- 1 Title: photoacoustic imaging of synovial tissue hypoxia in experimental post-traumatic
- 2 osteoarthritis
- 3 **Running title:** Hypoxia imaging in OA
- 4
- 5 Zhongyu LIU^{1, 2,*}, Manting, AU^{2,*}, Xuan WANG^{1,2,*}, Pok-Man Boris CHAN^{2,*}, PuXiang
- 6 LAI², Lei SUN², Yongping ZHENG², Limin RONG^{1,#}, Chunyi WEN^{2,#}
- 7 1. Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-Sen University;
- 8 2. Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong
- 9 Polytechnic University
- 10 "*" Equal contribution
- 11 "#" Correspondence: Dr. CY WEN, Hong Kong Polytechnic University, Tel: (852) 34008898,
- 12 Fax: (852) 23342429, email: <u>chunyi.wen@polyu.edu.hk</u>; Dr. LM RONG, the Third Affiliated
- 13 Hospital of Sun Yat-Sen University, Tel: (86) 85252900, email: ronglimin@21cn.com

Abstract

15	Objectives: This pilot study aimed to investigate the feasibility of non-invasively assessing
16	synovial tissue hypoxia in vivo using photoacoustic (PA) imaging in a post-traumatic
17	osteoarthritis model and explore its correlation with OA severity.
18	Methods: The three-dimensional vasculature structure and oxygenation level of synovial
19	tissues of destabilization of the medial meniscus (DMM)-induced osteoarthritis (OA) mice
20	were longitudinally monitored using PA imaging. Vascular volume/tissue volume (%) and
21	tissue oxygen saturation (sO ₂) were validated against results obtained by established Power
22	Doppler (PD) imaging and dynamic changes of inhaled O ₂ concentration respectively. PA
23	changes were correlated with the histological grading of cartilage damages.
24	Results: PA-measurements of vascularity and sO ₂ demonstrated a strong correlation with
25	localized blood flow detected by PD imaging ($r=0.506$, $p<0.001$) and inhaled O ₂
26	concentration. DMM knees exhibited much more vascularity in synovial tissue at 4 months
27	after surgery (median 11.3%, IQR: 10.7-15.5%) than the intact knees at time zero
28	(median:5.1%, IQR:3.8-6.8%, p<0.001) as well as the sham-operated knees (median: 4%,
29	IQR: 3.75-5.45%, $p=0.017$). Paradoxically, synovial tissue sO ₂ was significantly lower in

- 30 DDM knees (median: 37.7%, IQR: 36.4-40.6%) than both the intact (47.1%, IQR: 41.9-49.8%)
- 31 p=0.001) and sham-operated knees (45.1% IQR: 45.1-52.4%, p=0.017). The PA-detected
- 32 synovial tissue hypoxia correlated with the severity of cartilage loss in DMM mice
- 33 (*rho*=-0.597, p=0.031).
- 34 Conclusion: Here, we demonstrated PA imaging can be implemented for non-invasive
- 35 imaging of the synovial tissue. Under PA imaging, synovitis in OA was characterized by
- 36 increased angiogenesis and synovial tissue hypoxia; the latter was associated with the
- 37 severity of OA.
- 38 Key words Osteoarthritis, Synovitis, Vasculature, Power Doppler, Photoacoustic tomography

39 Introduction

40	Traditionally, osteoarthritis (OA) is believed to be a non-inflammatory joint disorder
41	caused by wear and tear of articular cartilage under abnormal mechanical loading(Wen et al.,
42	2014). Thanks to advancements in multi-imaging modalities, it is now known that OA is a
43	whole joint disorder, involving not only the degradation of articular cartilage but also
44	deformation of subchondral bone and low-grade inflammation, particularly of the synovial
45	tissue(Mathiessen and Conaghan, 2017). According to a previous MOST study, 66% of OA
46	patients exhibit synovial enhancement on gadolinium-magnetic resonance imaging
47	(MRI)(Guermazi et al., 2011), signifying synovitis is prevalent among OA patients. Such
48	synovial inflammation signals can also be detected in 43% of the patients with previous
49	meniscal injuries and menisectomy prior to the onset of radiographic OA(Scanzello et al.,
50	2011). In addition, MRI-detected effusion and synovitis correlate with pain and increased
51	cartilage loss (Roemer et al., 2011). Given the importance of synovitis in the pathogenesis of
52	OA, imaging of synovitis is of great interests in OA care and research.
53	

54 Synovitis of arthritic joints is characterized by synovial effusion(Clavel et al., 2008,

55	Conaghan et al., 2006, Kornaat et al., 2006), angiogenesis(Bhat et al., 2015, Clavel et al.,
56	2008, Zinn et al., 1999), hypoxia and reactive oxygen species generation(Biniecka et al.,
57	2016, Biniecka et al., 2011, Ng et al., 2010, Biniecka et al., 2010, Xie et al., 2012). Multiple
58	imaging modalities have been widely studied for in vivo assessments of synovitis particularly
59	in inflammatory arthritis, e.g. MRI(Conaghan et al., 2006, Kornaat et al., 2006), B mode and
60	Power Doppler (PD) ultrasonography(Clavel et al., 2008, Bhat et al., 2015), positron
61	emission tomography (PET)(Zinn et al., 1999, Fuchs et al., 2017), florescence imaging(Xie et
62	al., 2012, Horvath et al., 2016) and etc Despite having a whole plethora of novel imaging
63	techniques made available for research purposes in the past two decades, the current clinical
64	imaging modalities for synovitis is limited to MRI and ultrasonography that is costly and
65	operator-dependent. With limited reproducibility and sensitivity, this requires considerably
66	more research.
67	MRI and ultrasonography are the current golden standard clinical imaging modalities for
68	synovitis, but they are limited to assessment of synovial effusion and angiogenesis(Conaghan
69	et al., 2006, Kornaat et al., 2006, Bhat et al., 2015, Clavel et al., 2008). For evaluation of
70	synovial hypoxia and reactive oxygen species generation in synovitis, only arthroscopic

71	approach(Biniecka et al., 2016, Biniecka et al., 2011, Ng et al., 2010, Biniecka et al., 2010),
72	or contrast agent labeling techniques(Xie et al., 2012) are available, but these techniques are
73	invasive and expensive.
74	
75	Photoacoustic (PA) imaging synergizes the strengths of both optical and sonic imaging – the
76	use of near-infrared laser utilizes the optical absorption properties of the endogenous
77	hemoglobin in blood vessels, thus allow imaging of deeper tissue that ultrasound would be
78	capable of otherwise, while achieving a satisfactory spatial resolution of ultrasound(Wang
79	and Hu, 2012). PA imaging has been applied for <i>in-vivo</i> non-invasive measurement of tumor
80	angiogenesis, intracranial cortex vasculature and tissue oxygen level of the brain without
81	requiring any contrast agent(Toi et al., 2017, Tang et al., 2015). Technically, it is also feasible
82	to image the structural changes in the small finger joints with OA in-vivo(Sun et al., 2011,
83	Xiao et al., 2010, Xiao and He, 2010). Studies have demonstrated the feasibility of PD
84	imaging for evaluating synovitis and vascular invasion in small animals arthritis model(Xu et
85	al., 2017, Clavel et al., 2008), from which the authors observed significant increase in PD
86	signals in posttraumatic OA and RA respectively. The caveat is that PD imaging can only

87	indicate the volume flow rate of blood rather than the actual volume of blood within the
88	tissue, which requires the use of other imaging modalities, prompting us to look into PA
89	imaging.
90	In this pilot study, we aimed to investigate the use of PA imaging as a non-invasive
91	in-vivo evaluation tool for 3-D quantitative measurement of synovial tissue vascularity and
92	hypoxic status in live animals. Then we employed PA imaging to delineate the temporal
93	changes of synovitis with the progression of OA, and to explore its relationship with the
94	severity of articular cartilage damages in a destabilization of the medial meniscus
95	(DMM)-induced OA mouse model.

96 Methods

97 Study Design

98 The institutional Research Ethics Committee approved all the experimental procedures in

99 this study (15-16/17-BME-R-HMRF).

100 In this study, we first performed destabilization of medial meniscus (DMM) surgery on left

101 hind limb of 6-month-old male BALB/c mice (n=13) and capsulotomy as sham operation on

102 three mice (n=3). The DMM joints were scanned using high-frequency ultrasound (US), PD

103 and PA micro-imaging at 1 month (n=7) and 4 months (n=6) post-surgery, respectively. In

104 order to validate our PA findings, PD and PA imaging was also performed on mice with intact

105 knees as controls (n=48).

106 Animal surgery

DMM surgery was performed on mouse knees according to an established protocol(Glasson et al., 2007). Briefly, the right hind leg of the mouse was shaved with hair shaving cream and disinfected with iodine solution under general anesthesia via intraperitoneal injection of a ketamine (100mg/ml), xylazine (20mg/ml) and saline (1.0ml:0.5ml:8.5ml, 1ml/100g) cocktail.

112	medial meniscus. Subsequently, transection of the medial meniscus was conducted using #11
113	blade or micro-surgical scissors. The sites were irrigated and the joint capsule, subcutaneous
114	membrane and skin were sutured layer by layer. The mice were allowed to move freely
115	immediately after the surgery.
116	High-frequency ultrasound, Power Doppler and photoacoustic micro-imaging
117	Ultrasound imaging was conducted on the live animals using Vevo2100 high-frequency
118	Micro-Imaging System (VisualSonics, Toronto, Ontario, Canada). General anesthesia was
119	maintained with 1%-3% isoflurane inhalation throughout the entire procedure. The right hind
120	limb was first shaved, then the animal was positioned supine onto a heating pad with the
121	extremities attached to the electrode for monitoring the heart rate and respiratory rate. The
122	ultrasound transducer was attached to a 3D motorized articulated arm (MP-Tec AG, Veltheim,
123	Switzerland) and positioned for sagittal views of the mouse knee [Fig. 1(A)]. The right leg
124	was flexed at approximately 120 degrees, and coupling gel was applied to allow clear
125	visualization of the knee joint [Fig. 1(B) and (C)].
126	For B mode and PD imaging , an ultrasound transducer with a center frequency of 50MHz

127 and a bandwidth of 30-70 MHz (MS700, image axial resolution $30\mu m$) was employed. B

128	mode imaging acquisition parameters were set as follows: frequency: 50MHz, power: 100%,
129	gain: 35 dB, focus depth: 4.5 mm, focal zone: 3.75-5.25 mm, Line density: full, Persistence:
130	off, Sensitivity: high, Dynamic range: 65dB, Display map: G5. PD imaging settings were
131	defined as follows: Frequency: 40MHz, Power: 100%, PRF (pulse repetition frequency): 1
132	kHz, Doppler gain: 35 dB, 2D Gain: 35dB, Focus depth: 4.5 mm, Beam angle: 0 deg,
133	Sensitivity: 5, Line density: full, Persistence: low, Dynamic range: 60 dB, Wall filter: high,
134	Priority: 58 %. For PA imaging, a transducer with a center frequency of 30MHz and a
135	bandwidth of 18-38MHz (LZ400, image axial resolution 50um) was adopted. The raw PA
136	signal intensity was measured at two wavelengths: 750 nm (for deoxygenated hemoglobin)
137	and 850 nm (for oxygenated hemoglobin)(Wilson et al., 2014). The PA imaging settings were
138	defined as follows: Frequency: 30MHz, Power: 100%, 2D gain: 20 dB, PA gain: 46 dB,
139	Focus depth: 6 mm, Line density: high, Persistence: off, PA acquisition: sO2/HbT, Priority:
140	99%, Threshold HbT: 20. Since the cardiac and respiratory function and body movement
141	would largely affect the PD and PA signals, heart rate & respiratory rate were closely
142	monitored after inhaled anesthesia and during PD and PA image acquisition.

143 Three-dimensional scan of entire mouse knee joints was conducted by linear translocation

144	of the transducer perpendicular to the single sagittal plane of 2D imaging. The total distance
145	of 3D scan was set to 5mm to cover the entire joint with a step size of 0.032mm. A triangular
146	region of interest (ROI) was manually drawn in the frame that best featured the triangle
147	defined by the patella tendon (the dark hypo-echogenic line parallel to the skin surface),
148	proximal tibia and distal femur (tendon-tibia-femur triangle, TTF) in the sagittal view of
149	mouse knee joint as previously described [Fig.1(D)-(F)](Clavel et al., 2008). The height of
150	ROI was set from the lowest point of the TTF to 0.3mm above the highest surface of the skin,
151	and the length was set to the length of the patella tendon, linking the highest point of the
152	femur and tibia in the image. During 3D data analysis, the same ROI was segregated
153	automatically in all the 2D slices by a custom-designed script on Matlab (Vessel analysis
154	v1.4)(Sun et al., 2012, Cheung et al., 2012). The vascular volume (%) was quantified by
155	counting colored pixels at the resolution of 0.010 mm \times 0.010 mm in the ROI on each PD and
156	PA slice, then multiplied by 0.032 mm (slice thickness), and then divided by the total number
157	of voxels in the volume of interest (VOI). Similarly, the average $sO_2(\%)$ was converted from
158	the mean PA signal intensity of the voxels in the VOI.

159 For PA imaging, we collected 1000 consecutive PA frames with the inhaled gas switched

160 from air (O₂ concentration: 21%) to 100% pure oxygen. The sO₂ graph of a selected blood 161 vessel was plotted to observe the time-dependent change of sO2 with different concentrations 162 of inhaled O₂ (Supplementary Fig.1.) 163 **µCT-based** micro-angiography The µCT-based micro-angiography was performed on 2 animals per group following an 164 165 established protocol(Zhen et al., 2013). In brief, the mouse heart was gently exposed under 166 deep anesthesia. A 30-gauge needle was inserted into the left ventricle for perfusion and a 167 small incision was performed to the right atrium for drainage. The blood was washed away from the vessels using 0.9% normal saline solution containing heparin sodium (100U/ml), 168 169 followed by 10% neutral buffered formalin for blood vessel fixation. After the removal of 170 formalin by repetitive infusion of saline, the vascular system was perfused with Microfil 171 MV-117 (Flow Tech, Carver, MA). The samples were stored at 4°C overnight to allow 172 polymerization of Microfil. The knee joints were fixed in neutral buffered formalin for 48 hours and decalcified in 10% EDTA (pH 7.4) for 20 days. The specimens were scanned via 173 174 VivaCT 40 (Scanco Medical, Bruttisellen, Switzerland) at 10.5µm voxel size. 175 Three-dimensional vasculature images in the previously defined triangle ROIs were

176 reconstructed for comparison with PA images.

177 Histology

178 Histomorphological evaluation of OA was performed on the baseline control (n=4), 179 1-month post-surgery (n=7) and, 4-months post-surgery (n=6) animals. Fixed and decalcified 180 samples were dehydrated in alcohol gradient and embedded in paraffin. Five-micron-thick 181 sagittal serial sections of knee joint medial compartment were made for hematoxylin and 182 eosin (H&E) staining. Images were captured using OLYMPUS BX51WI Microscope and 183 Image-Pro Plus version 5.0 (Media Cybernetics, Inc.). Neovascularization of the knee joint 184 was evaluated; the severity of OA including articular cartilage damage (0: intact; 1: surface 185 fibrillation; 2: vertical fissure; 3: cartilage worn-out; 4: cartilage worn-out down to 186 subchondral bone), synovitis (0: intact: 1: high cellularity; 2: high cellularity and vascularity), 187 osteophyte (0: absent; 1: present) and meniscus ossification (0: absent; 1: present) was graded 188 OARSI recommended histological using grading system after minor an 189 modification(Kamekura et al., 2005, Glasson et al., 2010). Two independent observers graded 190 three equidistant sections at 60-70µm apart throughout the medial compartment of the knee 191 joint in a blinded manner. The average score was taken.

192 Statistics

193	All data were presented in median (interquartile range). The relationship between PA and
194	PD data in the intact mice were analyzed using Pearson or Spearman's correlation. The
195	comparisons of PA and PD data of DMM mice at different time points were performed using
196	Kruskal–Wallis H test; when the overall statistical significance was indicated, post-hoc Mann
197	Whitney U test was performed. The links of the ultrasound, PD and PA imaging findings of
198	synovitis with histopathological grading of articular cartilage damages were explored using
199	Spearman's correlations. The level of significance was set at 0.05 (IBM SPSS statistics v.21,
200	U.S.A.).

201 Results

217 Temporal changes of PA findings of synovitis in DMM knees (Fig.2&3)

218	Compared to intact knees, PDVV did not significantly change at 1-month (2.5%, IQR:
219	1.5-3%) yet dropped at 4-month post-surgery (1.1%, IQR: 1.1-1.2%). PDVV of the
220	sham-operated knees at 1-month (2.8%, IQR: 2-3.2%) and 4-month post-surgery (1.9%, IQR:
221	1.75-2.2%) was not significantly different from the baseline. PDVV of DMM knees was
222	lower than sham-operated ones at 4 months (p=0.014) yet not at 1-month post-surgery
223	(p=0.918).
224	Compared to intact knees, PAVV in DMM knee dramatically increased at 1- (10%, IQR:
225	8.25-23.73%, p=0.001) and 4-month post-surgery (11.3%, IQR: 10.65-15.5%, p<0.001)
226	(Fig.7). PAVV of the sham-operated knees at 1-month (9.5%, IQR:7.6-9.8%, p=0.014) and
227	4-month post-surgery (4%, IQR: 3.75-5.45%, p=0.603) did not differ from the intact knees.
228	In addition, PAVV in DMM knees did not differ from those of sham-operated knees at 1
229	month after surgery (p=0.474), but it was significantly higher at 4-month postoperatively in
230	DMM knees than in the sham-operated ones (p=0.17).

- 231 Similarly, synovial tissue oxygenation level, sO_2 , was much lower in DMM knees at
- 232 4-month (37.7%, IQR: 36.4-40.6%) than at 1-month post-surgery (42.6±1.7%, 38.6~46.6%)

233	(42.1%, IQR: 38.7-46.3%) as well as the intact knees ($p=0.005$). Synovial tissue sO ₂ did not
234	change with healing over time in sham-operated ones (1-month: 46.8%, IQR: 45.1-50.7%,
235	4-month: 45.1%, IQR: 45.1-52.4%). Most interestingly, the level of sO_2 in synovial tissues
236	was closely associated with the PD-detected blood flow (Spearman's Rho=0.733, p=0.004).
237	PA imaging of synovitis was associated with articular cartilage damages in DMM knees
238	As shown in the histopathological images of DMM knees, synovitis was characterized by
239	hypercellularity and neoangiogenesis at 1-month after surgery(Fig.4.). Blood vessel of
240	smaller diameter and leakage of RBCs to interstitial space were observed in synovial tissues
241	of the 4-month post-surgery group. It was accompanied by vascular invasion into injured
242	meniscus with ossification formation. The histological findings were compatible with the
243	temporal changes of PAVV and PDVV. In addition, the PA image of microvasculature inside
244	joint was close to the 3-D reconstructed vasculature under μ CT-based micro-angiography in
245	our region of interest (Supplementary Fig.3.).
246	The synovial tissue sO ₂ level was negatively associated with the severity of articular
247	cartilage (Spearman's Rho=-0.597, p=0.031) and entire OA joint destruction (Spearman's
248	Rho=-0.555, p=0.049)(Fig.5.). In addition, synovial tissue hypoxia was also associated with

osteophyte formation (Spearman's *Rho*=-0.592, p=0.033), and correlated with meniscus
ossification with marginal statistical significance (Spearman's *Rho*=-0.507, p=0.077).
Actually, PDVV also showed marginal statistically significant correlations with meniscus

252 ossification and overall OA joint damages.

253 **Discussion**

254 There are a few major limitations to be addressed before any conclusion can be drawn 255 from this pilot study. First, the current study is limited by the cross-sectional design meant for 256 validating PA findings by means of histopathology. Thus our findings regarding the 257 correlation between articular cartilage damage and synovial tissue hypoxia cannot unveil any 258 causal relationship. Second, since the focus of the present study was placed on PD and PA 259 images, we did not quantify the non-specific changes of gray scale in B mode ultrasound 260 image with the progression of OA. These signs may potentially indicate synovial effusion and 261 edema. Third, it was not feasible to differentiate soft tissues, such as synovium, meniscus and 262 articular cartilage, insides joint capsule in micro-ultrasound images of knee joint. Thus we 263 defined a rather large ROI to cover all affected joint tissues. Considering the nature of these 264 tissues, the vasculature was predominantly present in synovium instead of meniscus and 265 articular cartilage. PA and PD changes mainly reflected synovial inflammation. This study employed the cutting-edge PA imaging modality for in-vivo measurement of 266 synovitis. We for the first time reported synovial tissue hypoxia along with vasoconstriction 267 268 (suggested by PD imaging and histopathological findings) and with deterioration of articular

269	cartilage damage in a well-received DMM mouse model. Use of three-dimensional PA and
270	PD imaging analyses approach in this study minimized the bias potentially brought by the
271	operator-dependent imaging probe position and sagittal plane selection in the scanning. In
272	addition, we made one step forward by introducing a quantitative analysis protocol for the PD
273	and PA imaging of synovitis compared to the semi-quantitative grading system as previously
274	reported in both human and animal models(Clavel et al., 2008, Atukorala et al., 2016).
275	Both PA and PD are effective in visualising blood vessels inside biological tissues, but
276	their imaging principles are different. Intensity of PA signals depend on the amount of the
277	hemoglobin of red blood cells (RBCs) in the blood stream. While PD signals rely on the flow
278	rate of blood and RBCs inside blood vessels, which are not only affected by the number and
279	size of blood vessels but also their perfusion and permeability function. Therefore, the PD
280	and PA findings are intrinsically linked as indicated by the correlative analysis in the present
281	study. However, in this study, we observed that PA signals were consistently stronger than PD
282	signals in intact and DMM knees. We suspect this phenomenon can be attributed to the fact
283	that newly formed blood vessels with synovial angiogenesis contain hemoglobin but might
284	not be well connected to the pre-existing vasculature, as shown in previous study(Zhen et al.,

285	2013). As a result, the low velocity blood flow in the newly formed vessels could be easily
286	detected by PA images but may go undetected in PD images. In the injured knees after DMM
287	surgery, we have showed that PA imaging could detect synovial neoangiogenesis at 1-month
288	and vascular invasion into meniscus at 4-month post injury. In contrast, PD imaging, the
289	current standard clinical assessments of synovitis, mainly reflected the functional changes of
290	vasculature in synovium with healing over time in our DMM mouse model. The volume of
291	PA signals reflected the amount of both pre-existing and newly formed blood vessels, while
292	PD signals could reflect the size and function of the existing vasculature. In our study, the
293	decrease of PD signals but increase of PA signals occurred at 4-month post DMM surgery.
294	This indicates reduction of the size of blood vessel, e.g. the vasoconstriction, and increased
295	vascular permeability with RBCs leakage to interstitial space in the advanced stage of
296	experimental OA. This finding is in good agreement with MRI-detected impaired vascular
297	permeability function in a posttraumatic OA mouse model(Zhen et al., 2013). High level of
298	plasma and synovial endothelin-1, a potent vasoconstrictor, in the advanced stage of knee OA,
299	might be the molecular basis for this phenomenon(Zhao et al., 2016, Sin et al., 2015). As
300	such, it may partially explain why synovial tissue sO2 was associated with PD-detected blood

301 vessel function in DMM knees. Taken together, PD and PA are complementary to each other
302 in providing comprehensive information about vascular structure and function in healthy and
303 diseased conditions.

304 The image pattern of synovitis we observed in DMM-induced OA mouse model differs 305 from a previous report using comparable high-frequency ultrasonography and PD imaging in 306 collagen-induced arthritis (CIA) mouse model in a way that PD-detected signal changes in 307 CIA model were present after CIA induction, and they correlated with the histopathological 308 severity of synovitis(Clavel et al., 2008). Compared to the sham-operated knees, the 309 significant changes in the PD and PA images of DMM knees were present at 4-month after 310 surgery instead of 1-month after surgery. It implied that DMM contributed to synovial tissue 311 vasoconstriction, hypoxia and vascular invasion whereas capsulotomy - sham operation itself 312 led to the increase of angiogenesis. With the sham-operated mice at the same age as the 313 DMM mice, we could exclude growth between the operation and the endpoint as a confounding factor in the readout of PD and PA images. To confirm this, we also looked into 314 6 to 10-month-old mice and did not find any age-related changes in PD and PA images 315 316 (unpublished data). In addition, it was noted that the wall filter was set at a relatively lower

317	level, i.e. 2.5mm/s, in the previous study(Clavel et al., 2008). As a consequence, it would
318	inevitably bring obvious background noise in PD images. In our study, we chose high wall
319	filter in order to achieve high reliability by sacrificing the sensitivity of PD imaging.
320	Difference in absorption spectra of oxygenated- and deoxygenated-hemoglobin allows us
321	to probe tissue oxygen level non-invasively under PA imaging. Alterations of oxygen tension
322	such as hypoxia are involved in the angiogenesis, inflammation, oxidative damages and
323	apoptosis process during OA pathogenesis (Conaghan et al., 2005, Findlay, 2007). One case
324	report of hand OA showed PA imaging of low tissue oxygenation level in the affected finger
325	joints(Sun et al., 2011). In this study, we systemically explored the diagnostic values of PA
326	imaging for OA. We found PA-detected synovial hypoxia occurred at the advanced stage of
327	experimental OA, and positively correlated with the severity of cartilage damage and joint
328	destruction. Clinically, invasive arthroscopic approach using Licox probe is the gold standard
329	measure for synovial tissue oxygenation level (Biniecka et al., 2016, Biniecka et al., 2011, Ng
330	et al., 2010, Biniecka et al., 2010). Our study suggested a great potential of PA imaging in
331	clinical practice as an alternative approach to measure synovial hypoxia and to detect
332	arthropathy in a non-invasive manner.

333	According to PD and PA findings from the present study, the development of OA could be
334	divided into compensatory and de-compensatory stage. In the compensatory stage, the
335	synovial tissue is normoxic and has increased angiogenesis. With the progression of disease,
336	it enters the de-compensatory stage with vasoconstriction and synovial tissue hypoxia, which
337	has been proven to correlate with various arthropathies including menisci ossification,
338	osteophytosis, and also articular cartilage damages. In other words, PD and PA imaging of
339	synovial tissue vasoconstriction and hypoxia are potential biomarker candidates for
340	progressive and non-progressive OA. In contrast, we failed to detect any association between
341	PA findings of angiogenesis with the severity of OA, also the difference in PA-based vascular
342	volume between DMM and sham-operated group at 1-month after surgery. It pointed in the
343	research direction that vascular function, rather than vascular volume, played a pivotal role in
344	the progression of OA.
345	In summary, our pilot study demonstrated that PA imaging allows detection of synovial
346	tissue hypoxia in DMM-induced experimental OA. A longitudinal study is much needed to
347	explore whether PA-detected synovial tissue hypoxia is a robust imaging biomarker for the
348	non-progressive and progressive OA.

349 Acknowledgments

350	Authors would like to acknowledge the support from Hong Kong Health and Medical
351	Research Fund Research Fellowship Scheme (Ref No. #01150087), Hong Kong Polytechnic
352	University Start-Up Research Grants (G-YBRR, G-UA7M, 1-ZVG2, 1-ZE86) and Hong
353	Kong Research Grant Council General Research Fund (HKU-M17105314).
354	Author contributions
355	All authors were involved in drafting the article or revising it critically for important
356	intellectual content, and all authors approved the final version to be published. Dr. WEN and
357	Dr. RONG had full access to all of the data in the study and take responsibility for the
358	integrity of the data and the accuracy of the data analysis.
359	Study conception and design: WEN, RONG, LIU, SUN, Lai and ZHENG.
360	Acquisition of data: ZY LIU, MT AU, X WANG, and YP ZHENG.
361	Manuscript revision and data reanalysis: PMB CHAN, L SUN and P Lai
362	Interpretation of data: all authors.
363	Competing interests
364	The authors have declared that no competing interests exist.

365 References

- 366 ATUKORALA, I., KWOH, C. K., GUERMAZI, A., ROEMER, F. W., BOUDREAU, R. M.,
- 367 HANNON, M. J. & HUNTER, D. J. 2016. Synovitis in knee osteoarthritis: a
 368 precursor of disease? *Ann Rheum Dis*, 75, 390-5.
- 369 BHAT, V., OLMER, M., JOSHI, S., DURDEN, D. L., CRAMER, T. J., BARNES, R. F.,
- 370 BALL, S. T., HUGHES, T. H., SILVA, M., LUCK, J. V., MOORE, R. E., MOSNIER,
- L. O. & VON DRYGALSKI, A. 2015. Vascular remodeling underlies rebleeding in
 hemophilic arthropathy. *Am J Hematol*, 90, 1027-35.
- 373 BINIECKA, M., CANAVAN, M., MCGARRY, T., GAO, W., MCCORMICK, J., CREGAN,
- S., GALLAGHER, L., SMITH, T., PHELAN, J. J., RYAN, J., O'SULLIVAN, J., NG,
 C. T., VEALE, D. J. & FEARON, U. 2016. Dysregulated bioenergetics: a key
- 376 regulator of joint inflammation. *Ann Rheum Dis*, 75, 2192-2200.
- BINIECKA, M., FOX, E., GAO, W., NG, C. T., VEALE, D. J., FEARON, U. &
 O'SULLIVAN, J. 2011. Hypoxia induces mitochondrial mutagenesis and dysfunction
 in inflammatory arthritis. *Arthritis Rheum*, 63, 2172-82.
- BINIECKA, M., KENNEDY, A., FEARON, U., NG, C. T., VEALE, D. J. & O'SULLIVAN, J.
 N. 2010. Oxidative damage in synovial tissue is associated with in vivo hypoxic status
- in the arthritic joint. *Ann Rheum Dis*, 69, 1172-8.
- 383 CHEUNG, W. H., SUN, M. H., ZHENG, Y. P., CHU, W. C., LEUNG, A. H., QIN, L., WEI, F.
- Y. & LEUNG, K. S. 2012. Stimulated angiogenesis for fracture healing augmented by
 low-magnitude, high-frequency vibration in a rat model-evaluation of pulsed-wave
 doppler, 3-D power Doppler ultrasonography and micro-CT microangiography. *Ultrasound Med Biol*, 38, 2120-9.
- CLAVEL, G., MARCHIOL-FOURNIGAULT, C., RENAULT, G., BOISSIER, M. C.,
 FRADELIZI, D. & BESSIS, N. 2008. Ultrasound and Doppler micro-imaging in a
 model of rheumatoid arthritis in mice. *Ann Rheum Dis*, 67, 1765-72.
- 391 CONAGHAN, P. G., FELSON, D., GOLD, G., LOHMANDER, S., TOTTERMAN, S. &
- ALTMAN, R. 2006. MRI and non-cartilaginous structures in knee osteoarthritis. *Osteoarthritis Cartilage*, 14 Suppl A, A87-94.
- 394 CONAGHAN, P. G., VANHARANTA, H. & DIEPPE, P. A. 2005. Is progressive
 395 osteoarthritis an atheromatous vascular disease? *Ann Rheum Dis*, 64, 1539-41.
- 396 FINDLAY, D. M. 2007. Vascular pathology and osteoarthritis. Rheumatology (Oxford), 46,

397 1763-8.

- 398 FUCHS, K., KUEHN, A., MAHLING, M., GUENTHOER, P., HECTOR, A., SCHWENCK,
- 399 J., HARTL, D., LAUFER, S., KOHLHOFER, U., QUINTANILLA-MARTINEZ, L.,
- 400 REISCHL, G., ROCKEN, M., PICHLER, B. J. & KNEILLING, M. 2017. In Vivo
- 401 Hypoxia PET Imaging Quantifies the Severity of Arthritic Joint Inflammation in Line
- with Overexpression of Hypoxia-Inducible Factor and Enhanced Reactive Oxygen
 Species Generation. *J Nucl Med*, 58, 853-860.
- GLASSON, S. S., BLANCHET, T. J. & MORRIS, E. A. 2007. The surgical destabilization of
 the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. *Osteoarthritis Cartilage*, 15, 1061-9.
- GLASSON, S. S., CHAMBERS, M. G., VAN DEN BERG, W. B. & LITTLE, C. B. 2010.
 The OARSI histopathology initiative recommendations for histological assessments
 of osteoarthritis in the mouse. *Osteoarthritis Cartilage*, 18 Suppl 3, S17-23.
- 410 GUERMAZI, A., ROEMER, F. W., HAYASHI, D., CREMA, M. D., NIU, J., ZHANG, Y.,
- MARRA, M. D., KATUR, A., LYNCH, J. A., EL-KHOURY, G. Y., BAKER, K.,
 HUGHES, L. B., NEVITT, M. C. & FELSON, D. T. 2011. Assessment of synovitis
 with contrast-enhanced MRI using a whole-joint semiquantitative scoring system in
 people with, or at high risk of, knee osteoarthritis: the MOST study. *Ann Rheum Dis*,
 70, 805-11.
- HORVATH, A., TEKUS, V., BOROS, M., POZSGAI, G., BOTZ, B., BORBELY, E.,
 SZOLCSANYI, J., PINTER, E. & HELYES, Z. 2016. Transient receptor potential
 ankyrin 1 (TRPA1) receptor is involved in chronic arthritis: in vivo study using
 TRPA1-deficient mice. *Arthritis Res Ther*, 18, 6.
- 420 KAMEKURA, S., HOSHI, K., SHIMOAKA, T., CHUNG, U., CHIKUDA, H., YAMADA, T.,
 421 UCHIDA, M., OGATA, N., SEICHI, A., NAKAMURA, K. & KAWAGUCHI, H.
 422 2005. Osteoarthritis development in novel experimental mouse models induced by
- 423 knee joint instability. *Osteoarthritis Cartilage*, 13, 632-41.
- 424 KORNAAT, P. R., BLOEM, J. L., CEULEMANS, R. Y., RIYAZI, N., ROSENDAAL, F. R.,
 425 NELISSEN, R. G., CARTER, W. O., HELLIO LE GRAVERAND, M. P. &
 426 KLOPPENBURG, M. 2006. Osteoarthritis of the knee: association between clinical
 427 features and MR imaging findings. *Radiology*, 239, 811-7.
- MATHIESSEN, A. & CONAGHAN, P. G. 2017. Synovitis in osteoarthritis: current
 understanding with therapeutic implications. *Arthritis Res Ther*, 19, 18.

- NG, C. T., BINIECKA, M., KENNEDY, A., MCCORMICK, J., FITZGERALD, O.,
 BRESNIHAN, B., BUGGY, D., TAYLOR, C. T., O'SULLIVAN, J., FEARON, U. &
 VEALE, D. J. 2010. Synovial tissue hypoxia and inflammation in vivo. *Ann Rheum Dis*, 69, 1389-95.
- ROEMER, F. W., GUERMAZI, A., FELSON, D. T., NIU, J., NEVITT, M. C., CREMA, M.
 D., LYNCH, J. A., LEWIS, C. E., TORNER, J. & ZHANG, Y. 2011. Presence of
 MRI-detected joint effusion and synovitis increases the risk of cartilage loss in knees
 without osteoarthritis at 30-month follow-up: the MOST study. *Ann Rheum Dis*, 70,
- 438 1804-9.
- 439 SCANZELLO, C. R., MCKEON, B., SWAIM, B. H., DICARLO, E., ASOMUGHA, E. U.,
- KANDA, V., NAIR, A., LEE, D. M., RICHMOND, J. C., KATZ, J. N., CROW, M. K.
 & GOLDRING, S. R. 2011. Synovial inflammation in patients undergoing
 arthroscopic meniscectomy: molecular characterization and relationship to symptoms. *Arthritis Rheum*, 63, 391-400.
- SIN, A., TANG, W., WEN, C. Y., CHUNG, S. K. & CHIU, K. Y. 2015. The emerging role of
 endothelin-1 in the pathogenesis of subchondral bone disturbance and osteoarthritis. *Osteoarthritis Cartilage*, 23, 516-24.
- SUN, M. H., LEUNG, K. S., ZHENG, Y. P., HUANG, Y. P., WANG, L. K., QIN, L., LEUNG,
 A. H., CHOW, S. K. & CHEUNG, W. H. 2012. Three-dimensional high frequency
 power Doppler ultrasonography for the assessment of microvasculature during
 fracture healing in a rat model. *J Orthop Res*, 30, 137-43.
- SUN, Y., SOBEL, E. S. & JIANG, H. 2011. First assessment of three-dimensional
 quantitative photoacoustic tomography for in vivo detection of osteoarthritis in the
 finger joints. *Med Phys*, 38, 4009-17.
- TANG, J., XI, L., ZHOU, J., HUANG, H., ZHANG, T., CARNEY, P. R. & JIANG, H. 2015.
 Noninvasive high-speed photoacoustic tomography of cerebral hemodynamics in awake-moving rats. *J Cereb Blood Flow Metab*, 35, 1224-32.
- 457 TOI, M., ASAO, Y., MATSUMOTO, Y., SEKIGUCHI, H., YOSHIKAWA, A., TAKADA, M.,
- 458 KATAOKA, M., ENDO, T., KAWAGUCHI-SAKITA, N., KAWASHIMA, M.,
- 459 FAKHREJAHANI, E., KANAO, S., YAMAGA, I., NAKAYAMA, Y., TOKIWA, M.,
- TORII, M., YAGI, T., SAKURAI, T., TOGASHI, K. & SHIINA, T. 2017.
 Visualization of tumor-related blood vessels in human breast by photoacoustic
 imaging system with a hemispherical detector array. *Sci Rep*, 7, 41970.

- WANG, L. V. & HU, S. 2012. Photoacoustic tomography: in vivo imaging from organelles to
 organs. *Science*, 335, 1458-62.
- WEN, C., LU, W. W. & CHIU, K. 2014. Importance of subchondral bone in the pathogenesis
 and management of osteoarthritis from bench to bed. *Journal of Orthopaedic Translation*, 2, 16-25.
- WILSON, K. E., BACHAWAL, S. V., TIAN, L. & WILLMANN, J. K. 2014.
 Multiparametric spectroscopic photoacoustic imaging of breast cancer development in a transgenic mouse model. *Theranostics*, 4, 1062-71.
- XIAO, J. & HE, J. 2010. Multispectral quantitative photoacoustic imaging of osteoarthritis in
 finger joints. *Appl Opt*, 49, 5721-7.
- XIAO, J., YAO, L., SUN, Y., SOBEL, E. S., HE, J. & JIANG, H. 2010. Quantitative
 two-dimensional photoacoustic tomography of osteoarthritis in the finger joints. *Opt Express*, 18, 14359-65.
- XIE, L., LIN, A. S., KUNDU, K., LEVENSTON, M. E., MURTHY, N. & GULDBERG, R. E.
 2012. Quantitative imaging of cartilage and bone morphology, reactive oxygen
 species, and vascularization in a rodent model of osteoarthritis. *Arthritis Rheum*, 64,
 1899-908.
- XU, H., BOUTA, E. M., WOOD, R. W., SCHWARZ, E. M., WANG, Y. & XING, L. 2017.
 Utilization of longitudinal ultrasound to quantify joint soft-tissue changes in a mouse
 model of posttraumatic osteoarthritis. *Bone Res*, 5, 17012.
- ZHAO, Z., LI, E., CAO, Q., SUN, J. & MA, B. 2016. Endothelin-1 concentrations are
 correlated with the severity of knee osteoarthritis. *J Investig Med*, 64, 872-4.
- ZHEN, G., WEN, C., JIA, X., LI, Y., CRANE, J. L., MEARS, S. C., ASKIN, F. B.,
 FRASSICA, F. J., CHANG, W., YAO, J., CARRINO, J. A., COSGAREA, A.,
 ARTEMOV, D., CHEN, Q., ZHAO, Z., ZHOU, X., RILEY, L., SPONSELLER, P.,
 WAN, M., LU, W. W. & CAO, X. 2013. Inhibition of TGF-beta signaling in
 mesenchymal stem cells of subchondral bone attenuates osteoarthritis. *Nat Med*, 19,
 704-12.
- ZINN, K. R., CHAUDHURI, T. R., SMYTH, C. A., WU, Q., LIU, H. G., FLECK, M.,
 MOUNTZ, J. D. & MOUNTZ, J. M. 1999. Specific targeting of activated
 endothelium in rat adjuvant arthritis with a 99mTc-radiolabeled E-selectin-binding
 peptide. *Arthritis Rheum*, 42, 641-9.