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Abstract—Ant colony optimization (ACO) algorithms have
been widely adopted in solving combinatorial problems, like the
traveling salesman problem (TSP). Nevertheless, with a proper
transformation to TSP, ACO is capable of solving undirected
rural postman problems (URPP) as well. In fact, nozzle path
planning problems in 3D printing can be represented as URPP.
Therefore, in this work, ACO is utilized as a URPP solver to
accelerate the printing process in fused deposition modeling
applications. Furthermore, mechanisms which exploit unique
properties in 3D models are proposed to further extend the ACO
in the above optimization process. These mechanisms are capable
of accelerating ACO by adaptively adjusting its number of
iterations on-the-fly. Simulation results using real-life 3D models
show that the proposed extensions can accelerate ACO without
affecting the quality of its solutions significantly.

Index Terms—Ant colony optimization, Additive manufactur-
ing, 3D printing, Undirected rural postman problem

I. INTRODUCTION

Additive manufacturing is the terminology refers to the
fabrication of 3D models by depositing materials in a layer
by layer manner. A typical example of additive manufacturing
is fused deposition modeling (FDM) which is more widely
known as 3D printing. To print a computer-aided design
(CAD) model, the model is first sliced into multiple thin layers
using a slicer software. In each layer, the model is represented
using large volumes of print segments. The segments are
then converted into control codes by the slicer. A 3D printer
is then instructed to perform the corresponding machining
motions according to the control codes. When the nozzle
traverses a print segment, its extruder injects filament toward
the reservoir of the nozzle and causes the molten filament to be
deposited to the desired location on a print bed. The printing
nozzle traverses to the next print segments and repeats the
process until all print segments on the current layer have been
deposited. The print bed is then descended and the printing
process of the next layer proceeds by depositing material on
top of the layers underneath additively.

The build time of a model mainly comprises the time
spent on depositing print segments and maneuvering a nozzle
between segments known as transitions. The time spent on
depositing material is restricted by the specifications of a
3D printer, such as its filament flow rate and the rating of
its heating element. However, the time spent on traversing
between print segments can be shortened by carefully planning
the path of the nozzle. In this work, the routing problem

of the printing nozzle is formulated as an undirected rural
postman problem (URPP) [1]. Given a set of edges E (i.e.
print segments and transitions) and a set of required edges
Er ∈ E (i.e. print segments only), the objective is to find a
fast path that traverses all Er at least once. URPP is proven
to be NP-hard if the subgraph induced by the required edges
are not connected [2].

Researches have been carried out to improve the perfor-
mance of 3D printing applications in many different aspects.
Wang et al. [3] studied the visual quality of printed objects.
They proposed an adaptive slicing scheme which is able
to adjust layer thickness according to the structures of 3D
models. They showed that the corresponding build time can
be reduced by using their method while a high visual quality
can still be preserved. Ezair et al. [4] studied the generation of
supporting structures in 3D printing. In order to minimize the
amount of materials used to form the supporting structures,
they proposed an algorithm which can select an appropriate
orientation according to the model to be built. In [5], Fok et
al. proposed a print plan optimizer based on a deterministic
method by which sub-optimum solutions were obtained with a
reasonable computational cost. Recently, they formulated the
nozzle path planning problem in 3D printing applications into
a URPP [6]. They modified an existing URPP solver which
successfully shorten the build time by eliminating unnecessary
movements of the printing nozzle.

An ant colony optimization (ACO) algorithm is utilized in
this work as a path optimizer for 3D printing applications.
ACO is a nature-inspired meta-heuristic that was proposed by
Dorigo [7] and first used to solve traveling salesmen problems
(TSPs). Nowadays, ACO is applied to solve many other com-
binatorial optimization problems such as path planning and
networking problems [8]–[10]. Extensive researches have been
conducted to improve the performance of ACO. Zheng et al.
[11] proposed a parameter-adaptive strategy for ACO. In their
work, control parameters can be adjusted dynamically during
the optimization process. Mahia et al. [12] utilized a particle
swarm optimization (PSO) method to optimize the parameters
in ACO according to the quality of solutions generated by
the artificial ants. Skinderowicz [13] proposed several parallel
versions of ACO which utilized graphics processing units
(GPUs).

In this work, two mechanisms are proposed to extend ACO
for 3D printing applications. The proposed mechanisms ac-
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celerate ACO by adaptively adjusting its number of iterations
on-the-fly according to the unique properties in the given
sliced 3D models. The rest of the paper is arranged as follow.
Section II provides the problem formulation. The proposed
mechanisms are developed based on unique properties found
in 3D printing. Details of the properties and the corresponding
mechanisms are elaborated in Section III. Performances of
the extended ACO were evaluated using computer simula-
tions. Settings and discussions regarding the simulations are
presented in Section IV followed by the simulation results.
Finally, Section V concludes the whole paper.

II. PROBLEM FORMULATION

In this work, the printing nozzle path planning problem in
each layer of a sliced model is formulated as a URPP. An over-
all optimized print plan can later be obtained by connecting the
optimized paths on different layers successively. In a URPP, a
connected and undirected graph is denoted as G = (V,E). The
aim is to find a fast tour, which can visit all the required edges
Er ∈ E. Under the URPP formulation, print segments are
regarded as the required edges Er. All vertices corresponding
to edges in Er form a vertex set V . The superset E is formed
by including other edges that connecting every vertex pair in
V . The set of transitions can therefore be denoted as E \ Er.
The objective is to find a fast tour which traverses all Er on G.
Since the total time required by the printing nozzle to traverse
all the print segments in the model is a constant, during the
optimization process, only the cost associated with transitions
will be considered. In this work, a valid solution represents
a route traversing all print segments. The fitness value of a
solution is denoted as the time required for the printing nozzle
to traverse all the associated transitions on a valid solution.

A. Ant Colony Optimization
ACO has been widely used to solve TSP, which artificial

ants are used to find routes that traverse all required vertices.
Information exchanges among ants are achieved via depositing
artificial pheromone on the graph. In [14], it has been demon-
strated that ACO is also capable of solving URPP by first
transforming the problem into TSP. In this work, the printing
nozzle path planning problem is first formulated as a URPP,
then transformed to TSP, and finally optimized using ACO.

The amount of pheromone deposited on an edge is inversely
proportional to the cost of the intermediate routing solutions.
Therefore, at the end of each iteration, a pheromone matrix is
updated based on the solutions generated by the ants. Here, τi,j
represents the pheromone level on an edge (i, j), where i and
j are the two endpoints of that edge. Apart from pheromone
information, a heuristic information ηi,j , is also imposed on
edge (i, j), which is inversely proportional to the cost of
that edge. When an ant searches iteratively for a solution,
both heuristic and pheromone information are considered.
Assuming the kth ant is now at vertex i, the probability for it
to choose (i, j) in its next step is expressed as [8]

pki,j(t) =
[τi,j(t)]

α[ηi,j ]
β∑

l∈Nk
i

[τi,l(t)]α[ηi,l]β
. (1)

Here, Nk
i is a set of vertices that have valid paths with vertex

i and are not yet visited by the kth ant. The parameters α and
β are for controlling the behavior of the ants. A detail study
on the selection of α and β can be found in [12].

To avoid local optimum points and premature convergences,
an operation called evaporation is used in ACO. It reduces
pheromone concentrations of all edges proportionally at the
end of each iteration. Therefore, at the end of the tth iteration,
the pheromone level τi,j on the edge (i, j) is updated as

τi,j(t+ 1) = (1− ρ)τi,j(t) +

m∑
k=1

∆τki,j(t).

Here, m denotes the number of ants utilized in the ACO.
Nevertheless, ∆τki,j(t) represents the amount of pheromone
deposits by the kth ant on edge (i, j) in the tth iteration. The
pheromone evaporation rate is controlled by ρ ∈ (0, 1). While
the search process continues iteratively, pheromone on edges
included in poor solutions will receive significant evaporation
and will be eliminated in long run.

III. PROPOSED METHOD

In this paper, ACO is used to optimize print plans of 3D
models by reducing their corresponding total transition length
such that their build times can be shortened. An extended ACO
is proposed in this work, specifically for 3D printing applica-
tions, which exploits unique properties in typical sliced 3D
models. In this section, the properties and the corresponding
mechanisms are introduced.

As mentioned before, a CAD model is first decomposed
into many thin layers. In order to print the model with high
visual quality, accuracy, and fidelity, layers have to be thin.
As an example, the commercial slicing software in [15] has
its default layer thickness equals 0.1 mm. Thinner layers are
sometimes required to build models with finer details. Under
such conditions, any two adjacent layers of a sliced model
usually share similar structures as the shape of a 3D model
normally changes gradually. Figs. 1(a) and 1(b) illustrate two
adjacent layers of a model “TortureTestV2” [16].

According to Figs. 1(a) and 1(b), it can be observed that
locations and orientations of print segments on these two
adjacent layers are quite similar. Shapes in the two layers are
highly comparable except the orientations of some infilling
lines. The proposed method utilizes this property, which adja-
cent layers usually have similar structures, to extend generic
ACO for optimizing print plans.

To ease reading, some terminologies used in this work are
introduced as follows. In ACO, ants search iteratively for
a fast route for the nozzle to traverse all print segments.
The number of iterations to be executed, namely Nite, is
a tuning parameter which is defined by the user and its
value is normally fixed throughout the whole optimization
process. ACO uses a stochastic mechanism to search for
improvements. It is possible that no further improvement can
be found in some of the iterations. For convenience, the term
effective iteration is introduced in this paper to indicate an
iteration in which possible improvements can be found. When
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Fig. 1: Illustrations showing (a) the 16th layer, (b) the 17th layer, (c) the 18th layer, and (d) the highlighted CAD of the same
model “TortureTestV2” [16] for which the surface formed on the 17th layer is indicated on the CAD.

optimizing the print plan of a sliced model using ACO, the
total number of effective iterations on its ith layer is expressed
as N i

eff ∈ [0, Nite].
Empirical studies were conducted on different 3D models

to investigate the number of effective iterations across layers,
which suggested that N i

eff approximates to N
(i−1)
eff for most

of the layers among the models under test. Furthermore, the
results also showed that ACO usually cannot achieve further
improvement on the ith layer when N i

eff > N
(i−1)
eff . One

possible reason is that the (i − 1)th and the ith layers are
normally very alike, thus ACO requires similar numbers of
iterations to explore the searching spaces. In this work, the
proposed method utilizes the above properties to adaptively
adjust the number of iterations in ACO utilized in the opti-
mization processes.

Nevertheless, there are some exceptional cases that cause
N i

eff to differ from N
(i−1)
eff significantly. When comparing the

17th and the 18th layers of the model “TortureTestV2”, which
are shown in Figs. 1(b) and Fig. 1(c) respectively, it can
observed that they have relatively high deviations in terms
of volume and density of print segments. These two layers
have significantly different structures as some print segments
on the 17th layer are used for constructing part of the model’s
surface, which is indicated by the red arrow in Fig. 1(d). Since
no print segments will be deposited on top of the surface
region on the 17th layer, as a result, N17

eff differs from N18
eff

significantly. To make the optimization process more efficient
and effective, the numbers of iterations required for these
two layers should, therefore, be different. In this work, two
mechanisms are proposed to adjust the number of iterations
of each layer adaptively which are elaborated as follows.

A. Early Termination Mechanism

As mentioned before, two adjacent layers usually have
similar structures. Therefore it can be expected that N i

eff and
N

(i−1)
eff are similar. In the first mechanism, when ACO is opti-

mizing the ith layer, if the current number of effective iterations
is greater than that of the (i− 1)th layer, i.e. N (i−1)

eff > N i
eff, it

is very likely that no more improvement can be found in the
next iteration, and therefore, the optimization process on the
current layer will be terminated. On the contrary, it is possible

for two adjacent layers to have the different structures. To
address these exceptional cases, even when N i

eff > N
(i−1)
eff , if

an improvement is recorded in the current iteration, the opti-
mization process will continue until no further improvements
can be found or some stopping criteria have been reached.
The stopping criteria and the corresponding mechanism are
explained in the next section.

B. Reallocation of Truncated Iterations

If the optimization process on the ith layer terminated
early, i.e. N i

ite < Nite, its remaining number of iterations is
then stored in a global reserve Nres. In generic ACO, the
optimization process is terminated if the number of iterations
reaches Nite regardless of any potential improvement. In the
proposed method, the optimization process of the ith layer is
allowed to exceed Nite if it has improvement in the current
iteration and Nres > 0. Every extra iteration beyond Nite will
be compensated by those surplus iterations stored in Nres.
The rationale of such design is to have a better allocation of
iteration numbers across ACO operations in different layers
of the 3D models. Therefore, layers with lower complexities
can be terminated earlier, the surplus computational power
can then be redistributed to layers that require more extensive
searches. To give a fair comparison of the extended ACO and
generic ACO, in this work, both methods are provided with
the same Nite. Furthermore, Nres in the proposed method was
initialized to 0 at the beginning of the optimization process.

IV. SIMULATIONS

A. Simulation Settings

Simulations were performed to evaluate the performance of
the proposed ACO in speeding up 3D printing processes. In the
simulations, a commercial slicer software Cura [15] was used
to slice CAD models into layers. The slicer software generated
initial plans using its build-in greedy-based optimizer. In this
work, a filling density of 10% was used for Cura to generate
the initial print plans of the models. The methods under test
were then applied to optimize the initial print plans. To give
a fair comparison, 7 models in [16] with different unique
properties were chosen as benchmarking models.



TABLE I: ESTIMATED BUILD TIME (s) OF PRINT PLANS OBTAINED USING DIFFERENT OPTIMIZERS.

Models Cura
ACO Extended ACO

Mean Max Min SD Mean Max Min SD

3DHackerTest 6551.09 5421.05 5431.65 5412.64 5.16 5418.07 5433.83 5403.67 9.89

ctrlV 3D test 4620.90 4095.21 4115.61 4075.04 14.77 4093.67 4106.78 4076.74 8.15

Debailey x10 5263.32 4725.00 4745.07 4703.78 12.03 4725.65 4759.24 4697.79 22.73

dragon 65 tilted large 3812.74 3083.51 3099.22 3060.56 10.64 3086.78 3099.42 3076.83 7.58

testModel 2537.31 2470.38 2480.27 2461.47 6.48 2479.86 2491.55 2469.29 7.78

TortureTestV2 9951.90 8835.38 8842.75 8829.67 4.32 8835.07 8845.25 8815.06 8.77

UltimakerRobot support 2015 1829.68 1663.11 1670.60 1645.64 7.09 1664.16 1675.37 1655.34 5.05

TABLE II: POST-PROCESSING TIME (s) OF PRINT
PLANS OBTAINED USING DIFFERENT OPTIMIZERS.

Models ACO Extended ACO

3DHackerTest 465.73 456.94

ctrlV 3D test 170.73 159.12

Debailey x10 194.91 173.50

dragon 65 tilted large 211.85 199.15

testModel 27.61 24.38

TortureTestV2 221.47 204.51

UltimakerRobot support 2015 122.96 107.74

To evaluate the performance of the proposed method, a
generic ACO with a constant iteration number was also
included in the tests. Both methods were implemented on a
GPU-accelerated TSP solver [13] via a URPP to TSP trans-
formation. In both optimizers, the values of α, β, and ρ were
chosen as 1, 3, and 0.2 respectively as in [13]. Furthermore,
Nite = 100 for all the layers. While in the extended ACO, the
actual utilized number of iterations in each layer was adjusted
by the two proposed mechanisms adaptively on-the-fly.

The optimized plans were evaluated using an open-source
3D printing simulator [17]. Each method under test was used
to optimize each model 10 times to obtain the corresponding
average estimate build time and post-processing time, which
is the time required to further optimize a given print plan. The
simulations were conducted on a computer with Intel Core i7
processors, 16 GB RAM, GeForce GT 750M, Ubuntu 16.04,
and CUDA 8.0.61. Simulation results are shown in TABLE I
and TABLE II.

B. Results and Discussion

According to TABLE I, the generic ACO and the extended
ACO can always yield solutions with shorter estimated build
time when compared with those obtained from Cura. In
general, the generic ACO and the extended ACO can on
average reduce 11.56% and 11.50% of the estimated build time
respectively when comparing to the initial plan generated by
Cura.

The generic ACO and the extended ACO can reduce the
estimated build time of the model “3DHackerTest” by 17.25%
and 17.30% respectively at maximum. One possible reason is
that there is a larger number of print segments and irregular

shapes in such model when comparing with the others. There-
fore, there are more rooms for ACO to optimize the print plan.
Furthermore, the generic ACO and the extended ACO can both
deliver similar performances on reducing the estimated build
time of all the 7 models.

According to TABLE II, the extended ACO required shorter
post-processing time when compared with the generic ACO.
The proposed method required on average 8.20% less time
than that of the generic ACO. Nevertheless, the proposed
method can at maximum save 12.38% of post-processing time
comparing to the generic ACO in optimizing the model “Ul-
timakerRobot support 2015”. One possible reason is that the
structure of such model is quite uniform across its layers, such
that, the proposed method was capable to adjust the number of
iterations effectively without degrading its solution quality. On
the other hand, such improvement gap was reduced to 1.87%
for model “3DHackerTest”. As mentioned before, such model
is populated with irregular shapes. The proposed method can
still adaptively reallocate iterations across layers even when the
structures of adjacent layers are having significant deviations
by adopting the mechanism mentioned in Section III.

V. CONCLUSION

In this paper, an extended version of ACO for accelerating
3D printing applications is presented. By exploiting the unique
properties between adjacent layers in sliced CAD models,
the proposed method can adaptively adjust the number of
iterations in ACO on-the-fly. Computer simulations were con-
ducted to evaluate its performances. Simulation results show
that the proposed method can significantly accelerate both the
optimization and printing processes without compromising the
quality of solutions.
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