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Abstract—Recently proposed distributed anti-flocking algo-
rithms have enabled mobile sensor networks (MSNs) to deliver
impressive area coverage performances. However, due to lack of
information about each other’s traverse history, mobile sensor
nodes tend to travel extra distances to achieve 100% cumulative
area coverage. Inspired by the territorial marking behaviour of
solitary animals, this paper proposes a new information map and
map updating methods for anti-flocking controlled MSNs. The
proposed territorial marking anti-flocking control enables MSNs
to achieve improved area coverage performances by encouraging
nodes to remain in a part of the terrain. According to the results
provided in this paper, the proposed algorithm can be more
energy efficient for MSNs in continues monitoring applications.

Index Terms—Mobile sensor networks, territorial marking,
anti-flocking, area coverage, distributed control

I. INTRODUCTION

Mobile sensor networks (MSN) are preferred over tradi-

tional wireless sensor networks in monitoring remote and

hostile environments due to the added mobility which endorses

them with the capabilities to perform self-deploying, self-

organizing, and dynamic area coverage [1]–[3]. However,

efficient motion control of MSNs are challenging due to

the scale of networks and dynamic nature of environments.

In monitoring applications, motions of mobile sensor nodes

need to be controlled in such a way that they can maximize

the area coverage collectively by minimizing overlaps and

revisits. Many existing works [4]–[6] achieve dynamic area

coverage by using fully coordinated motion control algorithms.

However, the success of such algorithms heavily depends on

task allocation and execution accuracies. Furthermore, they

can be highly sensitive to initial conditions that cannot be

guaranteed due to dynamic and uncertain nature of the outdoor

environments, noisy sensors, and hardware malfunctions.

Recently, emergent motion control algorithms have been a

popular choice for MSN motion control as they do not depend

on prior task allocations and initial conditions [7]–[10]. Such

algorithms unveils the true potential of MSNs by enabling their

self-organizing and self-deploying capabilities. As a result,

MSNs controlled by emergent motion control algorithms are

more robust to sudden node removals, additions, and mal-

functions. As a class of emergent motion control algorithms,

anti-flocking algorithms have been proposed for enhancing the

dynamic area coverage of an MSN in an area of interest (AoI).

Miao et al. [7] first introduced rules of anti-flocking control

inspired by the behavior of solitary animals to avoid collisions

and maximize the area coverage. Later, Ganganath et al. [8],

[10] proposed several fully distributed anti-flocking algorithms

for mobile sensor networks using information maps.

Solitary animals stay away from their own species in

many daily activities other than mating or caring of their

offspring [7], [11]. Solitary animals usually forage solely to

avoid sharing with others, thus maximize their chances of

securing more foods. This selfish behavior has inspired anti-

flocking controls of MSNs to achieve efficient area coverage

performances by separating nodes from each other. Some of

the solitary animals such as cheetahs and tigers use a strategy

called territorial marking to identify their territories. It is

also called as scent marking as it is mostly completed by

depositing strong-smelling substances from dedicated scent

glands, urine, or faeces [12]. Information maps has been used

in anti-flocking-controlled MSNs to minimize the overlapping

in explored areas [10]. However, as shown in Fig. 1, mobile

nodes still tend to move in every part of an AoI to achieve

complete area coverage which is contrary to efficient solitary

animal behaviors. This results in mobile nodes having to

traverse longer paths, thus spending more energy.

Inspired by the territorial marking behavior and efficient

search strategies of solitary animals, a new type of information

map, its corresponding updating process, and methods of

using the new information map for improving area coverage

performances are proposed in this paper. These proposals

are incorporated with the distributed anti-flocking algorithm

proposed in [10]. This new territorial marking anti-flocking

control algorithm enables MSNs to achieve better area cov-

erage performances compared to other existing anti-flocking

algorithms. Moreover, this new algorithm remains to be fully

distributed control and preserves three basic properties of anti-

flocking control, i.e. collision avoidance, de-centering, and

selfishness [7].

The rest of the paper is organized as follows. Section

II briefly reviews the anti-flocking algorithm proposed in

[10]. The territorial marking inspired information maps, their

updating process, and the calculation process of selfishness

goal locations are introduced in Section III. Section IV reports

a simulation study to evaluate area coverage performances.

Concluding remarks are given in Section V.
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II. DISTRIBUTED ANTI-FLOCKING CONTROL

The distributed anti-flocking algorithm with obstacle avoid-

ance capabilities proposed in [10] is briefly reviewed here as

the proposed territorial marking anti-flocking algorithm has

been developed upon it. Consider an MSN with a set of N
identical mobile sensor nodes. All nodes are assumed to carry

isotropic radial sensors of range rs > 0 and communication

modules of range rc > 2rs. The MSN is modelled as a multi-

agent system in which a set of α-agents Vα = {1, 2, . . . , N}
represents mobile sensor nodes. Moreover, obstacles in the AoI

and selfishness goals of α-agents are represented by β- and

γ-agents, respectively. The position and velocity of an α-agent

i at time t are denoted by qi and pi, respectively. The control

input of α-agent i is given by

ui = f ci + fdi + fsi , (1)

where f ci , fdi , and fsi respectively represent the collision

avoidance term, de-centering term, and selfishness term.

In (1), the collision avoidance term is defined as

f ci = hif̄
c
i ,

which is used to avoid collisions between α- and β-agents. A

binary function hi is defined as

hi =

{
1, if cos−1

(
f̄c
i ·pi

‖f̄c
i
‖‖pi‖

)
> π/2,

0, otherwise,

and f̄ ci is defined as

f̄ ci = −∇qi




∑

k∈Nβ

i

ψ(‖qβk − qi‖, dβ)


 .

Here, N β
i is a set of β-neighbors of α-agent i, qβk is the

position of β-agent k at time t, and dβ is the minimum

desired distance gap between α- and β-agents. A nonnegative

repulsive pairwise potential function is given by

ψ(z, d) =

{
κp

[
1 + cos

(
π(z+d)

2d

)]
, if z ∈ [0, d],

0, otherwise,

where κp is a positive constant.

In (1), the de-centering term is defined as

fdi = −∇qi




∑

j∈Nα
i

ψ(‖qj − qi‖, dα)


 ,

where Nα
i is a set of α-neighbors of α-agent i at time t. The

minimum desired distance gap between α-agents is denoted

by dα.

In (1), the selfishness term is defined as

fsi = κs(q
γ
i − qi)− κvpi,

where κs and κv are positive constants. Here, qγi is the position

of a γ-agent of α-agent i at time t. The positions of γ-agents

have a direct impact on the area coverage performances as

they help to drive α-agents in the AoI. Thus, the positions

of γ-agents need to be carefully calculated to improve area

coverage performances.
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Fig. 1. Motion patterns of 5 mobile sensor nodes (α-agents) controlled by
the distributed anti-flocking algorithm proposed in [10]. Circles, squares, and
hexagons denote α-, β- and γ-agents, respectively. Arrowheads and curved
trails represent moving directions and path history of α-agents during a full
scan of the AoI. A connection between two connected α-agents is represented
using a red colored straight line.

III. TERRITORIAL MARKING FOR DISTRIBUTED

ANTI-FLOCKING CONTROL

A. Territorial Marking Inspired Information Maps

It is assumed that each α-agent carries its own information

map which consists of the sensing history of an AoI. For the

ease of representation, the AoI is first discretized into a set

of square cells as shown in Fig. 2. Let the center coordinates

of all cells be denoted by a set X and the local information

map of α-agent i be denoted by mi. Thereon, mi(x) carries

two pieces of information about the cell centered at x ∈ X:

1) when the cell was last visited and 2) who visited it.

At time t = 0, all local information maps are set to their

default values such that

mi(x) = [0, i],

for all i ∈ Vα and for all x ∈ X . As time evolves and α-

agents keep moving in the AoI, all local information maps are

updated such that

mi(x) = [t, i],

if ‖x − qi‖ < rs for all i ∈ Vα and for all x ∈ X at time

t > 0.

Apart from updating local information maps with their

sensing history, α-agents exchange their information maps as

they communicate with other α-agents. Suppose α-agent i is

connected with α-agent j at time t, i.e. ‖qi − qj‖ < rc. Then

α-agent i receives the local information map of α-agent j and

updates its local information map based on the information

maps of both the agents as below:

Step 1. For any x ∈ X , set mi(x) = mj(x) if mj(x) carries

more recent information compared to those of mi(x).
Step 2. Find a subset X ′ ⊂ X such that mi(x

′) = [t′, i] and

mj(x
′) = [t′, j] for time t′ ≤ t and for all x′ ∈ X ′.

Step 3. For all x′ ∈ X ′, set mi(x
′) = [t′, i] if ‖x′ − qi‖ ≤

‖x′ − qj‖ and mi(x
′) = [t′, j] otherwise.

Similarly, α-agent j receives the local information map of α-

agent i and updates its local information map based on both
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Fig. 2. An example for a discretized AoI. The red color triangle represents
an α-agent and the red color circle around it represents its sensing coverage.
Black dots represent the center points of each cell of the discretized AoI. If
the center point of a cell is under the sensing coverage of an α-agent, the
corresponding cell is considered as being covered by that α-agent. Hence, in
this illustration, the gray colored cells are covered, but not the white colored
cells.

information maps. Step 1 ensures that both information maps

carry latest information. The rest of the steps focus on the areas

that have visited by both agents at the same time. Those areas

are allocated according to the current proximity of α-agents.

Direct exchanges of information maps lead to indirect com-

munication of α-agents’ sensing history. Assume that α-agent

i connects with α-agent j and later α-agent i connects with

α-agent k. Even though α-agent k has never communicated

with α-agent j before, α-agent k may still receive a part of

the sensing history of α-agent j via the information map of α-

agent i. Such indirect communication makes the information

spreading faster throughout an MSN.

B. Calculation of γ-Agent Positions

The territorial marking inspired information maps are used

to calculate the positions of γ-agents. Let δ(t,mi(x)) be the

elapsed time since the cell centered at x has been last covered

by an α-agent according to the information map mi of α-agent

i. To calculate qγi , mi is first evaluated using

ξi(mi, x, t) = δ
(
t,mi(x)

)(
ρ+ (1− ρ)λi(x)

)
.

Here, 0 < ρ < 1 and λi(x) is given as

λi(x) = exp{−σ1(‖qi − x‖+ dv)− σ2‖q
γ
i − x‖},

where σ1 and σ2 are positive constants. A virtual distance dv

is equal to 0 if the cell centered at x has been last marked by

α-agent i according to mi, otherwise it is equal to a positive

constant. Here, dv is used to discourage α-agents to visit other

α-agents’ territories by virtually increasing distance to them.

α-agents should visit the locations that have the highest values

of ξ(x, t) first. Hence, qγi (t+ 1) is selected as

qγi (t+ 1) = argmax
x∈X̃i

ξi(mi, x, t),

where X̃i = {x|x ∈ X, ‖x − qj‖ ≥ ‖x − qi‖ > rs, j ∈ Nα
i }

[10]. Three recalculation criteria for qγi were introduced in

[10] and they have been adopted in the proposed anti-flocking

algorithm without any changes.
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Fig. 3. Motion patterns of 5 α-agents controlled by the proposed territorial
marking anti-flocking control algorithm. All settings remained same as the
experiment reported in Fig. 1

C. Basic Properties of Proposed Algorithm

The proposed territorial marking anti-flocking algorithm

encourages α-agents to first mark its territory and then confine

itself to the marked territory in the subsequent searches.

However, if some cells are left out for a considerable time

period by a marked α-agent, nearby α-agents tend to cover

and remark those areas to avoid coverage holes. Furthermore,

α-agents tend to cover areas marked by other α-agents if they

are not aware of the recent sensory information of those areas

due to lack of communication with other α-agents. In order

to illustrate these properties, the experiment reported in Fig. 1

was reconducted using the proposed territorial marking anti-

flocking algorithm and results are illustrated in Fig. 3. The

results reported in Fig. 3 also illustrate the obstacle avoidance

capabilities of the proposed algorithm.

IV. AREA COVERAGE EVALUATIONS

A. Simulation Set-up

To further evaluate area coverage performances of the

proposed algorithm against existing distributed anti-flocking

algorithms [8], [10], extensive simulations were carried out

using MATLAB on a computer with Intel Core i5-6200U CPU,

16GB of RAM, and Microsoft Windows 10.

In the simulation study, a square obstacle-free AoI with an

area of 1600 m2 was considered. The AoI was discretized into

0.5× 0.5 m2 cells to create its information map. Initially, α-

agents were assumed to be distributed uniformly at random

in the AoI. Their initial velocities were picked uniformly

at random from the box [−1, 1]2 ms−1. Throughout all the

simulations, following parameters remained same: rs = 5 m,

rc = 15 m, dv ∈ {0, 20} m, κp = 15, κs = 0.1, κv = 0.6,

ρ = 0.2, σ1 = 0.04, σ2 = 0.01, dα = 9 m, and dβ = 4.5 m.

B. Simulation Results

The first set of simulations was conducted to investigate

the average distance travelled by α-agents to achieve 100%

cumulative area coverage, i.e. a full scan. The simulation

results are illustrated in Fig. 4. According to the results, the

algorithm proposed in [10] outperforms the other algorithms

by maneuvering α-agents to travel shorter distances for the
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Fig. 4. Average distance travelled by an α-agent in MSNs of size 5 to
complete a full scan versus the number of completed full scans. All data
points were obtained by averaging results from 1000 simulations.

first full scan. As expected, α-agents controlled by the pro-

posed algorithm travelled longer distances initially to mark

their territories. However, in subsequent full scans, α-agents

controlled by the proposed algorithm travelled considerably

shorter distances to achieve a full scan. For the 10th full scan,

an α-agent controlled by the proposed algorithm travelled

nearly 75% and 54% of the average distances travelled by α-

agents controlled by the algorithms proposed in [10] and [8],

respectively. MSNs controlled by the proposed algorithm can

be more energy saving in continuous monitoring applications.

The second set of simulations was conducted to evaluate

instantaneous area coverage performances of the algorithms

under test. The simulation results are illustrated in Fig. 5.

According to the results, the algorithms proposed in this paper

and [10] outperform the algorithm proposed in [8] in terms

of instantaneous area coverage. The former two algorithms

performed almost the same for small-scale networks. However,

the proposed algorithm delivered better performances com-

pared the algorithm in [10] as the network size increased.

This is due to the sensory coverage overlap minimization

capabilities of the proposed algorithm.

V. CONCLUSION

A new distributed anti-flocking algorithm with territorial

marking capabilities is proposed for MSNs. The main con-

tributions of the proposed algorithms are the territorial mark-

ing inspired information maps, a map updating process, and

methods of using the new information map for improving area

coverage performances. Territorial marking helps MSNs to

minimize overlaps of sensory coverage of individual sensors.

The proposed algorithm has enabled MSNs to achieve better

area coverage performances compared to some existing dis-

tributed anti-flocking algorithms. The proposed algorithm can

be more beneficial for large-scale MSNs utilized in continues

monitoring operations.
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ACKNOWLEDGMENT

This work is supported by the Department of Electronic

and Information Engineering, the Hong Kong Polytechnic

University (Projects RUWM and G-YBXK).

REFERENCES

[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”
Computer networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[2] X. Wang, X. Lin, Q. Wang, and W. Luan, “Mobility increases the con-
nectivity of wireless networks,” IEEE/ACM Transactions on Networking

(TON), vol. 21, no. 2, pp. 440–454, 2013.
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