penalty of this solution is
∑

Γi /∈Γ′ γi = m − u = L.

(“Only if” part) Suppose the constructed instance of P3 has a feasible solution σ with a total

penalty no greater than L. Let r be the number of accepted jobs in this solution. Note that r ≥ u

since otherwise the total rejection penalty is greater than L. Solution σ has the following property:

Property 1: For each accepted job Ji and for k = 1, 2, 3, at least
∑k

l=1 ail time units of Ji are

processed by time τik.

Property 1 holds because fik(x) ≥ m > L for any nonnegative integer x <
∑k

l=1 ail.

15

Let

S = {aik | Ji is accepted in σ; i = 1, 2, . . . , n; k = 1, 2, 3},

which is a multiset (i.e., a set of possibly duplicated elements) with 3r elements. Arrange the

elements of S in ascending order (with ties broken arbitrarily), and let the sorted elements be

ai1k1
, ai2k2

, . . . , ai3rk3r
. Thus, ai1k1

≤ ai2k2
≤ · · · ≤ ai3rk3r

. We have the following property:

Property 2: If h < j and ih = ij, then kh < kj.

Property 2 follows from the fact that ai1 < ai2 < ai3 for all i. We will show that aijkj
= j for

j = 1, 2, . . . , 3r. Suppose, to the contrary, that aijkj
6= j for some j = 1, 2, . . . , 3r. Then, let

ξ = min{j | aijkj
6= j; j = 1, 2, . . . , 3r}.

We divide the analysis into two cases.

Case 1: aiξkξ
< ξ. In this case, aijkj

= j for j = 1, 2, . . . , ξ − 1. In addition, aiξkξ
= ξ − 1

(because ξ − 1 = aiξ−1kξ−1
≤ aiξkξ

< ξ). By Property 1, at least
∑kj

l=1 aij l time units of Jij are

processed by time aijkj
(aijkj

+ 1)/2 for j = 1, 2, . . . , ξ. Thus, at least
∑kj

l=1 aij l time units of Jij

are processed by time (ξ − 1)ξ/2 for j = 1, 2, . . . , ξ. By Property 2, this implies that at least

∑

h≤j s.t. ih=ij
aihkh

time units of Jij are processed by time (ξ − 1)ξ/2 for j = 1, 2, . . . , ξ. Let

Yξ = {j | h ≤ j for all h such that ih = ij; j = 1, 2, . . . , ξ}.

Note that ij 6= ij′ (i.e., Jij and Jij′ are different jobs) for any j, j ′ ∈ Yξ such that j 6= j ′. Hence,

at least
∑

j∈Yξ

∑

h≤j s.t. ih=ij
aihkh

time units of accepted jobs are processed by time (ξ − 1)ξ/2.

Note that
∑

j∈Yξ

∑

h≤j s.t. ih=ij
aihkh

= ai1k1
+ ai2k2

+ · · ·+ aiξkξ
. Therefore, at least ai1k1

+ ai2k2
+

· · · + aiξkξ
time units of accepted jobs are processed by time (ξ − 1)ξ/2. This is impossible, as

ai1k1
+ ai2k2

+ · · ·+ aiξkξ
= [1 + 2 + · · ·+ (ξ − 1)] + (ξ − 1) > (ξ − 1)ξ/2.

16

Case 2: aiξkξ
> ξ. In this case, aijkj

= j for j = 1, 2, . . . , ξ − 1, and aiξkξ
> ξ. Let

ζ = min{j | aijkj
≤ j; j = ξ + 1, ξ + 2, . . . , 3r}

(note that ζ exists since otherwise ai3rk3r
> 3r ≥ 3u, which is impossible). By Property 1, at least

∑kj

l=1 aij l time units of Jij are processed by time aijkj
(aijkj

+ 1)/2 for j = 1, 2, . . . , ζ. Thus, at

least
∑kj

l=1 aij l time units of Jij are processed by time ζ(ζ +1)/2 for j = 1, 2, . . . , ζ. By Property 2,

this implies that at least
∑

h≤j s.t. ih=ij
aihkh

time units of Jij are processed by time ζ(ζ + 1)/2 for

j = 1, 2, . . . , ζ. Let

Yζ = {j | h ≤ j for all h such that ih = ij; j = 1, 2, . . . , ζ}.

Following the same argument as in Case 1, at least
∑

j∈Yζ

∑

h≤j s.t. ih=ij
aihkh

time units of accepted

jobs are processed by time ζ(ζ + 1)/2. Therefore, at least ai1k1
+ ai2k2

+ · · ·+ aiζkζ
time units of

accepted jobs are processed by time ζ(ζ + 1)/2. This is impossible, as ai1k1
+ ai2k2

+ · · ·+ aiζkζ
≥

[1 + 2 + · · ·+ (ξ − 1)] + [(ξ + 1) + (ξ + 2) + · · ·+ ζ] + ζ > ζ(ζ + 1)/2.

Combining Cases 1 and 2, we conclude that aijkj
= j for j = 1, 2, . . . , 3r, and that r = u.

Consider the solution of the given instance of X3C where Γ′ = {Γi | Ji is accepted in σ}. In this

solution, every element of X occurs in exactly one member of Γ′.

5 Conclusions and Future Work

This paper presents a multitasking model for the situation where a working team needs to demon-

strate progress on different tasks or to treat the task owners equitably. Polynomial time solution

methods are presented for the general model. A more efficient solution method is provided for the

special case with linear penalties. Two generalizations of the problem are also discussed.

Some future directions on this research are of interest. In Section 4.2, we have shown that

problem P3 is strongly NP-hard. One interesting future research topic would be to develop good

performing heuristics for this problem. Another interesting research topic is to study more com-

17

putationally tractable special cases of P3, for example, the case where each task has only two

milestones, namely a “mid-term milestone” and a “final milestone.”

The following extensions of problem P are also worth investigating. First, in our model we

have assumed that each task can be divided into subtasks with any integer duration. However,

in some applications there are constraints on how a task can be broken down into subtasks. For

example, there may be a minimum requirement on the duration of each subtask to avoid excessive

switching of tasks. A more general model would allow such constraints. Second, in our model

there is no overhead cost when the working team switches the processing from one task to another

task. A more general model would allow either a “switching cost” or a “switching time” between

consecutive subtasks. Third, in some applications a lump-sum penalty will incur if a concern

percentage of a task cannot be completed by a certain milestone. However, in our model the

penalty function fik is convex and cannot capture this kind of lump-sum penalties. A more general

model would allow a lump-sum penalty to be imposed if a certain level of progress is not met by

a milestone. Fourth, in Section 1 we have discussed how to impose tighter control on jobs at their

final milestones. However, in some applications the actual completion date of a task is one of the

performance measures of the task. Thus, a more general model would have a bicriteria objective,

where one criterion is to minimize the total penalty at the milestones, and another criterion is to

minimize a cost which depends on the completion times of the tasks. Fifth, processing times of

tasks performed by human workers can often be reduced by injecting additional financial resources

through, for example, hiring additional workers or having workers work overtime. Hence, a more

general model would allow controllable processing times, where the duration of a subtask can be

compressed through incurring a cost. Finally, our model is a single-machine model, which implicitly

assumes that only one working team processes one task at a time. A more general model would

have a more general machine structure such as parallel machines, uniform machines, or parallel

machines with eligibility constraints. Developing efficient and effective solution methods for these

extensions would be of future research interest.

18

Acknowledgments

The authors thank two anonymous referees for their helpful comments. This research was supported

in part by the Research Grants Council of Hong Kong under grant PolyU5195/13E.

References

Ahuja, R.K., Magnanti T.L., Orlin J.B. (1993). Network Flows: Theory, Algorithms, and Applica-

tions, Prentice Hall, Englewood Cliffs, NJ.

Chang, J.H., Chiu, H.N. (2005). A comprehensive review of lot streaming. International Journal

of Production Research 43(8), 1515–1536.

Cheng, M., Mukherjee, N.J., Sarin, S.C. (2013). A review of lot streaming. International Journal

of Production Research 51(23–24), 7023–7046.

Choi, B.-C., Park, M.-J. (2015). A continuous time-cost tradeoff problem with multiple milestones

and completely ordered jobs. European Journal of Operational Research 244(3), 748–752.

Correa, J., Marchetti-Spaccamela, A., Matuschke, J., Stougie, L., Svensson, O., Verdugo, V.,

Verschae, J. (2015). Strong LP formulations for scheduling splittable jobs on unrelated machines.

Mathematical Programming 154(1–2), 305–328.

Dayanand, N., Padman, R. (2001). Project contracts and payment schedules: The client’s problem.

Management Science 47(12), 1654–1667.

Eynan, A., Li, C.-L. (1997). Lot-splitting decisions and learning effects. IIE Transactions 29(2),

139–146.

Garey, M.R., Johnson, D.S. (1979). Computers and Intractability: A Guide to the Theory of NP-

Completeness, Freeman, New York.

Ghoddousi, P., Ansari, R., Makui, A. (2017). An improved robust buffer allocation method for the

project scheduling problem. Engineering Optimization 49(4), 718–731.

Hall, N.G., Leung, J.Y.-T., Li, C.-L. (2015). The effects of multitasking on operations scheduling.

Production and Operations Management 24(8), 1248–1265.

Hall, N.G., Leung, J.Y.-T., Li, C.-L. (2016). Multitasking via alternate and shared processing:

19

Algorithms and complexity. Discrete Applied Mathematics 208, 41–58.

Hochbaum, D.S., Shanthikumar, J.G. (1990). Convex separable optimization is not much harder

than linear optimization. Journal of the Association for Computing Machinery 37(4), 843–862.

Keskinocak, P., Tayur, S. (2004). Due date management policies. In: D. Simchi-Levi, S.D. Wu,

Z.M. Shen (eds.), Handbook of Quantitative Supply Chain Analysis: Modeling in the E-Business

Era, Kluwer, Boston, pp. 485–554.

Kleinschmidt, P., Schannath, H. (1995). A strongly polynomial algorithm for the transportation

problem. Mathematical Programming 68(1–3), 1–13.

Liu, M., Wang, S., Zheng, F., Chu, C. (2017). Algorithms for the joint multitasking scheduling and

common due date assignment problem. International Journal of Production Research 55(20),

6052–6066.

Logendran, R., Subur, F. (2004). Unrelated parallel machine scheduling with job splitting. IIE

Transactions 36(4), 359–372.

Philipoom, P.R., Markland, R.E., Fry, T.D. (1989). Sequencing rules, progress milestones and

product structure in a multistage job shop. Journal of Operations Management 8(3), 209–229.

Schrijver, A. (1986). Theory of Linear and Integer Programming, Wiley, Chichester.

Serafini, P. (1996). Scheduling jobs on several machines with the job splitting property. Operations

Research 44(4), 617–628.

Serin, Y., Kayaligil, S. (2003). Lot splitting under learning effects with minimal revenue require-

ments and multiple lot types. IIE Transactions 35(8), 689–698.

Shabtay, D., Gaspar, N., Kaspi, M. (2013). A survey on offline scheduling with rejection. Journal

of Scheduling 16(1), 3–28.

Slotnick, S.A. (2011). Order acceptance and scheduling: A taxonomy and review. European Journal

of Operational Research 212(1), 1–11.

Sum, J., Ho, K. (2015). Analysis on the effect of multitasking. In: Proceedings of 2015 IEEE

International Conference on Systems, Man, and Cybernetics, pp. 205–209.

Xing, W., Zhang, J. (2000). Parallel machine scheduling with splitting jobs. Discrete Applied

20

Mathematics 103(1–3), 259–269.

Yalaoui, F., Chu, C. (2003). An efficient heuristic approach for parallel machine scheduling with

job splitting and sequence-dependent setup times. IIE Transactions 35(2), 183–190.

Zhu, Z., Li, J., Chu, C. (2017a). Multitasking scheduling problems with deterioration effect. Math-

ematical Problems in Engineering 2017, Article ID 4750791 (10 pages).

Zhu, Z., Liu, M., Chu, C., Li, L. (2017b). Multitasking scheduling with multiple rate-modifying

activities. International Transactions in Operational Research, DOI:10.1111/itor.12393.

Zhu, Z., Zheng, F., Chu, C. (2017c). Multitasking scheduling problems with a rate-modifying

activity. International Journal of Production Research 55(1), 296–312.

21

