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Abstract

The Black-Scholes model is the golden standard for pricing derivatives and options in

the modern financial industry; however, this method imposes some parametric assump-

tions of the stochastic process and the performance of it becomes doubtful when these

assumptions are violated. This paper investigates the application of a nonparametric

method, namely the empirical likelihood method, in the study of option pricing. A block-

wise empirical likelihood procedure is proposed to deal with the dependence in the data.

Simulation and real data studies show that the new method performs reasonably well.

More importantly, it outperforms classical models developed to account for jumps and

stochastic volatility, thanks to the fact that nonparametric methods capture information

about higher order moments.

1 Introduction

Since the seminal works by Black and Scholes (1973) and Merton (1973), option valuation

methodologies have been extensively developed. The Black-Scholes model has become one of

the most well-known discoveries in finance literature, and relates the cross-sectional properties of

option prices with the underlying assets’ returns distribution. However, Rubinstein (1985)and
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Melino and Turnbull (1990) point out several limitations in the Black-Scholes model due to

strong assumptions, such as non-normality of returns, stochastic volatility (implied volatility

smile), jumps and others. Both parametric and nonparametric approaches have been proposed

to deal with these issues.

Scott (1987), Hull and White (1987), and Wiggins (1987) extend the Black and Scholes

model and allow the volatility to be stochastic. Heston (1993) develops a closed-form solution

for option pricing with the underlying asset’s volatility being stochastic. Duan (1995) proposes

a GARCH option pricing model in an attempt to explain some systematic biases associated

with the Black-Scholes model. Later, Heston and Nandi (2000) provide a closed-form solution

for option pricing with the underlying asset’s volatility following the GARCH(p,q) process.

Bates (1996), Bakshi and Cao and Chen (1997) derive an option pricing model with stochastic

volatility and jumps. Kou (2002) provides a solution to pricing the option with the double ex-

ponential jumps diffusion process. Carr and Madan (1999) introduce the fast Fourier transform

approach to option pricing given a specified characteristic function of the return, which provides

an efficient computational algorithm to calculate the option prices. For further reference, see

Duffie et al. (2000), Bakshi and Madan (2000), and Carr and Madan (2009), among others.

All these methods assume a parametric form of either the distribution of the underlying assets

returns or the characteristic function of the underlying assets returns.

Nonparametric approaches have also been proposed to capture the underlying asset and

option price data to reconstruct the structure of the diffusion process. For example, Hutchinson,

Lo, and Poggio (1994) apply the neural network techniques to price the derivatives. Ait-Sahalia

and Lo (1998) use the kernel regression to fit the state-price density implicitly in option pricing.

Ait-Sahalia (1996) proposes a nonparametric pricing estimation procedure for interest rate

derivative securities under the assumption that the unknown volatility is independent of time.

Stutzer (1996) adopts the canonical valuation method, which incorporates the non-arbitrary

principle embodied in the formula for calculating the expectation of the discounted value of

assets under the risk-neutral probability distribution.

One of the most important nonparametric methodologies is empirical likelihood (EL), which

conducts likelihood-based statistical inference by profiling a nonparametric likelihood. See

Owen (1988, 1990, 2001), DiCiccio and Romano (1989), and Hall and La Scala (1990) for
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examples. For the application of EL method to time series, see Mykland (1995), Chuang and

Chan (2002), and Ling and Chan (2006) among others. Kitamura (1997) introduced a blockwise

empirical likelihood method for a weakly dependent time series. Nordman, Sibbertsen, and

Lahiri (2007) modifiy the blockwise methods to cope with various dependence structures and

achieve better finite sample performance. Yau (2012) studies the application of EL to long-

memory time series.

In this paper, we implement the EL method to price the derivative or options under risk

neutral measures. We firstly construct an empirical probability constraint using the historical

holding period return time series observations, without assuming the distribution family of the

returns. Further, we view the derivative / option price as the parameter of interest directly in

the empirical likelihood optimization procedure. An empirical likelihood-based estimate of the

parameter (e.g. call option price) is obtained and the asymptotic properties of the EL ratio

are studied. We further introduce a blockwise empirical likelihood procedure for the weakly

dependent processes. Monte Carlo simulation and empirical results for S&P 500 index option

are discussed.

The remainder of the paper is organized as follows. Section 2 provides a detailed empirical

likelihood procedure in option pricing. Asymptotic properties are discussed and a robust con-

fidence interval is constructed. Section 3 provides some empirical performance of the empirical

likelihood option pricing including both Monte Carlo simulation and S&P 500 Index options.

Section 4 concludes the paper with discussions.

2 Empirical Likelihood in Option Pricing

Let P (t) be the underlying asset price at time t, D(t) be the future dividend at time t, r(s, t)

be the gross risk-free interest rate during time s and t with r(t, t) = 1, P be the physical prob-

ability measure, and Q be the risk-neutral probability measure (See Huang and Litzenberger

(1988)), under which the price process plus the accumulated dividends are martingales after

normalization if no arbitrage exists in the pricing systems. To be specific, the latter leads to
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the following pricing formula:

P (t) = EQ

[
P (T ) +

∑T
s=tD(s)r(s, T )

r(t, T )

]
(1)

= EP

[
P (T ) +

∑T
s=tD(s)r(s, T )

r(t, T )

dQ
dP

]
.

Here dQ
dP is the Radon-Nykodym density of the marginal measure. One can price an option

or a derivative security by evaluating the expected discounted value under Q. For example, the

call option price with strike price K and expiring date T is given by

C(t, T ) =
EQmax[PT −K, 0]

r(t, T )
. (2)

The following subsection illustrates the idea of estimating C(t, T ) through EL coupled with

the change-of-measure constraint.

2.1 The Estimating Procedure

Suppose historical data are available in the format of {(P (t), D(t)), t = −1,−2, ...,−H}. A

nonparametric way of estimating the option price could be built on approximating Q by a

discrete distribution supported on the observed value of option price; namely, HPR(−i −

T,−i)/r(−i − T,−i), 1 ≤ i ≤ H − T with the corresponding probability denoted by πi.

Here HPR(s, t) is the holding period return between times s and t. If there is no dividend,

HPR(−i− T, i) = P (−i)/P (−i− T ). Then (1) can be approximated by

1 =
H−T∑
i=1

HPR(−i− T,−i)
r(−i− T,−i)

πi. (3)

Correspondingly, we can estimate the option price by approximating (2) by

Ĉ(t, T ) =
∑
i

max[Pi(T )−K, 0]

r(t, T )
πi. (4)

Note that the choice of πi subjecting to (3) is not unique. Stutzer (1996) uses the idea of

maximum entropy, namely maximizing
∑H−T

i=1 πi log πi, subjecting to (3). Here we adopt the

empirical likelihood method (Owen, 1988) by changing the objective function from entropy to

empirical likelihood, namely maximizing
∑H−T

i=1 log πi. This objective function can be easily
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interpreted as a nonparametric log likelihood function and, hence, the whole optimization pro-

cedure in our method can be interpreted as a maximum likelihood method, which is considered

more efficient than a maximum entropy method. Moreover, Baggerly (1998) proposes a general

class of empirical likelihood type methods, which contains both
∑

log πi and
∑
πi log πi as

special cases. Additionally, Baggerly (1998) proves the empirical likelihood used in this paper

is the only method in the general class which has a higher order correction of the large sample

properties. We refer to Kitamura (1997) for the detailed form of the higher order correction.

Meanwhile, by noticing that the sequence HPR(−i − T,−i)/r(−i − T,−i), 1 ≤ i ≤ H − T

possess a reasonable amount of dependence, we suggest the adoption of the blockwise version

of the algorithm as follows: group the data into Q blocks where length M is the length of the

moving block. Set L to be the step size of the moving block. We obtain block weight π∗i by

maximizing
∑H−T

i=1 log π∗i subjecting to

1 =

Q∑
i=1

π∗i

[
1

M

M∑
j=1

HPR(−i ∗ L− j − T,−i ∗ L− j)
r(−i ∗ L− j − T,−i ∗ L− j)

]
. (5)

Then estimate the option price by

C =

Q∑
i=1

[
1

M

M∑
j=1

max[Pi∗L−j(T )−K, 0]

r(−i ∗ L− j − T,−i ∗ L− j)

]
π∗i . (6)

This blocking idea is studied by Kitamura (1997), who argues that using blockwise methods

has a much better empirical performance for weakly dependent processes by moving average

noise terms. The estimation procedure in the spirit of Kitamura (1997) is slightly different:

max
C,π∗

i

Q∑
i=1

log π∗i , (7)

subject to constraints (5), (6), and 
∑Q

i=1 π
∗
i = 1,

π∗i > 0,

and the maximizing C is our estimator. The estimated risk neutral measure weights pi∗i have

the following form:

π∗i =

{
Q

(
1 + γ

[
1

M

M∑
j=1

HPR(−i ∗ L− j − T,−i ∗ L− j)
r(−i ∗ L− j − T,−i ∗ L− j)

− 1

])}−1
,
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where γ is a Lagrange multiplier. These weights are similar to the Gibbs canonical probability

in Stutzer (1996) because they put small weights when rate of returns of underlyings are far

from risk-free returns. Additionally, Peng (2015) shows that these two approaches yield the

same asymptotic property. In our simulation below, we adopt the second method since it

is well known and there is an existing package for implementation. Particularly, Qin and

Lawless (1994) provide a Lagrangian with multipliers approach to solve the above-mentioned

optimization problem. We can either apply the numerical optimization process or derive the

solution, similar to Qin and Lawless (1994). For more details about the Lagrangian optimization

or the basic properties of the empirical likelihood procedure, see Owen (1990) and Qin and

Lawless (1994).

2.2 Asymptotic Properties

In this subsection, we discuss some basic asymptotic properties of the option price respect to the

empirical likelihood process (Equation (6) / (7)), which helps us to understand the asymptotic

distribution of our estimate and conduct further inference.

Theorem 1 Consider that

f(HPRt, C) =

(
max[Pi(T )−K, 0]

r(t, T )
− C, HPR(−t− T, t)

r(t− T, t)
− 1

)T
and further assume that:

(i) the derivative price (C) is in a compact set Θ;

(ii) C0 is a unique solution of E(f(HPRt, C)) = 0;

(iii) For sufficient small δ > 0 and η > 0,

E[ sup
C∗∈O(C,δ)

||f(HPR, C∗)|| <∞

for all C ∈ Θ;

(iv) If a sequence of Cj, j = 1, 2, ... converges to some C as j →∞, f(HPRt, Cj) converges to

f(HPRt, C) for all HPRt except on a null set, which may vary with C;

(v) C0 is an interior point of Θ;

(vi) Var(H−
1
2

∑H
i=1 f(HPRi, C0))→ S > 0;
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(vii) For blockwise empirical likelihood approach, we further assume the weak dependent condi-

tion,
∑∞

k=1 αX(k)1−1/d <∞ for some constant d > 1. And we require additional assumptions,

E||f(HPRt, C0)||2d <∞, for d > 1

E sup
C∗∈O(C0,δ)

||f(HPRt, C
∗)||2+ε < K, for some ε > 0.

Then,

LR0 = 2

Q∑
i=1

log(1 + γ(Ĉ)Tf(HPRi, Ĉ))→dist. χ
2
1

where K is a finite number, γ(Ĉ) is the Lagrange multiplier vector and Q is the total number of

states. Particularly for non-blockwise empirical likelihood case (i.e. Equation (6)), Q = H−T .

Theorem 1 provides an asymptotic distribution of the likelihood ratio LR0, which can be

further applied to inference of the estimate. We omit the detailed proof here.2 For independent

observations of HPRi, we only require the assumptions (i)-(vi) to have the asymptotic property

of the likelihood ratio; and, for weak-dependent observations of HPRi, assumption (vii) is

additionally required. Given the simple fact that the chi-square distribution is the square of

a normal distribution, the distribution of the errors measured by the likelihood ratio will be

close to the white noise when sample size goes to infinity. This means that our estimator will

eventually capture almost all the information in the data.

3 Empirical Results

In this section, we first compare our method with several popular option pricing models through

Monte Carlo simulation and then conduct an empirical analysis on the option pricing for the

S&P 500 index call options.

3.1 Monte Carlo Simulation

3.1.1 Black-Scholes Model

Following Hutchinson et al. (1994), Ait-Sahalia and Lo (1995), and Stutzer (1996), we gener-

ate a geometric Brownian motion process with a 10 percent drift and 20 percent annualized

2Our proof is a direct consequence of Theorems 1 & 2 in Kitamura (1997).
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volatility. Firstly, we simulate 2 years of historical daily stock returns with 253×2 = 506 obser-

vations. We repeat 200 samples, and, for each sample, three different prices are calculated: 1.

the estimated price by the empirical likelihood option pricing procedure; 2. the estimated price

by the Black-Scholes model with historical volatility; 3. the actual price by the Black-Scholes

model with actual volatility.

Table 1: Monte Carlo Simulation in a Black-Scholes Market

This table reports the mean absolute percentage error (MAPE) of the empirical

likelihood (EL) option price to the ideal Black-Scholes price (Panel A), the historical

volatility based Black Scholes price to the ideal Black-Scholes price (Panel B) for

different combination of the relative exercise prices (P/K) and time to expiration

date. The price dynamics follow the Geometric Brownian Motion with µ = 0.1

and σ = 0.2. The relative exercise prices (P/K) are chosen as Rubinstein (1985),

Stutzer (1996). The time to expiration date are 1/13, 1/4, 1/2 years, respectively.

Panel A:

Hist Var vs Ideal BS Years to Maturity

1/13 1/4 1/2

9/10 0.2124 0.0987 0.0687

Moneyness (P/K) 1 0.0327 0.0305 0.0284

9/8 6.375× 10−4 0.0047 0.0080

Panel B:

EL vs Ideal BS Years to Maturity

1/13 1/4 1/2

9/10 0.724 0.514 0.537

Moneyness (P/K) 1 0.088 0.149 0.230

9/8 0.003 0.025 0.058
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The performance of the first two prices are compared based on the mean absolute percentage

error (MAPE) with respect to the third price, which is considered to be the true price. The

comparison is made at different price-to-strike price ratios (i.e. P/X = 9
10
, 1, 9

8
) and different

expiration dates (i.e. T = 1
13
, 1
4
, 1
2
).

Table 1 provides the simulation performance: Panel A reports the MAPE of the empirical

likelihood (EL) option price, and Panel B reports the MAPE of the historical volatility based

Black Scholes price. In the perfect Black-Scholes world, the Black-Scholes formula using the

historical volatility outperforms the empirical likelihood option pricing methodology. This

is because the Black-Scholes formula only requires the second moment information and 506

observations can provide a very good estimate of the second moment; however the empirical

likelihood methods automatically capture the higher order moment information, which does

not benefit in pricing the options in the perfect Black-Scholes world.

We are also interested in the accuracy of the empirical likelihood option pricing for different

moneyness and days-to-maturity. The empirical likelihood option pricing method provides

very good performance in pricing the in-the-money options with small MAPE; however, the

MAPE are very significant for out-of-the-money options. At-the-money option pricing error

is in between. On the other hand, the pricing errors have different patterns for in-the-money,

at-the-money, and out-of-the-money options. For in-the-money and at-the-money options, the

fewer days to maturity, the smaller the pricing errors are. For out-of-the-money options, the

fewest days to maturity case has the largest pricing error, with a possible reason being that

the price magnitude of the out-of-the-money options with very few days to maturity is already

very small.
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3.1.2 Stochastic Volatility Jump Model

Bates (1996) adds a compound Poisson process to Heston stochastic volatility model to account

for the rare sudden drift of some financial assets. The stochastic processes are defined as follows:

dS/S = µdt+
√
V dZ + kdq,

dV = (α− βV ) + σv
√
V dZv,

cov (dZ, dZv) = ρdt,

P (dq = 1) = λdt,

ln (1 + k) ∼ N
(
log (1 + κ) , δ2

)
.

Here we use the paramters estimates in Bates (1996) to produce simulated stock prices and

European option prices. We compare our nonparametric option pricing method with Stutzer

(1996), historical Black-Scholes, and Heston models. We summarize the results in Table 2.

The κ and δ are the mean and standard deviations of the sizes of jumps. From the table, we

can find that when jump sizes are small, as is the case in the second row, our method beats

the historical Black-Scholes, but loses to the Heston model. That is because when jump sizes

are sufficiently small, the Bates model is extremely close to the Heston model, and, hence,

calibration of the Heston model is more or less the same as using a parametric method with the

true likelihood function. We know that the parametric likelihood method always achieves the

lowest error bound when we use the right likelihood functions. When the jump sizes are large,

however, as is the case in the third row, our nonparametric method not only outperforms the

other methods, but also performs consistently well no matter whether the jump sizes are large

or small.

3.2 S&P 500 Index Options

We also implement the empirical likelihood option pricing method in pricing the S&P 500 index

options. The daily return data is from the Center for Research in Security Prices (CRSP) and

the option data is from OptionMetrics. The daily return data is from Jan 2011 to Dec 2012.

We use the year 2011 daily return data as the formation period, and then test its performance

in the year 2012 daily index options pricing, comparing with the historical volatility-based
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Black-Scholes model and the true values. We only keep the options which have the Moneyness

closest to 1 and days to maturity between 15 to 50.

Table 2: MAPE of the Four Methods under Bates Model

Jump Parameters Empirical Likelihood Stutzer Historical Black-Scholes Heston Model

κ = −0.001,

δ = 0.019.
0.3680 0.3804 0.5734 2.428× 10−7

κ = 0.1,

δ = 0.5.
0.3759 0.4448 0.6062 0.4765

Figure 1 shows the time series of the option prices. The red line is the true value of the

market daily close price, the green line is the empirical likelihood option price, the black line

is the Black-Scholes option price using the historical volatility, the blue line is the Heston

stochastics volatility option pricing using least square calibration, and the purple line is the

method from Stutzer (1996). Due to the stock price movement, the true option prices vary from

1.5 to 3.7; however, the historical volatility-based Black-Scholes option prices are consistently

overpriced for the at-the-money call options, as is documented in Hull and White (1987). In

contrast, our EL option prices are closer to the true option market prices. This is because

our methodology also captures the high order moment information in the empirical likelihood

procedure, while the historical volatility-based Black-Scholes option model only captures the

second moment information.

4 Conclusion

In this paper, we introduce an empirical likelihood method to price derivatives under a risk-

neutral measure. Based on Monte Carlo simulations and on S&P 500 index option data, we

show that our method outperforms classical alternative models (Black-Scholes, Heston, and

Bates), thanks to our advantage in capturing higher order moment information.
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Figure 1: Comparison of the S&P 500 index option prices and EL option prices

This figure shows the time series of three S&P 500 index option prices. We only

keep the options have the Moneyness closest to 1 and days to maturity between 15

to 50. The red line is true value of the market daily close price, the green line is

the empirical likelihood option price, the black line is the Black Scholes option price

using the historical volatility, the blue line is Heston stochastics volatility option

pricing using least square calibration and the purple line is method from Stutzer

(1996).
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