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Abstract

The Macroscopic Fundamental Diagram (MFD) framework has been widely utilized to describe traffic dynamics in urban networks
as well as to design perimeter flow control strategies under stationary (constant) demand and deterministic settings. In real world,
both the MFD and demand however suffer from various intrinsic uncertainties while travel demand is of time-varying nature.
Hence, robust control for traffic networks with uncertain MFDs and demand is much appealing and of greater interest in practice.
In literature, there would be a lack of robust control strategies for the problem. One major hurdle is of requirement on model
linearization that is actually a basis of most existing results.

The main objective of this paper is to explore a new robust perimeter control framework for dynamic traffic networks with
parameter uncertainty (on the MFD) and exogenous disturbance induced by travel demand. The disturbance in question is in
general time-varying and stochastic. Our main contribution focuses on developing a control-Lyapunov function (CLF) based
approach to establishing a couple of universal control laws, one is almost smooth and the other is Bang-bang like, for different
implementation scenarios. Moreover, it is indicated that the almost smooth control is more suited for road pricing while the Bang-
bang like is for signal timing. In sharp contrast to existing methods, in which adjusting extensive design parameters are usually
needed, the proposed methods can determine the control in an automatic manner. Furthermore, numerical results demonstrate that
the control can drive the system dynamics towards a desired equilibrium under various scenarios with uncertain MFDs and travel
demand. Both stability and robustness can be substantially observed. As a major consequence, the proposed methods achieve not
only global asymptotic stability but also appealing robustness for the closed-loop traffic system.
c� 2016 The Authors. Elsevier B.V. All rights reserved.
Peer review under responsibility of the scientific committee of the 22nd International Symposium on Transportation and Traffic
Theory.
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1. Introduction

Severe pollution and congestion during peak periods, induced by traffic, have been recognized as serious chal-
lenges for metropolises around the world. Efficient utilization of existing infrastructures through various forms of
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traffic control schemes is a crucial ingredient towards sustainable urban mobility in terms of efficiency, safety and
environment-friendly.

Despite a number of achievements in the field of urban traffic signal control, most methods are uncoordinated w.r.t.
optimizing the goals of efficiency and equity for multiple heterogeneous networks. For example, widely deployed
real-time signal control systems such as SCOOT (Hunt et al., 1982) and SCATS (Lowrie, 1982) are much less efficient
under oversaturated traffic conditions with long queues and spillbacks. To tackle congested traffic conditions, some
recent methods employ computationally intensive optimization algorithms that unfortunately obstruct their real-time
feasibility (see e.g. Aboudolas and Geroliminis, 2013; Keyvan-Ekbatani et al., 2015a, for a discussion). A noteworthy
practicable method is the feedback control strategy TUC (Diakaki et al., 2002, 2003; Aboudolas et al., 2009, 2010;
Kouvelas et al., 2011). As a gating or metering control, the TUC, by means of limiting access to the link when operating
near its capacity, can realize the protection of downstream links from over-saturation as well as minimization of
spillback risk of link queues. For network-wide access control, Zhong et al. (2011, 2012) considered both congestion
and vehicle emission metrics under the umbrella of dynamic traffic assignment with side constraints wherein the link
traffic volume is restricted to less or equal to its capacity.

Note that the aforementioned gating and access controls are implemented at the link level while Gayah et al. (2014)
showed that the locally (link-level) adaptive traffic signals are ineffective at preventing premature gridlock from oc-
curring due to downstream congestion and queue spillbacks in an extremely congested network. Hence, under heavily
saturated traffic conditions, other control strategies should be pursued to mitigate the instability. Remarkably, the
MFD, depicting a reproducible relationship between the network accumulation and the trip completion rate under cer-
tain conditions (e.g. homogeneous spatial distribution of congestion), has gained a major development and a high
impact in this direction. This notion, pioneered by Godfrey (1969), has been evidenced by simulation-based exper-
iments (Gartner and Wagner, 2004) and real data based investigations (Geroliminis and Daganzo, 2008). Daganzo
(2007); Daganzo and Geroliminis (2008); Helbing (2009); Gayah and Daganzo (2011) further considered some an-
alytic aspects. Other interesting empirical and simulation studies have verified the existence of well-defined MFDs
for homogeneous urban traffic networks (Geroliminis and Daganzo, 2008; Daganzo et al., 2011; Ji et al., 2010; Feng,
2011). Through the lens of the MFD, urban traffic dynamics can be modeled by traffic conservation law in conjunction
with MFDs for a heterogeneous network as long as it can be partitioned into several homogenous subregions (Geroli-
minis et al., 2013; Haddad and Geroliminis, 2012; Aboudolas and Geroliminis, 2013; Haddad et al., 2013; Haddad,
2015). The MFD provides an analytically simple and computationally efficient framework for aggregate modeling of
urban traffic network dynamics (which is denoted as MFD framework hereafter) as details of individual links are not
necessary to describe the congestion level and its evolution.

Daganzo (2007) applied the MFD framework to devise a control rule that maximizes the network trip completion
rate. Thenceforth, the idea of perimeter control on the borders of urban regions has attracted considerable interest.
Recent studies showed that the feedback-based gating/perimeter control is efficient in mitigating congestion in urban
networks by exploiting such a framework. For a short survey, some relevant studies are summarized in Table 1.
Most previous studies in this direction for urban traffic networks aim at seeking suitable supply (e.g. signal timing) or
demand (e.g., road pricing) management strategies for maximizing the network total trip completion rate under several
restrict assumptions, e.g., exact knowledge on the network from both demand and supply sides whilst linearizing the
MFD-based traffic dynamics. However, the MFD and travel demand are subject to various uncertainties which would
render the flow evolution of practical urban networks unstable or even induce gridlocks. For instance, inherent errors
in MFDs may result from asymmetric origin and destination (OD) and route choices as well as the calibration of MFDs
(Geroliminis and Sun, 2011; Knoop et al., 2012), while noises in the demand may result from recurrent variations
of day-to-day travel demand or nonrecurrent events such as special events and traffic accidents (Geroliminis et al.,
2013). Uncertainty in MFDs is usually regarded as parametric uncertainty (or model mis-specification) (Courbon
and Leclercq, 2011; Leclercq and Geroliminis, 2013; Haddad and Shraiber, 2014), while travel demand uncertainty is
usually classified as exogenous disturbance in dynamic traffic models (Zhong et al., 2014). Moreover, it is well known
in control theory that optimality does not imply stability in general. Nevertheless, the efficiency of the strategies based
on optimal control, e.g., the MPC, increasingly deteriorate with increasing disturbance prediction and model errors,
which may be a serious impediment for real-world deployment. Regardless of their importance, few existing studies,
as reviewed in Table 1, have focused on the robust control for urban traffic networks with either uncertain demand or
uncertain MFDs in terms of perimeter control.
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traffic control schemes is a crucial ingredient towards sustainable urban mobility in terms of efficiency, safety and
environment-friendly.

Despite a number of achievements in the field of urban traffic signal control, most methods are uncoordinated w.r.t.
optimizing the goals of efficiency and equity for multiple heterogeneous networks. For example, widely deployed
real-time signal control systems such as SCOOT (Hunt et al., 1982) and SCATS (Lowrie, 1982) are much less efficient
under oversaturated traffic conditions with long queues and spillbacks. To tackle congested traffic conditions, some
recent methods employ computationally intensive optimization algorithms that unfortunately obstruct their real-time
feasibility (see e.g. Aboudolas and Geroliminis, 2013; Keyvan-Ekbatani et al., 2015a, for a discussion). A noteworthy
practicable method is the feedback control strategy TUC (Diakaki et al., 2002, 2003; Aboudolas et al., 2009, 2010;
Kouvelas et al., 2011). As a gating or metering control, the TUC, by means of limiting access to the link when operating
near its capacity, can realize the protection of downstream links from over-saturation as well as minimization of
spillback risk of link queues. For network-wide access control, Zhong et al. (2011, 2012) considered both congestion
and vehicle emission metrics under the umbrella of dynamic traffic assignment with side constraints wherein the link
traffic volume is restricted to less or equal to its capacity.

Note that the aforementioned gating and access controls are implemented at the link level while Gayah et al. (2014)
showed that the locally (link-level) adaptive traffic signals are ineffective at preventing premature gridlock from oc-
curring due to downstream congestion and queue spillbacks in an extremely congested network. Hence, under heavily
saturated traffic conditions, other control strategies should be pursued to mitigate the instability. Remarkably, the
MFD, depicting a reproducible relationship between the network accumulation and the trip completion rate under cer-
tain conditions (e.g. homogeneous spatial distribution of congestion), has gained a major development and a high
impact in this direction. This notion, pioneered by Godfrey (1969), has been evidenced by simulation-based exper-
iments (Gartner and Wagner, 2004) and real data based investigations (Geroliminis and Daganzo, 2008). Daganzo
(2007); Daganzo and Geroliminis (2008); Helbing (2009); Gayah and Daganzo (2011) further considered some an-
alytic aspects. Other interesting empirical and simulation studies have verified the existence of well-defined MFDs
for homogeneous urban traffic networks (Geroliminis and Daganzo, 2008; Daganzo et al., 2011; Ji et al., 2010; Feng,
2011). Through the lens of the MFD, urban traffic dynamics can be modeled by traffic conservation law in conjunction
with MFDs for a heterogeneous network as long as it can be partitioned into several homogenous subregions (Geroli-
minis et al., 2013; Haddad and Geroliminis, 2012; Aboudolas and Geroliminis, 2013; Haddad et al., 2013; Haddad,
2015). The MFD provides an analytically simple and computationally efficient framework for aggregate modeling of
urban traffic network dynamics (which is denoted as MFD framework hereafter) as details of individual links are not
necessary to describe the congestion level and its evolution.

Daganzo (2007) applied the MFD framework to devise a control rule that maximizes the network trip completion
rate. Thenceforth, the idea of perimeter control on the borders of urban regions has attracted considerable interest.
Recent studies showed that the feedback-based gating/perimeter control is efficient in mitigating congestion in urban
networks by exploiting such a framework. For a short survey, some relevant studies are summarized in Table 1.
Most previous studies in this direction for urban traffic networks aim at seeking suitable supply (e.g. signal timing) or
demand (e.g., road pricing) management strategies for maximizing the network total trip completion rate under several
restrict assumptions, e.g., exact knowledge on the network from both demand and supply sides whilst linearizing the
MFD-based traffic dynamics. However, the MFD and travel demand are subject to various uncertainties which would
render the flow evolution of practical urban networks unstable or even induce gridlocks. For instance, inherent errors
in MFDs may result from asymmetric origin and destination (OD) and route choices as well as the calibration of MFDs
(Geroliminis and Sun, 2011; Knoop et al., 2012), while noises in the demand may result from recurrent variations
of day-to-day travel demand or nonrecurrent events such as special events and traffic accidents (Geroliminis et al.,
2013). Uncertainty in MFDs is usually regarded as parametric uncertainty (or model mis-specification) (Courbon
and Leclercq, 2011; Leclercq and Geroliminis, 2013; Haddad and Shraiber, 2014), while travel demand uncertainty is
usually classified as exogenous disturbance in dynamic traffic models (Zhong et al., 2014). Moreover, it is well known
in control theory that optimality does not imply stability in general. Nevertheless, the efficiency of the strategies based
on optimal control, e.g., the MPC, increasingly deteriorate with increasing disturbance prediction and model errors,
which may be a serious impediment for real-world deployment. Regardless of their importance, few existing studies,
as reviewed in Table 1, have focused on the robust control for urban traffic networks with either uncertain demand or
uncertain MFDs in terms of perimeter control.
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To tackle the aforementioned challenges, this paper explores the robust perimeter control for dynamic traffic net-
works with inherent parametric uncertainties and exogenous disturbances. Distinguished from previous linearization
based methods, we develop an effective CLF based approach to establish universal (explicit formula for obtaining the
feedback controller from the system dynamics and the CLF chosen) robust controllers that make closed-loop traffic
systems asymptotically stable in spite of uncertainties. Our results are substantially applicable to most of MFD based
robust perimeter control problems. This new approach gives rise to two classes of controllers, i.e., almost smooth and
Bang-bang like controls, constructed for different implementation scenarios. In particular, one is more suited for road
pricing while the other is for signal timing. The proposed methods achieve not only global asymptotic stability but
also appealing robustness for the closed-loop traffic system.

Paper Organization. Section 2 introduces the dynamic system representation of two urban regions under the MFD
framework. Section 3 addresses the main results of designing control laws for both nominal system and system with
demand and supply uncertainties. Section 4 gives several numerical examples and their implications for demonstra-
tion. Finally, Section 5 closes the paper with a few concluding remarks. For more materials, we shall refer the inter-
ested reader to the online appendix at https://www.dropbox.com/s/nmj2hrti2aywfhe/Online%20Appendix.
pdf?dl=0. For a better grasp of this work, we shall refer to Figure 1 for exposition of the core notions and theorems.
At the end of this section, we use Table 2 below to collect key variables throughout this paper.

Figure 1: Gallery of this study

Table 2: List of key notation

Symbol Meaning
ni j(t) Number of vehicles in Ri with destination to Rj at time t for i, j = 1, 2
ni(t) Accumulation or total number of vehicles in Ri at time t, and ni =

∑
j ni j(t) for i, j = 1, 2

qii(t) Endogenous travel demand defined as a flow in which its origin and destination are the same region for
i = 1, 2

qi j(t) Exogenous travel demand defined as a flow in which its origin and destination are not the same region for
i, j = 1, 2 and i � j

ui(t) Perimeter controllers controlling the ratio of the transfer flow that transfer from one region to the
other at time t for i = 1, 2

Gi(ni(t)) MFD that maps the network accumulation ni(t) to trip completion rate for region i at time t for i = 1, 2

2. Traffic dynamics for two urban regions with MFD

2.1. Two-region MFD framework

We consider an urban traffic network that can be partitioned into 2 homogeneous sub-networks with each region
admits a well-defined MFD in line with Haddad and Geroliminis (2012); Geroliminis et al. (2013). An endogenous
travel demand is defined as a flow whose origin and destination are in the same region. As a contrast, an exogenous
travel demand is with the OD located in different regions. For the two-region system, there are two endogenous travel
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To tackle the aforementioned challenges, this paper explores the robust perimeter control for dynamic traffic net-
works with inherent parametric uncertainties and exogenous disturbances. Distinguished from previous linearization
based methods, we develop an effective CLF based approach to establish universal (explicit formula for obtaining the
feedback controller from the system dynamics and the CLF chosen) robust controllers that make closed-loop traffic
systems asymptotically stable in spite of uncertainties. Our results are substantially applicable to most of MFD based
robust perimeter control problems. This new approach gives rise to two classes of controllers, i.e., almost smooth and
Bang-bang like controls, constructed for different implementation scenarios. In particular, one is more suited for road
pricing while the other is for signal timing. The proposed methods achieve not only global asymptotic stability but
also appealing robustness for the closed-loop traffic system.

Paper Organization. Section 2 introduces the dynamic system representation of two urban regions under the MFD
framework. Section 3 addresses the main results of designing control laws for both nominal system and system with
demand and supply uncertainties. Section 4 gives several numerical examples and their implications for demonstra-
tion. Finally, Section 5 closes the paper with a few concluding remarks. For more materials, we shall refer the inter-
ested reader to the online appendix at https://www.dropbox.com/s/nmj2hrti2aywfhe/Online%20Appendix.
pdf?dl=0. For a better grasp of this work, we shall refer to Figure 1 for exposition of the core notions and theorems.
At the end of this section, we use Table 2 below to collect key variables throughout this paper.

Figure 1: Gallery of this study

Table 2: List of key notation

Symbol Meaning
ni j(t) Number of vehicles in Ri with destination to Rj at time t for i, j = 1, 2
ni(t) Accumulation or total number of vehicles in Ri at time t, and ni =

∑
j ni j(t) for i, j = 1, 2

qii(t) Endogenous travel demand defined as a flow in which its origin and destination are the same region for
i = 1, 2

qi j(t) Exogenous travel demand defined as a flow in which its origin and destination are not the same region for
i, j = 1, 2 and i � j

ui(t) Perimeter controllers controlling the ratio of the transfer flow that transfer from one region to the
other at time t for i = 1, 2

Gi(ni(t)) MFD that maps the network accumulation ni(t) to trip completion rate for region i at time t for i = 1, 2

2. Traffic dynamics for two urban regions with MFD

2.1. Two-region MFD framework

We consider an urban traffic network that can be partitioned into 2 homogeneous sub-networks with each region
admits a well-defined MFD in line with Haddad and Geroliminis (2012); Geroliminis et al. (2013). An endogenous
travel demand is defined as a flow whose origin and destination are in the same region. As a contrast, an exogenous
travel demand is with the OD located in different regions. For the two-region system, there are two endogenous travel
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demands in R1, denoted by q11(t) (veh/s), and in R2, denoted by q22(t) (veh/s), and two exogenous travel demands
generated in R1 and R2 with destination to R2 and R1, denoted by q12(t) (veh/s) and q21(t) (veh/s), respectively.
Corresponding to the endogenous and exogenous travel demands, four accumulation states are used to model the
network dynamics, ni j(t) (veh) for i, j = 1, 2, where ni j(t) is the number of vehicles (or uncompleted trips) in Ri

with destination to R j at time t. Let us denote ni(t) (veh) as the accumulation or the total number of vehicles in
Ri at time t, i.e., ni(t) =

∑
j ni j(t). The perimeter controls, denoted by u1(t) and u2(t), are introduced on the border

between the two regions whose purpose is to control the cross boundary flows such that the network state of the
two-region MFDs system can be regulated to the desired traffic equilibrium. The MFD Gi(ni(t)) (veh/s) is defined as
function that maps the network state ni(t) of region i to its trip completion rate at time t. The transfer flow from i
with destination to j is calculated corresponding to the ratio between the numbers of uncompleted trips with different
destinations, i.e., Mi j(t) =

ni j(t)
ni(t)

Gi(ni(t)) for i � j, whereas the internal flow from i with destination to i is calculated
by Mii(t) =

nii(t)
ni(t)

Gi(ni(t)). These relationships assume that the trip lengths for all trips within a region (internal or
external) are similar, i.e., the distance traveled per vehicle inside a region is independent of the OD.

Let umin and umax be the lower and upper bounds for u1(t) and u2(t), respectively. The two-region MFDs dynamics
is formulated following the flow conservation law in line with Geroliminis et al. (2013):

dn11(t)
dt

= −n11(t)
n1(t)

G1(n1(t) +
n21(t)
n2(t)

G2(n2(t))u2(t) + q11(t) (1a)

dn12(t)
dt

= −n12(t)
n1(t)

G1(n1(t)u1(t) + q12(t) (1b)

dn21(t)
dt

= −n21(t)
n2(t)

G2(n2(t)u2(t) + q21(t) (1c)

dn22(t)
dt

= −n22(t)
n2(t)

G2(n2(t) +
n12(t)
n1(t)

G1(n1(t)u1(t) + q22(t) (1d)

subject to

0 ≤ n11(t) + n12(t) ≤ n jam
1 (2a)

0 ≤ n21(t) + n22(t) ≤ n jam
2 (2b)

0 ≤ umin ≤ u1(t) ≤ umax ≤ 1 (2c)
0 ≤ umin ≤ u2(t) ≤ umax ≤ 1 (2d)

n1(t) = n11(t) + n12(t), n2(t) = n21(t) + n22(t). (2e)

2.2. Feasible and admissible travel demand

A central goal of traffic science is to characterize the travel demand and the performance of road infrastructure
through some functional forms of appropriate macroscopic variables, e.g., the fundamental diagram (FD) which ex-
presses flow as a function of density and is regarded as supply function in the literature, and the demand-to-supply
reaction law for propagating the traffic flow while describing the congestion level. Furthermore, as revealed by the
behavior analysis of the cell transmission model, the demand would also affect the equilibrium of the system as well
as the convergence and stability properties of the system. Similar to the fundamental diagram for a roadway, the
MFD defines the supply function of a homogeneous traffic network, e.g., network capacity (or maximum throughput).
However, in the MFD literature, the demand-to-supply reaction law is rarely discussed. Moreover, the dependency
between the travel demand and the network behavior (e.g. existence of equilibrium and its convergence and stability
properties) is not well studied in the literature. Nevertheless, how would the travel demand affects the controllability
of the network is never clear. To fill this gap, Zhong et al. (2016) conducted a behavior analysis on the MFD system in
light of Gomes et al. (2008). As travel demand affects the equilibrium behavior and the controllability of the network,
we summarize the keys points in this section.

6 R.X. Zhong et al. / Transportation Research Procedia 00 (2016) 000–000

Definition 2.1. (Feasible travel demand) For the two-region MFD system (1a)-(1d) with unimodal right-skewed shapes,
a travel demand q(t) = [q1(t), q2(t)]T is said to be feasible if it satisfies the following conditions:

G1(n̄1) +G2(n̄2) ≥ q̄1 + q̄2 and n0
i +

∫ T

0
qi(t)dt ≤

∫ T

0
Gmax

i dt, i = 1, 2

where n0
1 and n0

2 denote the initial state of each region, respectively; Gmax
1 and Gmax

2 denote the maximal trip completion
flow rate of each region, respectively; and q̄ and n̄ denote the steady-state of the demand and the corresponding
accumulation, respectively (see Figure 2).

Remark 2.2. These inequalities imply that the demand and network initial accumulation should not exceed the max-
imum network throughput. From a system theory prospective, the energy of the input signal to a dynamical system
should be bounded (otherwise, the signal cannot physically exist) or absolutely integrable, see e.g., Khalil (2002).
Since the (non-negative) demand patterns are exogenous inputs to the MFD system, this requirement implies

∫ ∞
0

q1(t)dt < ∞,
∫ ∞

0
q2(t)dt < ∞. (3)

Noting that q(t) is quantified by flow rate, the physical meaning of this constraint is that the travel demand should be
finite. It seems that the simplest case—a constant demand q (flow rate) would violate the above inequalities. However,
a constant demand q could not exist forever but in a finite time interval. Therefore, the restriction on demand (3) is
general. Although the control design methods depicted in this paper do not explicitly require this finite demand
property, let us keep in mind that physical quantities should be of finite values.

Given a desired traffic equilibrium, for a single-region MFD system, Haddad and Shraiber (2014) derived a sufficient
condition1 for controllability w.r.t. travel demand during the transient period, i.e., the time period wherein the initial
state is being brought to the steady state. In order to increase or decrease the state to the steady-state state, the
condition dni

dt > 0 or dni
dt < 0 should be satisfied, respectively. Introducing time-varying parameters υii(t) =

nii(t)
ni(t)

and

υi j(t) =
ni j(t)
ni(t)

, denoting the desired steady traffic state (target equilibrium) by n̄, one can easily obtain the following
proposition for a sufficient condition for the stabilizability2 of the two-region MFD system as follows:

Proposition 2.3. Given the target equilibrium n̄ = [n̄1, n̄2]T of the two-region MFD system described by (1a)-(1d),
provided for the transient period, if the travel demand q = [q1, q2]T satisfies, for i, j = 1, 2,

qi < Gi(ni) − υ jiG j(n j)u j − υi jGi(ni)(1 − ui), if ni > n̄i (4a)
qi > Gi(ni) − υ jiG j(n j)u j − υi jGi(ni)(1 − ui), if ni < n̄i (4b)

then the MFD system is stabilizable.

Proof of Proposition 2.3. See the online Appendix.

A steady-state network outflow would result in two steady-state network flows n̄s and n̄u, see e.g., Figure 2. Similar
to the cell transmission model (CTM) case by Gomes et al. (2008), it is proven in Zhong et al. (2016) that n̄s is a stable
equilibrium while n̄u is an unstable saddle point (see e.g., Haddad and Geroliminis, 2012). On the other hand, n̄s in
the non-congested region of the MFD is more likely to be a desired steady state for the sake of urban mobility, e.g., the
ramp metering control always pursue such an equilibrium. The objectives of existing operational pricing strategies are
similar. Zheng et al. (2012); Zheng and Geroliminis (2013); Zheng et al. (2016) claimed that with pricing the system
should be operated at a state (e.g., n̄s) less than but close to the critical accumulation that maximizes outflow from the
viewpoint of total travel time saving. Following these observations and Proposition 2.3, we can define the admissible
travel demand in accordance to the MFD which governs the demand that can be received by the network as follows.

1 Haddad and Shraiber (2014) stated this as a necessary condition. However, the condition dni
dt > 0 or dni

dt < 0 is sufficient to increase or decrease
the initial state to the steady-state state at any time instant.

2 Roughly speaking, controllability describes the ability of an external input (or the vector of control variables) to move the internal state of a
dynamic system from any initial state to any other final state in a finite time interval. It does not mean that once a state is reached, that state can be
maintained while stabilizability implies the system under control is stable and thus the desired state can be maintained.
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demands in R1, denoted by q11(t) (veh/s), and in R2, denoted by q22(t) (veh/s), and two exogenous travel demands
generated in R1 and R2 with destination to R2 and R1, denoted by q12(t) (veh/s) and q21(t) (veh/s), respectively.
Corresponding to the endogenous and exogenous travel demands, four accumulation states are used to model the
network dynamics, ni j(t) (veh) for i, j = 1, 2, where ni j(t) is the number of vehicles (or uncompleted trips) in Ri

with destination to R j at time t. Let us denote ni(t) (veh) as the accumulation or the total number of vehicles in
Ri at time t, i.e., ni(t) =

∑
j ni j(t). The perimeter controls, denoted by u1(t) and u2(t), are introduced on the border

between the two regions whose purpose is to control the cross boundary flows such that the network state of the
two-region MFDs system can be regulated to the desired traffic equilibrium. The MFD Gi(ni(t)) (veh/s) is defined as
function that maps the network state ni(t) of region i to its trip completion rate at time t. The transfer flow from i
with destination to j is calculated corresponding to the ratio between the numbers of uncompleted trips with different
destinations, i.e., Mi j(t) =

ni j(t)
ni(t)

Gi(ni(t)) for i � j, whereas the internal flow from i with destination to i is calculated
by Mii(t) =

nii(t)
ni(t)

Gi(ni(t)). These relationships assume that the trip lengths for all trips within a region (internal or
external) are similar, i.e., the distance traveled per vehicle inside a region is independent of the OD.

Let umin and umax be the lower and upper bounds for u1(t) and u2(t), respectively. The two-region MFDs dynamics
is formulated following the flow conservation law in line with Geroliminis et al. (2013):

dn11(t)
dt

= −n11(t)
n1(t)

G1(n1(t) +
n21(t)
n2(t)

G2(n2(t))u2(t) + q11(t) (1a)

dn12(t)
dt

= −n12(t)
n1(t)

G1(n1(t)u1(t) + q12(t) (1b)

dn21(t)
dt

= −n21(t)
n2(t)

G2(n2(t)u2(t) + q21(t) (1c)

dn22(t)
dt

= −n22(t)
n2(t)

G2(n2(t) +
n12(t)
n1(t)

G1(n1(t)u1(t) + q22(t) (1d)

subject to

0 ≤ n11(t) + n12(t) ≤ n jam
1 (2a)

0 ≤ n21(t) + n22(t) ≤ n jam
2 (2b)

0 ≤ umin ≤ u1(t) ≤ umax ≤ 1 (2c)
0 ≤ umin ≤ u2(t) ≤ umax ≤ 1 (2d)

n1(t) = n11(t) + n12(t), n2(t) = n21(t) + n22(t). (2e)

2.2. Feasible and admissible travel demand

A central goal of traffic science is to characterize the travel demand and the performance of road infrastructure
through some functional forms of appropriate macroscopic variables, e.g., the fundamental diagram (FD) which ex-
presses flow as a function of density and is regarded as supply function in the literature, and the demand-to-supply
reaction law for propagating the traffic flow while describing the congestion level. Furthermore, as revealed by the
behavior analysis of the cell transmission model, the demand would also affect the equilibrium of the system as well
as the convergence and stability properties of the system. Similar to the fundamental diagram for a roadway, the
MFD defines the supply function of a homogeneous traffic network, e.g., network capacity (or maximum throughput).
However, in the MFD literature, the demand-to-supply reaction law is rarely discussed. Moreover, the dependency
between the travel demand and the network behavior (e.g. existence of equilibrium and its convergence and stability
properties) is not well studied in the literature. Nevertheless, how would the travel demand affects the controllability
of the network is never clear. To fill this gap, Zhong et al. (2016) conducted a behavior analysis on the MFD system in
light of Gomes et al. (2008). As travel demand affects the equilibrium behavior and the controllability of the network,
we summarize the keys points in this section.
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Definition 2.1. (Feasible travel demand) For the two-region MFD system (1a)-(1d) with unimodal right-skewed shapes,
a travel demand q(t) = [q1(t), q2(t)]T is said to be feasible if it satisfies the following conditions:

G1(n̄1) +G2(n̄2) ≥ q̄1 + q̄2 and n0
i +

∫ T

0
qi(t)dt ≤

∫ T

0
Gmax

i dt, i = 1, 2

where n0
1 and n0

2 denote the initial state of each region, respectively; Gmax
1 and Gmax

2 denote the maximal trip completion
flow rate of each region, respectively; and q̄ and n̄ denote the steady-state of the demand and the corresponding
accumulation, respectively (see Figure 2).

Remark 2.2. These inequalities imply that the demand and network initial accumulation should not exceed the max-
imum network throughput. From a system theory prospective, the energy of the input signal to a dynamical system
should be bounded (otherwise, the signal cannot physically exist) or absolutely integrable, see e.g., Khalil (2002).
Since the (non-negative) demand patterns are exogenous inputs to the MFD system, this requirement implies

∫ ∞
0

q1(t)dt < ∞,
∫ ∞

0
q2(t)dt < ∞. (3)

Noting that q(t) is quantified by flow rate, the physical meaning of this constraint is that the travel demand should be
finite. It seems that the simplest case—a constant demand q (flow rate) would violate the above inequalities. However,
a constant demand q could not exist forever but in a finite time interval. Therefore, the restriction on demand (3) is
general. Although the control design methods depicted in this paper do not explicitly require this finite demand
property, let us keep in mind that physical quantities should be of finite values.

Given a desired traffic equilibrium, for a single-region MFD system, Haddad and Shraiber (2014) derived a sufficient
condition1 for controllability w.r.t. travel demand during the transient period, i.e., the time period wherein the initial
state is being brought to the steady state. In order to increase or decrease the state to the steady-state state, the
condition dni

dt > 0 or dni
dt < 0 should be satisfied, respectively. Introducing time-varying parameters υii(t) =

nii(t)
ni(t)

and

υi j(t) =
ni j(t)
ni(t)

, denoting the desired steady traffic state (target equilibrium) by n̄, one can easily obtain the following
proposition for a sufficient condition for the stabilizability2 of the two-region MFD system as follows:

Proposition 2.3. Given the target equilibrium n̄ = [n̄1, n̄2]T of the two-region MFD system described by (1a)-(1d),
provided for the transient period, if the travel demand q = [q1, q2]T satisfies, for i, j = 1, 2,

qi < Gi(ni) − υ jiG j(n j)u j − υi jGi(ni)(1 − ui), if ni > n̄i (4a)
qi > Gi(ni) − υ jiG j(n j)u j − υi jGi(ni)(1 − ui), if ni < n̄i (4b)

then the MFD system is stabilizable.

Proof of Proposition 2.3. See the online Appendix.

A steady-state network outflow would result in two steady-state network flows n̄s and n̄u, see e.g., Figure 2. Similar
to the cell transmission model (CTM) case by Gomes et al. (2008), it is proven in Zhong et al. (2016) that n̄s is a stable
equilibrium while n̄u is an unstable saddle point (see e.g., Haddad and Geroliminis, 2012). On the other hand, n̄s in
the non-congested region of the MFD is more likely to be a desired steady state for the sake of urban mobility, e.g., the
ramp metering control always pursue such an equilibrium. The objectives of existing operational pricing strategies are
similar. Zheng et al. (2012); Zheng and Geroliminis (2013); Zheng et al. (2016) claimed that with pricing the system
should be operated at a state (e.g., n̄s) less than but close to the critical accumulation that maximizes outflow from the
viewpoint of total travel time saving. Following these observations and Proposition 2.3, we can define the admissible
travel demand in accordance to the MFD which governs the demand that can be received by the network as follows.

1 Haddad and Shraiber (2014) stated this as a necessary condition. However, the condition dni
dt > 0 or dni

dt < 0 is sufficient to increase or decrease
the initial state to the steady-state state at any time instant.

2 Roughly speaking, controllability describes the ability of an external input (or the vector of control variables) to move the internal state of a
dynamic system from any initial state to any other final state in a finite time interval. It does not mean that once a state is reached, that state can be
maintained while stabilizability implies the system under control is stable and thus the desired state can be maintained.
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Definition 2.4. (Strictly admissible travel demand) Given the two-region MFD system (1a)-(1d) with unimodal right-
skewed shapes and a feasible demand, the strictly admissible travel demand q̃i for Region i for i = 1, 2, is

q̃i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
mid{qi,Gi(ni) − υ jiG j(n j)u j − υi jGi(ni)(1 − ui) + �i,Gi(ni)}, if 0 < ni < n̄s

i
min{qi,Gi(ni) − υ jiG j(n j)u j − υi jGi(ni)(1 − ui)}, if n̄s

i ≤ ni < n̄u
i

min{qi,Gi(ni) − υ jiG j(n j)u j − υi jGi(ni)(1 − ui) − �i}, if n̄u
i ≤ ni < n jam

i

(5)

where �i ∈ R+ is an arbitrary small number, “mid” denotes the middle point of the three points. Moreover, it is
assumed that an admissible demand can yield a steady state for the network, i.e., the Equations (A.1) admit at least a
non-negative solution.

Figure 2: Relationship between steady-state demand and corresponding network flow

Remark 2.5. The definitions of feasible demand and strictly admissible demand are proposed in light of Gomes et al.
(2008) for the CTM. Physical interpretation for the admissible demand can be outlined as follows. Traffic network
governed by the MFD system is of limited capacity, it cannot receive too many vehicles at a time but a limited num-
ber according to the functional form of the MFD. The first equation of (5) implies (4b) while it is saturated by the
throughput of the network Gi(ni). The second and third equations state that the inflow to the network should be the
minimum of the demand and the available space. The constant � > 0 is used to guarantee the strict feasibility of (4a)
and (4b). Note that if the travel demand fulfills the properties in Definition 2.4, the urban traffic network could be well
protected from gridlock for which lots of control strategies might break down plus the MFD would not be well-defined
(Mahmassani et al., 2013). Hereafter, q̃ denotes the admissible travel demand per Definition 2.4.

Note that in the first equation of the above definition, when ni < n̄s
i , the admissible travel demand loaded into the

network would be Gi(ni) − υ jiG j(n j)u j − υi jGi(ni)(1 − ui) + �i if qi < Gi(ni) − υ jiG j(n j)u j − υi jGi(ni)(1 − ui) + �i. That
is the actual demand is too small to render the system to reach the desired equilibrium. So the “demand” equals to
the available space rather than the actual demand is loaded into the network. Intuitively, it is of no physical meaning.
For instance, when the demand is constant, loading a value larger than the demand is meaningless. On the other hand,
this requirement was stemmed from the unreasonable choice of the desired equilibrium n̄s

i , i.e., setting n̄s
i larger than

the steady state that the demand pattern yields. This is not necessary and without practical consideration because the
control objective is to make the network more dense than it should be without any control. It is a waste of network
capacity and control effect while causing more delay to the network. As a similar case, the ramp metering, Hegyi
et al. (2005) claimed that ramp metering is only useful when traffic is not too light (otherwise ramp metering is not
needed) and not too dense (otherwise breakdown will happen anyway). Therefore, perimeter control is not necessary
when the traffic is too light. For mathematical completeness, we use this condition.

2.3. Formulation of feedback control problem

We are now ready to formulate the main feedback control problem undertaken in this paper.
Control Goal/Problem: Given an admissible travel demand, if possible, devise a control input u(t) such that the

traffic dynamics, from arbitrary initial state within the feasible region, will evolve to a desired equilibrium.
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Figure 3: Control architecture illustration

Remark 2.6. Note that if the steady state n∗ is chosen to be the critical value on the MFD, the control input will
also maximize the total number of vehicles that complete their trips, i.e., maximizing the throughput. It is of interest
to note that, as it will be proven in Subsection 3.2, through the lens of CLF, the two-region MFD framework can be
globally stabilized even when heavily traffic congestion happens for all strictly admissible travel demand.

Remark 2.7. To the best of our knowledge, based on the same MFD framework, most existing researches have been
dedicated to the local stabilization of the traffic dynamics or locally optimal control based on MPC. Noteworthily, Had-
dad and Geroliminis (2012) calculated the region of attraction boundaries for different levels of constant controls and
travel demands, implying the non-stabilizability of the traffic system (or the network gridlock) under the condition of
heavy congestion with high travel demand. Haddad and Geroliminis (2012); Haddad (2015) invited future investiga-
tion to this problem. Regarding the demand as exogenous input to the MFD system, the non-stabilizability for heavily
congested situations might not be an inherent nature of the MFD system but due to the network loads in unreasonable
large inflow (or demand). As it will be shown later, the MFD system with strictly admissible demand per Definition 2.4
implies that the global stabilizability of the two-region network dynamics even under heavily congested conditions.

Discriminating the internal factors from the exogenous ones is important to access the controllability of a dynamic
system. To this end, we illustrate the architecture for closed-loop controller design in terms of block diagram as
depicted in Figure 3. The exosystem, which can be regarded as the source for the urban network, generates the travel
demand (usually regarded as disturbance to the network traffic dynamics) as well as the desired equilibrium (possibly
specified by the traffic manager). The strictly admissible travel demand is input to the traffic network which influences
the traffic state n (veh). The actual traffic state is compared with its reference (i.e., the desired equilibrium) n∗ (veh) to
evaluate the error vector. It is then used as feedback signal to drive the controller. Finally, a control law is implemented
to enforce the actual traffic state closer to the desired equilibrium. This control process continues over time till the
desired steady traffic state is reached.

3. CLF-based feedback control regulators

In this section, two forms of universal perimeter feedback controllers, i.e., the almost smooth controller and the
Bang-bang like controller, are constructed through the lens of CLF to regulate the cross-boundary traffic such that the
network states of the two regions may evolve towards the desired equilibrium. To achieve that, we first convert this
control (or regulation) problem into a conventional stabilization problem, i.e., the controller will force the system state
governed by (1a)-(1d) to the origin.

3.1. Converting the control problem to a stabilization problem

The control objective is to find a feasible control input u(t) such that the system state n(t) converges asymptotically
to the desired steady state n∗ as t → ∞. Given a desired network equilibrium, the steady state n∗ can be solved from the
steady-state equations (A.1). Since the state governing internal and cross-boundary traffic is virtual (or not accessible)
while noting that only network traffic states n1 and n2 are physically well defined, a simplification of the original MFD
dynamics (1a)-(1d) by aggregating the virtual state can simplify the analysis (Haddad and Shraiber, 2014; Haddad,
2015).
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where �i ∈ R+ is an arbitrary small number, “mid” denotes the middle point of the three points. Moreover, it is
assumed that an admissible demand can yield a steady state for the network, i.e., the Equations (A.1) admit at least a
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minimum of the demand and the available space. The constant � > 0 is used to guarantee the strict feasibility of (4a)
and (4b). Note that if the travel demand fulfills the properties in Definition 2.4, the urban traffic network could be well
protected from gridlock for which lots of control strategies might break down plus the MFD would not be well-defined
(Mahmassani et al., 2013). Hereafter, q̃ denotes the admissible travel demand per Definition 2.4.
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is the actual demand is too small to render the system to reach the desired equilibrium. So the “demand” equals to
the available space rather than the actual demand is loaded into the network. Intuitively, it is of no physical meaning.
For instance, when the demand is constant, loading a value larger than the demand is meaningless. On the other hand,
this requirement was stemmed from the unreasonable choice of the desired equilibrium n̄s

i , i.e., setting n̄s
i larger than

the steady state that the demand pattern yields. This is not necessary and without practical consideration because the
control objective is to make the network more dense than it should be without any control. It is a waste of network
capacity and control effect while causing more delay to the network. As a similar case, the ramp metering, Hegyi
et al. (2005) claimed that ramp metering is only useful when traffic is not too light (otherwise ramp metering is not
needed) and not too dense (otherwise breakdown will happen anyway). Therefore, perimeter control is not necessary
when the traffic is too light. For mathematical completeness, we use this condition.

2.3. Formulation of feedback control problem

We are now ready to formulate the main feedback control problem undertaken in this paper.
Control Goal/Problem: Given an admissible travel demand, if possible, devise a control input u(t) such that the

traffic dynamics, from arbitrary initial state within the feasible region, will evolve to a desired equilibrium.
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Remark 2.6. Note that if the steady state n∗ is chosen to be the critical value on the MFD, the control input will
also maximize the total number of vehicles that complete their trips, i.e., maximizing the throughput. It is of interest
to note that, as it will be proven in Subsection 3.2, through the lens of CLF, the two-region MFD framework can be
globally stabilized even when heavily traffic congestion happens for all strictly admissible travel demand.

Remark 2.7. To the best of our knowledge, based on the same MFD framework, most existing researches have been
dedicated to the local stabilization of the traffic dynamics or locally optimal control based on MPC. Noteworthily, Had-
dad and Geroliminis (2012) calculated the region of attraction boundaries for different levels of constant controls and
travel demands, implying the non-stabilizability of the traffic system (or the network gridlock) under the condition of
heavy congestion with high travel demand. Haddad and Geroliminis (2012); Haddad (2015) invited future investiga-
tion to this problem. Regarding the demand as exogenous input to the MFD system, the non-stabilizability for heavily
congested situations might not be an inherent nature of the MFD system but due to the network loads in unreasonable
large inflow (or demand). As it will be shown later, the MFD system with strictly admissible demand per Definition 2.4
implies that the global stabilizability of the two-region network dynamics even under heavily congested conditions.

Discriminating the internal factors from the exogenous ones is important to access the controllability of a dynamic
system. To this end, we illustrate the architecture for closed-loop controller design in terms of block diagram as
depicted in Figure 3. The exosystem, which can be regarded as the source for the urban network, generates the travel
demand (usually regarded as disturbance to the network traffic dynamics) as well as the desired equilibrium (possibly
specified by the traffic manager). The strictly admissible travel demand is input to the traffic network which influences
the traffic state n (veh). The actual traffic state is compared with its reference (i.e., the desired equilibrium) n∗ (veh) to
evaluate the error vector. It is then used as feedback signal to drive the controller. Finally, a control law is implemented
to enforce the actual traffic state closer to the desired equilibrium. This control process continues over time till the
desired steady traffic state is reached.

3. CLF-based feedback control regulators

In this section, two forms of universal perimeter feedback controllers, i.e., the almost smooth controller and the
Bang-bang like controller, are constructed through the lens of CLF to regulate the cross-boundary traffic such that the
network states of the two regions may evolve towards the desired equilibrium. To achieve that, we first convert this
control (or regulation) problem into a conventional stabilization problem, i.e., the controller will force the system state
governed by (1a)-(1d) to the origin.

3.1. Converting the control problem to a stabilization problem

The control objective is to find a feasible control input u(t) such that the system state n(t) converges asymptotically
to the desired steady state n∗ as t → ∞. Given a desired network equilibrium, the steady state n∗ can be solved from the
steady-state equations (A.1). Since the state governing internal and cross-boundary traffic is virtual (or not accessible)
while noting that only network traffic states n1 and n2 are physically well defined, a simplification of the original MFD
dynamics (1a)-(1d) by aggregating the virtual state can simplify the analysis (Haddad and Shraiber, 2014; Haddad,
2015).
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Let ni(t) for i = 1, 2 denote the total number of vehicles in Ri at time t. By introducing time-varying parameters
υii(t) =

nii(t)
ni(t)

and υi j(t) =
ni j(t)
ni(t)

and summing (1a), (1b) and (1c), (1d) for i, j = 1, 2, respectively, we obtain

dn1(t)
dt

= −υ11(t)G1(n1(t)) − υ12(t)G1(n1(t))u1(t) + υ21(t)G2(n2(t))u2(t) + q̃1(t) (6a)

dn2(t)
dt

= −υ22(t)G2(n2(t)) − υ21(t)G2(n2(t))u2(t) + υ12(t)G1(n1(t))u1(t) + q̃2(t) (6b)

where

n1(t) = n11(t) + n12(t), n2(t) = n21(t) + n22(t) (7a)
q̃1(t) = q̃11(t) + q̃12(t), q̃2(t) = q̃21(t) + q̃22(t). (7b)

As reviewed in the online Appendix, it is a common practice in the control literature to investigate equilibrium
behavior at the origin. For system with control, it is well known that, given a dynamic system ṅ = f (n, u) and a pair
n̄ ∈ Rn and u∗ ∈ Rm such that 0 = f (n̄, u∗), then a coordinate transformation is possible by introducing new variables
ñ(t) = n(t) − n̄ and ũ(t) = u(t) − u∗, thus achieving a new system:

˙̃n(t) = F(ñ, q̃) + S (ñ, t)ũ (8)

subject to

0 − n̄1 ≤ ñ1(t) ≤ n jam
1 − n̄1

0 − n̄2 ≤ ñ2(t) ≤ n jam
2 − n̄2

0 − u∗1 ≤ umin − u∗1 ≤ ũ1(t) ≤ umax − u∗1 ≤ 1 − u∗1
0 − u∗2 ≤ umin − u∗2 ≤ ũ2(t) ≤ umax − u∗2 ≤ 1 − u∗2

where ñ(t) = [ñ1(t), ñ2(t)]T , ũ(t) = [ũ1(t), ũ2(t)]T . F : R+ × R2 × R2
+ → R2 and S : R+ × R2 → R2×2 are at least

continuously differentiable and of appropriate dimensions, described by

F �
[−υ11G1(ñ1 + n̄1) − υ12G1(ñ1 + n̄1)ū1 + υ21G2(ñ2 + n̄2)ū2 + q̃1
−υ22G2(ñ2 + n̄2) − υ21G2(ñ2 + n̄2)ū2 + υ12G1(ñ1 + n̄1)ū1 + q̃2

]

S �
[−υ12G1(ñ1 + n̄1) υ21G2(ñ2 + n̄2)
υ12G1(ñ1 + n̄1) −υ21G2(ñ2 + n̄2)

]
.

Details on the derivation of this coordinate transformation is presented in online Appendix. At this moment, the
problem is to devise a control such that the origin of (8) can be made asymptotically stable. The network traffic state
and the control are restricted into some compact sets, i.e., n(t) ∈ N and u(t) ∈ U, where N and U are the universal
sets of n(t) and u(t), respectively. As a consensus in the literature, controller design for nonlinear systems subject to
input constraints induces both practical significance and theoretical challenges.

3.2. A quadratic CLF

In this section we will construct a CLF for the global stabilization problem with both state and control constraints.
Consider a class of affine nonlinear time-varying system of the form (8) with F(ñ, q) and S (ñ) continuously differen-
tiable. Let V �(ñ) denote the partial derivative of V(ñ) w.r.t. ñ. Define

Definition 3.1. (CLF, see Haddad and Chellaboina, 2008, pp. 438) Consider nonlinear system (8) with control input
constraints ũ ∈ K ⊆ R2. A continuously differentiable positive-definite function V : D → R+ satisfying

inf
ũ∈K

V �(ñ)(F + S ũ) < 0, ∀ñ � 0, ñ ∈ D ⊆ R2 (9)

is called a CLF.
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It follows from Lyapunov’s Theorem and Converse Lyapunov’s Theorem (see Haddad and Chellaboina, 2008, chap.
3) that system (8) is feedback asymptotically stabilizable if and only if there exists a CLF. Moreover, in the case when
D = R2 and K = R2, ñ ≡ 0 is globally asymptotically stabilizable if and only if V(ñ) is radially unbounded, i.e.,
V(ñ)→ ∞ as �ñ� → ∞. The interested readers are referred to the online Appendix for a brief introduction of Lyapunov
theory. According to the characteristics of the traffic dynamics, a quadratic function V(ñ) = 1

2 ñ2
1 +

1
2 ñ2

2 could be a CLF
candidate that is verifiable by the following theorem.

Theorem 3.2. The function

V(ñ) =
1
2

ñ2
1 +

1
2

ñ2
2

is a CLF for system (8) with strictly admissible travel demand per Definition 2.4.

Proof of Theorem 3.2. See the online Appendix.

With the CLF given in Theorem 3.2, our goal is to construct universal control laws that stabilize the nonlinear system
(8). For systems with k control input where k is a known positive constant, such universal (closed-form) control laws
can be obtained through Sontag’s formula (see Sontag, 1998). However, one of the main difficulties in establishing
controllers through the lens of CLFs lies in the fact that the control is restricted to a specified control value set (CVS)U
satisfying (2c) and (2d). As for the stabilization problem subject to bounded control, Lin and Sontag (1991) obtained
a universal formula for the case when the CVS is the open unit ball in Euclidean k-space, whereas recently Leyva et al.
(2013) extended that result to the case when the CVS is given by the hyperboxU � [−r−1 , r

+
1 ] × · · · × [−r−k , r

+
k ] ⊂ Rk,

with r±j > 0 for j = 1, . . . , k.

3.3. Almost smooth controller

For the two-region MFD dynamic traffic system with two state variables and two control variables, note that (8) is of
the affine in control form, the stability is now referred to the nominal equilibrium ñ = 0. With input constraints where
the CVS U is the unit ball of Rk, we could construct an explicit feedback controller that asymptotically stabilizes the
zero solution of the shifted system (8) as follows:

μ(t) = Φ(ñ(t)) = φ(α(ñ), �β(ñ)�2)β(ñ) (10)

where

φ(α(ñ), �β(ñ)�2) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− α(ñ)+

√
α2(ñ)+(βT (ñ)β(ñ))2

βT (ñ)β(ñ)(1+
√

1+βT (ñ)β(ñ))
, if β(ñ) � 0

0, if β(ñ) = 0
(11)

V(ñ) is a CLF for system (8), α(ñ) � V
�
(ñ)F(ñ, q), β(ñ) = [β1(ñ), . . . , βk(ñ)] � S T (ñ)V

�T (ñ). Since F(·, q) and S (·) are
smooth, it follows that α(ñ) and β(ñ), ñ ∈ R2, are smooth functions, and hence, Φ(ñ(t)) given by (11) is smooth for all
ñ ∈ R2 if either β(ñ) � 0 or α(ñ) < 0. Hence, the feedback control law given by (11) is smooth everywhere except at
the origin. And the following result, concerned with an additional so-called small control property (SCP)3, provides
necessary and sufficient conditions under which the feedback control law given by (11) is guaranteed to be continuous
and Lipschitz continuous at the origin in addition to being smooth everywhere else.

Theorem 3.3. (see Haddad and Chellaboina, 2008) Consider the nonlinear dynamical system given by (8) with a
radially unbounded CLF V(ñ). Then both the following statements are true.

1. The control law Φ(ñ(t)) given by (11) is continuous at ñ = 0 if and only if for every ε > 0, there exists δ > 0 such
that for all 0 < �ñ� < δ, there exists μ ∈ Rk such that �ũ� < ε and α(ñ) + βT (ñ)ũ < 0.

2. There exists a stabilizing control law Φ̂(ñ(t)) such that α(ñ) + βT (ñ)Φ̂(ñ(t)) < 0, ñ ∈ Rm, ñ � 0, and Φ̂(ñ(t)) is
Lipschitz continuous at ñ = 0 if and only if the control law Φ(ñ(t)) given by (11) is Lipschitz continuous at ñ = 0.

3 To ensure feedback control functions continuous at the origin, Artstein (1983) introduced the concept of small control property. Readers are
referred to Artstein (1983) or the online Appendix for its definition
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2 − n̄2
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+ → R2 and S : R+ × R2 → R2×2 are at least

continuously differentiable and of appropriate dimensions, described by

F �
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]
.

Details on the derivation of this coordinate transformation is presented in online Appendix. At this moment, the
problem is to devise a control such that the origin of (8) can be made asymptotically stable. The network traffic state
and the control are restricted into some compact sets, i.e., n(t) ∈ N and u(t) ∈ U, where N and U are the universal
sets of n(t) and u(t), respectively. As a consensus in the literature, controller design for nonlinear systems subject to
input constraints induces both practical significance and theoretical challenges.

3.2. A quadratic CLF

In this section we will construct a CLF for the global stabilization problem with both state and control constraints.
Consider a class of affine nonlinear time-varying system of the form (8) with F(ñ, q) and S (ñ) continuously differen-
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V(ñ) =
1
2

ñ2
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For presentation convenience, define a � α(ñ), b � βT (ñ)β(ñ), and

φ(a, b) �
⎧⎪⎪⎨⎪⎪⎩
− a+

√
a2+b2

b(1+
√

1+b)
, if b > 0

0, if b = 0

Since V(ñ) = 1
2 (ñ2

1+ñ2
2) is a CLF for system (8), for any subsetU ⊆ Rk, there exists some u ∈ U such that a+�β, ũ� < 0,

i.e., there exists a set of feasible control such that

DU � {(a, β) ∈ R × R2 | ∃u ∈ U, a + �β, ũ� < 0},
where �β, ũ� = βT ũ. In particular, for the case of scalar-valued controls, and denoting b = β1, the resulting bounded
feedback law is Φ(ñ) = ϕ(a(ñ), b(ñ)) where

ϕ(a, b) �
⎧⎪⎪⎨⎪⎪⎩
− a+

√
a2+b4

b(1+
√

1+b2)
, if b � 0

0, if b = 0
(12)

and the feasible control forms the following set:

DU � {(a, b) | a < |b|, a, b ∈ R}.
The following lemma is useful in the subsequent development.

Lemma 3.4. (see Lin and Sontag, 1991) Assume the real numbers a, b, δ satisfy a < δ|b| and 0 < δ ≤ 1. Then, with
ϕ defined by (12), it holds that

|ϕ(a, b)| < min{2δ + |b|, 1}.
For our case, the set in question is

DU � {(a, b) | a < min{1 − u∗1, u
∗
1}|b|, a, b ∈ R}.

Note that constraints (2c)-(2d) are imposed on the controls, a modification to the control formula (11) given by Lin
and Sontag (1991) is necessary. To begin with, we first define a saturation function and the meaning of almost smooth.

Definition 3.5. (Saturation function) Given the vector bound −r− ≤ r ≤ r+, the concerned saturation function is
element-wise defined as

[sat(r)] j �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r+j , if r j > r+j
r j, if r−j ≤ r j ≤ r+j
−r−j , if r j < −r−j

Definition 3.6. (Almost smooth) The function sat(r) � [[sat(r)]1, [sat(r)]2]T is called almost smooth if, it is smooth
almost everywhere but finite limit points such as the origin and the inflection points of the saturation function whereas
the function is continuous at these points.

Theorem 3.7. Denote the steady-state control as u∗ = [u∗1, u
∗
2]T and let μ(t) be defined by (10) and (11), r−j � u∗j ,

r+j � 1 − u∗j , and
u(t) = ũ(t) + u∗ with ũ(t) � sat(μ(t)) = sat(Φ(ñ)).

Then ũ(t) is an explicit almost smooth feedback controller that globally asymptotically stabilizes the system (8) (at the
origin) with strictly admissible travel demand per Definition 2.4. Therefore, u(t) is an explicit almost smooth feedback
controller that regulates the original traffic dynamics to the desired equilibrium asymptotically meanwhile satisfying
0 ≤ u1(t) ≤ 1 and 0 ≤ u2(t) ≤ 1.

Proof of Theorem 3.7. See the online Appendix.

This almost smooth control is potentially applicable for calculating the price for dynamic road pricing, a discussion
on this can be found in Zhong et al. (2016).
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3.4. Bang-bang like controller for signal-timing schemes

Traffic signals are commonly equipped for gating control in many cities such as Guangzhou, to our familiarity.
Considerable interest in literature has been devoted to devising gating control schemes through traffic signals. In
respect of its specific nature, traffic signal is basically non-smooth similar to Bang-bang like control. Recently, such
control schemes have been commonly used for hierarchical control in urban networks, e.g., Daganzo (2007); Haddad
et al. (2013); Geroliminis et al. (2013); Ramezani et al. (2015).

To adapt to the nature of traffic signal, we thus present a more realistic Bang-bang like control scheme in what
follows. The result is built on the CLF developed by Leyva et al. (2013) which aims to globally stabilize the underlying
nonlinear system (8) with control restricted in a hyperbox set given by U � [−r−1 , r

+
1 ] × · · · × [−r−k , r

+
k ] ⊂ Rk, with

r±j > 0 for j = 1, . . . , k, in terms of Bang-bang like control strategies.
For stabilizing (8) at the origin, we propose an ε-parameterized (ε > 0) family of feedback control functions:

ũε(ñ) � [ũε1(ñ), ũε2(ñ)]T with ũεj(ñ) = �εj(α(ñ), η(ñ))ω̄ j(ñ) (13)

where

�εj(α(ñ), η(ñ)) =
{

1 −
(
1 − |α|+α2η

η j

η

)
exp
(
τεj
η j

η

)
, if η j > 0

0, if η j = 0
, τεj(ñ) =

{
k ln(λ(ñ))
λ(ñ) − εη j, if η > 0

0, if η = 0
, j = 1, 2

with λ(ñ) = 1 − 1
2 (|α(ñ)| + α(ñ))/η(ñ), η(ñ) =

∑
j η j(ñ), and

η j(ñ) � | − β j|r j =

{ | − β j|r+j , if β j < 0
−| − β j|r−j , if β j ≥ 0 , ω̄ j(ñ) � r j(β j) =

{
r+j , if β j < 0
−r−j , if β j ≥ 0 , β j(ñ) = S j(ñ)V

�
j(ñ) ∈ R.

Theorem 3.8. (see Leyva et al., 2013) Assume that the CVS is the hyperbox U = [−r−1 , r
+
1 ] × · · · × [−r−k , r

+
k ] with

r±j > 0, V(ñ) is a CLF (w.r.t. system (8) and controls taking values inU) satisfying the SCP. Then ũε(ñ) given by (13) is
a formula for an ε-family (ε > 0) control functions that renders system (8) globally asymptotically stable.

Theorem 3.9. Denote the steady-state control as u∗ = [u∗1, u
∗
2]T , r+j � 1 − u∗j and −r−j � −u∗j for j = 1, 2, then

uε(t) = ũε(t) + u∗

is an explicit Bang-bang like feedback controller that drives the traffic dynamics (with strictly admissible travel de-
mand per Definition 2.4) asymptotically to the desired equilibrium. Meanwhile, the following restrictions 0 ≤ uε1(t) ≤
1, 0 ≤ uε2(t) ≤ 1 are fulfilled.

Proof of Theorem 3.9. See the online Appendix.

Note that the control ω̄ j(ñ) is piecewise constant and hence it is a Bang-bang type of control which defines the
signal phase. The function �εj(ñ) is a rescaling function used to regularize each entry ω̄ j(ñ). For example, consider a
gating site, to be of six lanes with each lane equipped with a signal. Then �εj(ñ) = 0.5 and ω̄ j(ñ) = 1 for some time
means that three lanes can be served for cross boundary traffic.

3.5. Robustness

In this section we generalize the preceding results to systems subject to disturbances. As claimed, the uncertain
travel demand is usually regarded as disturbance in traffic systems. Regarding the nominal system (8), the demand pat-
tern q̃ is viewed as “disturbances” perturbing the system. For convenience, we rewrite the dynamics with disturbance
as

˙̃n = F(ñ, q̃) + S (ñ)ũ. (14)

Assume that the disturbances are of measurable functions taking values in an arbitrary and fixed compact subset D of
Rl. Following Lin and Sontag (1995), we define a(ñ, q̃) = V �(x)F(ñ, q̃), and â(ñ) = maxq̃∈D{a(ñ, q̃)}.
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�
j(ñ) ∈ R.

Theorem 3.8. (see Leyva et al., 2013) Assume that the CVS is the hyperbox U = [−r−1 , r
+
1 ] × · · · × [−r−k , r

+
k ] with

r±j > 0, V(ñ) is a CLF (w.r.t. system (8) and controls taking values inU) satisfying the SCP. Then ũε(ñ) given by (13) is
a formula for an ε-family (ε > 0) control functions that renders system (8) globally asymptotically stable.

Theorem 3.9. Denote the steady-state control as u∗ = [u∗1, u
∗
2]T , r+j � 1 − u∗j and −r−j � −u∗j for j = 1, 2, then

uε(t) = ũε(t) + u∗

is an explicit Bang-bang like feedback controller that drives the traffic dynamics (with strictly admissible travel de-
mand per Definition 2.4) asymptotically to the desired equilibrium. Meanwhile, the following restrictions 0 ≤ uε1(t) ≤
1, 0 ≤ uε2(t) ≤ 1 are fulfilled.

Proof of Theorem 3.9. See the online Appendix.

Note that the control ω̄ j(ñ) is piecewise constant and hence it is a Bang-bang type of control which defines the
signal phase. The function �εj(ñ) is a rescaling function used to regularize each entry ω̄ j(ñ). For example, consider a
gating site, to be of six lanes with each lane equipped with a signal. Then �εj(ñ) = 0.5 and ω̄ j(ñ) = 1 for some time
means that three lanes can be served for cross boundary traffic.

3.5. Robustness

In this section we generalize the preceding results to systems subject to disturbances. As claimed, the uncertain
travel demand is usually regarded as disturbance in traffic systems. Regarding the nominal system (8), the demand pat-
tern q̃ is viewed as “disturbances” perturbing the system. For convenience, we rewrite the dynamics with disturbance
as

˙̃n = F(ñ, q̃) + S (ñ)ũ. (14)

Assume that the disturbances are of measurable functions taking values in an arbitrary and fixed compact subset D of
Rl. Following Lin and Sontag (1995), we define a(ñ, q̃) = V �(x)F(ñ, q̃), and â(ñ) = maxq̃∈D{a(ñ, q̃)}.
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Definition 3.10. (Uniform CLF) A proper and positive definite smooth function V(x) is said a uniform CLF w.r.t. the
CVS K if the following inequality holds.

inf
ũ∈K
{a(ñ, q̃) + β(ñ)ũ} < 0, ∀ñ � 0, ∀q̃ ∈ D (15)

The function V is said to satisfy the uniform SCP if for any � > 0, there exists a δ such that if ñ � 0 satisfies |ñ| < δ,
then there is some ũ ∈ K with |ũ| < � such that a(ñ, q̃) + β(ñ)ũ < 0, for all q̃.

By virtue of compactness of D, (15) implies that

sup
ũ∈K
{â(ñ) + β(ñ)ũ} < 0, ∀ñ � 0.

Lemma 3.11. (see Lin and Sontag, 1995) Let V be a uniform CLF for system (14) satisfying the uniform SCP with
the CVS ũ ∈ K . Then the control feedback law ũ defined in Theorem 3.7, but with a replaced by â, is almost smooth,
continuous everywhere, and robustly stabilizes the system at the origin.

The same routine can be applied to the Bang-bang like control.
To show the closed-loop system has the robust stability margin (RSM) property, consider the following system

ẋ = f (x) + Δ f

where �Δ f �∞ = {x ∈ Rn : sup �Δ f (x)�} is bounded as the additive unmodeled uncertainty. The RSM γ is defined
as the size of the smallest destabilizing perturbation, i.e., γ = inf �Δ f (x)�∞ such that the system is not globally
asymptotically stable at the origin. A method for approximating the RSM is based on the existence of a Lyapunov
function V(x) for the nominal system ẋ = f (x) such that V̇(x) < 0 for all x � 0 where we have assumed the origin is
the equilibrium of the system.

Given an affine system (14), suppose that there exists a CLF V(ñ) for the hyperbox CVS as previously discussed.
Given a feedback control ũ(ñ) satisfying a(ñ)−β(ñ)ũ(ñ) < 0, where a(ñ) and β(ñ) are the same with those in the above.
The corresponding RSM is thus defined as

γV = inf
ñ�0

{
−a(ñ) − β(ñ)ũ(ñ)

�∇V(ñ)�
}
, ñ ∈ Rn.

It is easy to show that if �ΔF� ≤ �γV� then the system

˙̃n = F(ñ, q̃) + ΔF + S (ñ)ũ

is robustly stable at the origin.

Remark 3.12. It is necessary that the MFD is well defined, otherwise the MFD-based dynamics is ill-posed. As
indicated in the proofs of the main theorems on the controllability and the CLF-based controller designs, we do not
rely on a specific functional form of the MFD. Indeed, we do allow parametric uncertainty in the MFD as we can infer
from the robust controller design. The uncertainty structure can be arbitrary as long as the RSM property is well
satisfied. This will be verified by several numerical simulations in the forthcoming section.

4. Simulations and discussions

4.1. Scenario I: Fixed demand case

In this case, we examine the proposed control laws to the controller design scenarios of Example 1 and Example 3
presented in Haddad (2015). Note that the MFD shapes for both regions in Subsection 4.1 are assumed to be the same
as those in Haddad (2015), i.e., Gi(ni) = (1.4877 ·10−7n3

i −2.9815 ·10−3n2
i +15.0912ni)/3600, with ni,cr = 3400 (veh),

Gi(ni,cr) = 6.3 (veh/s), and ni, jam = 10000 (veh). The remaining settings are also in line with Example 1 and Example
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3 respectively in Haddad (2015) while we obtain the four-state equilibrium n∗ as well as the corresponding control
input u∗ by solving the steady-state equations.

In the first example, we aim at designing a controller to regulate the traffic state to a prescribed equilibrium (i.e., the
set points) n̄ = [3000, 3000]T in the uncongested regime. The four-state equilibrium n∗ = [1538.9, 1461.1, 1461.1, 1538.9]T

with the corresponding steady-state control input u∗ = [0.5267, 0.5267]T are obtained by solving the steady-state equa-
tions. As expected, the simulation results in Figure 4 verify that the MFD-based dynamic system can be stabilized by
both controllers which is consistent with the theoretical counterparts, i.e., Theorem 3.7 and Theorem 3.9, respectively.
Figure 4(a) illustrate the effect of the lower and upper bounds of the perimeter control on the convergent rate of the
dynamics. Although all the controls can regulate the traffic state to the desired equilibrium, it is found that the time
to reach steady-state is longer if the gap between the lower and upper bounds is smaller. The proposed controller
drives the traffic state to the set point (in 6 minutes) in a much faster manner than the control scheme in Haddad
(2015) (which takes more than 116 minutes). From Figure 4(b), we can see that the almost smooth control converges
asymptotically to its steady state soon after the state variable does.
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(c) State trajectories with Bang-bang like control
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(d) Bang-bang like control input over time

Figure 4: State and control evolution over time for the constant demand case

In the second example, the set point of one region is in the uncongested regime while that of the other region is in the
congested regime, i.e., n̄ = [3000, 4000]T . The four-state equilibrium is n∗ = [1500.5, 1499.5, 2000.5, 1999.5]T with
the corresponding control input as u∗ = [0.5003, 0.4997]T . As reported in Haddad (2015), several existing methods,
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Definition 3.10. (Uniform CLF) A proper and positive definite smooth function V(x) is said a uniform CLF w.r.t. the
CVS K if the following inequality holds.

inf
ũ∈K
{a(ñ, q̃) + β(ñ)ũ} < 0, ∀ñ � 0, ∀q̃ ∈ D (15)

The function V is said to satisfy the uniform SCP if for any � > 0, there exists a δ such that if ñ � 0 satisfies |ñ| < δ,
then there is some ũ ∈ K with |ũ| < � such that a(ñ, q̃) + β(ñ)ũ < 0, for all q̃.

By virtue of compactness of D, (15) implies that

sup
ũ∈K
{â(ñ) + β(ñ)ũ} < 0, ∀ñ � 0.

Lemma 3.11. (see Lin and Sontag, 1995) Let V be a uniform CLF for system (14) satisfying the uniform SCP with
the CVS ũ ∈ K . Then the control feedback law ũ defined in Theorem 3.7, but with a replaced by â, is almost smooth,
continuous everywhere, and robustly stabilizes the system at the origin.

The same routine can be applied to the Bang-bang like control.
To show the closed-loop system has the robust stability margin (RSM) property, consider the following system

ẋ = f (x) + Δ f

where �Δ f �∞ = {x ∈ Rn : sup �Δ f (x)�} is bounded as the additive unmodeled uncertainty. The RSM γ is defined
as the size of the smallest destabilizing perturbation, i.e., γ = inf �Δ f (x)�∞ such that the system is not globally
asymptotically stable at the origin. A method for approximating the RSM is based on the existence of a Lyapunov
function V(x) for the nominal system ẋ = f (x) such that V̇(x) < 0 for all x � 0 where we have assumed the origin is
the equilibrium of the system.

Given an affine system (14), suppose that there exists a CLF V(ñ) for the hyperbox CVS as previously discussed.
Given a feedback control ũ(ñ) satisfying a(ñ)−β(ñ)ũ(ñ) < 0, where a(ñ) and β(ñ) are the same with those in the above.
The corresponding RSM is thus defined as

γV = inf
ñ�0

{
−a(ñ) − β(ñ)ũ(ñ)

�∇V(ñ)�
}
, ñ ∈ Rn.

It is easy to show that if �ΔF� ≤ �γV� then the system

˙̃n = F(ñ, q̃) + ΔF + S (ñ)ũ

is robustly stable at the origin.

Remark 3.12. It is necessary that the MFD is well defined, otherwise the MFD-based dynamics is ill-posed. As
indicated in the proofs of the main theorems on the controllability and the CLF-based controller designs, we do not
rely on a specific functional form of the MFD. Indeed, we do allow parametric uncertainty in the MFD as we can infer
from the robust controller design. The uncertainty structure can be arbitrary as long as the RSM property is well
satisfied. This will be verified by several numerical simulations in the forthcoming section.

4. Simulations and discussions

4.1. Scenario I: Fixed demand case

In this case, we examine the proposed control laws to the controller design scenarios of Example 1 and Example 3
presented in Haddad (2015). Note that the MFD shapes for both regions in Subsection 4.1 are assumed to be the same
as those in Haddad (2015), i.e., Gi(ni) = (1.4877 ·10−7n3

i −2.9815 ·10−3n2
i +15.0912ni)/3600, with ni,cr = 3400 (veh),

Gi(ni,cr) = 6.3 (veh/s), and ni, jam = 10000 (veh). The remaining settings are also in line with Example 1 and Example
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3 respectively in Haddad (2015) while we obtain the four-state equilibrium n∗ as well as the corresponding control
input u∗ by solving the steady-state equations.

In the first example, we aim at designing a controller to regulate the traffic state to a prescribed equilibrium (i.e., the
set points) n̄ = [3000, 3000]T in the uncongested regime. The four-state equilibrium n∗ = [1538.9, 1461.1, 1461.1, 1538.9]T

with the corresponding steady-state control input u∗ = [0.5267, 0.5267]T are obtained by solving the steady-state equa-
tions. As expected, the simulation results in Figure 4 verify that the MFD-based dynamic system can be stabilized by
both controllers which is consistent with the theoretical counterparts, i.e., Theorem 3.7 and Theorem 3.9, respectively.
Figure 4(a) illustrate the effect of the lower and upper bounds of the perimeter control on the convergent rate of the
dynamics. Although all the controls can regulate the traffic state to the desired equilibrium, it is found that the time
to reach steady-state is longer if the gap between the lower and upper bounds is smaller. The proposed controller
drives the traffic state to the set point (in 6 minutes) in a much faster manner than the control scheme in Haddad
(2015) (which takes more than 116 minutes). From Figure 4(b), we can see that the almost smooth control converges
asymptotically to its steady state soon after the state variable does.
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Figure 4: State and control evolution over time for the constant demand case

In the second example, the set point of one region is in the uncongested regime while that of the other region is in the
congested regime, i.e., n̄ = [3000, 4000]T . The four-state equilibrium is n∗ = [1500.5, 1499.5, 2000.5, 1999.5]T with
the corresponding control input as u∗ = [0.5003, 0.4997]T . As reported in Haddad (2015), several existing methods,
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e.g., the MPC and LMI, have been tested to fail to deliver a feasible control law to this scenario. They encouraged
future research effort such as nonlinear controller design to handle this challenge. In line with the literature, we apply
Bang-bang like control to this scenario. Simulation results are depicted in Figure 4(c) and Figure 4(d). As shown in
Figure 4(c), the control regulates the system trajectories asymptotically to the desired equilibrium n̄1 = 3000 (veh)
and n̄2 = 4000 (veh), respectively. As expected, the control also asymptotically converges to its steady state. Since
the initial accumulation of Region 1 is less than its set point, less control effort is needed as indicated by the figure.
The control input sequence of u2 has a very limited chattering behavior which indicates the amount of control effort is
small. Both control input sequences during the steady-state period are constant. Due to its closed-form in conjunction
with a simple CLF, the computational complexity of the proposed controllers is low. All the experiments reported
in this section are performed on Matlab 2015a. It only takes a few seconds to accomplish the simulations. Unlike
some existing methods that have number of parameters to be tuned carefully case-by-case and should be also tuned if
the model parameters change in the future, e.g., the prediction horizon length of the MPC, the proposed controllers
are automatically designed given the calibrated MFD network traffic model and demand pattern. These might be
considered as the advantages of the proposed controllers.

Time [min]
0 10 20 30 40 50 60 70 80 90

D
em

an
d 

[v
eh

/s
ec

]

0

0.5

1

1.5

2

2.5

3

q11
q12
q21
q22

Time [min]
0 10 20 30 40 50 60 70 80 90

D
em

an
d 

[v
eh

/s
ec

]

0

0.5

1

1.5

2

2.5

3

q11
q12
q21
q22

Figure 5: Time varying travel demand pattern (piecewise)

4.2. Scenario II: Piecewise travel demand case with non-identical third-order MFD

The piecewise time-varying demands shown in Figure 5 simulate a morning peak hour with high cross-boundary
demand. The demand function is thus designed to excite congestion onset, stationary congestion and congestion
dissolving processes such that the traffic dynamics can cover both congested and uncongested regions of the MFD.
The MFDs for the two regions are different as shown in Figure 7(a). The desired accumulations are chosen as n̄1 =

3000 (veh) and n̄2 = 3000 (veh). The steady-state equations suggest that q̄ = [0.924, 0.924, 0.924, 0.924]T , n∗ =
[720, 2280, 2123, 877]T , u∗ = [0.1581, 0.2066]T . The initial accumulations are randomly chosen to be [2000, 5000]T .

The simulation results are depicted in Figure 6. Both the almost smooth and the Bang-bang like controllers regulate
the traffic state to the desired equilibrium asymptotically while the almost smooth controller delivers outperformance
over the Bang-bang like controller in terms of convergent rate for certain and uncertain demand cases. If the lower
bound of the control is zero and since the initial accumulation of Region 1 is less than the set point, the controller
u1 holds the cross boundary flow from Region 1 to Region 2 so as to increase the accumulation to the set point fast.
Such a “behavior” seems the controller intends to create congestion in accordance to the objective described by the
desired equilibrium which is discussed in Remark 2.5. One can change the lower bound of the control from zero
to a prescribed value umin > 0 to prevent this from happening. Once the accumulation is higher than the desired
equilibrium, the control is activated to suppress the traffic state from increasing. The controller u2, on the other hand,
acts in a different way to let go the cross boundary traffic first and decreases the gain gradually when the traffic state
is approaching to the desired equilibrium. Specifically, the almost smooth control, as expected, shows a very small
chattering behavior when the states are close to the set points. This is because the almost smooth control admits
continuous but non-smooth points when the state is close to the desired equilibrium (or the control gain hits the
saturation boundaries) as stated in Subsection 3.3. Similar phenomenon is observed for the Bang-bang like control
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(b) Almost smooth control without distur-
bance
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(c) Almost smooth control with disturbance
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(e) Bang-bang like control without distur-
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(f) Bang-bang like control with disturbance

Figure 6: Non-identical MFD case: with and without demand noise

case. The Bang-bang like controller, shows a fast chattering behavior at the beginning and enters the steady-state in
accordance with the state. In Guangzhou, such control is implemented by the lane based signal control. For example a
gating site be of six lanes with each lane equipped with a signal, then �εj(ñ) = 1/3 and ω̄ j(ñ) = 1 for some time means
two lanes can be served for cross boundary traffic. When the state is sufficiently close to the desired equilibrium (i.e.,
in the steady-state period), both the control input sequences are constant defined by steady-state inputs. This is the
so-called SCP.

Next we assume the travel demand function is subject to a biased noise, i.e., where ξ(t) = [ξ11(t), ξ12(t), ξ21(t), ξ22(t)]T

with ξi j(t) ∼ U(0, 0.1) uniformly distributed. The almost smooth control and the Bang-bang like control are respec-
tively applied to regulate the traffic dynamics to the desired equilibrium with a very small steady-state error caused
by the biased noise in the demand pattern. The convergent rate under uncertain demand case is a bit slower than that
under certain demand case for both controls. As we can see that both controllers behave very similar to the cases
without disturbance except the chattering behavior continues even if the traffic states attain their steady states. This is
because further control effort is required to suppress the fluctuation effect of disturbance on the traffic state so as to
maintain the steady state. Such phenomenon was also observed in the literature, see e.g., Geroliminis et al. (2013).
When there is no noise in the demand pattern, the SCP is well satisfied. When the biased noise presents, a small
chattering is induced by the noise.

Finally, we study the effects of calibration errors of the MFD and the impacts of the noise in travel demands on
the performance of the proposed schemes. The settings of this scenario are identical to that of the previous case but
with additional MFD uncertainties introduced in the simulation model, see Figure 7(a). Observe from Figure 7(b)
that the almost smooth controller outperforms the Bang-bang like control in terms of convergent rate. Both the
almost smooth and Bang-bang like controls behave similar to the previous case. The simulation results depicted in
Figure 7(b) indicate that the calibration errors of both regions do not significantly affect the state trajectory evolution
when compared with the case without neither demand nor supply uncertainty case. This confirms that when the
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e.g., the MPC and LMI, have been tested to fail to deliver a feasible control law to this scenario. They encouraged
future research effort such as nonlinear controller design to handle this challenge. In line with the literature, we apply
Bang-bang like control to this scenario. Simulation results are depicted in Figure 4(c) and Figure 4(d). As shown in
Figure 4(c), the control regulates the system trajectories asymptotically to the desired equilibrium n̄1 = 3000 (veh)
and n̄2 = 4000 (veh), respectively. As expected, the control also asymptotically converges to its steady state. Since
the initial accumulation of Region 1 is less than its set point, less control effort is needed as indicated by the figure.
The control input sequence of u2 has a very limited chattering behavior which indicates the amount of control effort is
small. Both control input sequences during the steady-state period are constant. Due to its closed-form in conjunction
with a simple CLF, the computational complexity of the proposed controllers is low. All the experiments reported
in this section are performed on Matlab 2015a. It only takes a few seconds to accomplish the simulations. Unlike
some existing methods that have number of parameters to be tuned carefully case-by-case and should be also tuned if
the model parameters change in the future, e.g., the prediction horizon length of the MPC, the proposed controllers
are automatically designed given the calibrated MFD network traffic model and demand pattern. These might be
considered as the advantages of the proposed controllers.
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4.2. Scenario II: Piecewise travel demand case with non-identical third-order MFD

The piecewise time-varying demands shown in Figure 5 simulate a morning peak hour with high cross-boundary
demand. The demand function is thus designed to excite congestion onset, stationary congestion and congestion
dissolving processes such that the traffic dynamics can cover both congested and uncongested regions of the MFD.
The MFDs for the two regions are different as shown in Figure 7(a). The desired accumulations are chosen as n̄1 =

3000 (veh) and n̄2 = 3000 (veh). The steady-state equations suggest that q̄ = [0.924, 0.924, 0.924, 0.924]T , n∗ =
[720, 2280, 2123, 877]T , u∗ = [0.1581, 0.2066]T . The initial accumulations are randomly chosen to be [2000, 5000]T .

The simulation results are depicted in Figure 6. Both the almost smooth and the Bang-bang like controllers regulate
the traffic state to the desired equilibrium asymptotically while the almost smooth controller delivers outperformance
over the Bang-bang like controller in terms of convergent rate for certain and uncertain demand cases. If the lower
bound of the control is zero and since the initial accumulation of Region 1 is less than the set point, the controller
u1 holds the cross boundary flow from Region 1 to Region 2 so as to increase the accumulation to the set point fast.
Such a “behavior” seems the controller intends to create congestion in accordance to the objective described by the
desired equilibrium which is discussed in Remark 2.5. One can change the lower bound of the control from zero
to a prescribed value umin > 0 to prevent this from happening. Once the accumulation is higher than the desired
equilibrium, the control is activated to suppress the traffic state from increasing. The controller u2, on the other hand,
acts in a different way to let go the cross boundary traffic first and decreases the gain gradually when the traffic state
is approaching to the desired equilibrium. Specifically, the almost smooth control, as expected, shows a very small
chattering behavior when the states are close to the set points. This is because the almost smooth control admits
continuous but non-smooth points when the state is close to the desired equilibrium (or the control gain hits the
saturation boundaries) as stated in Subsection 3.3. Similar phenomenon is observed for the Bang-bang like control
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Figure 6: Non-identical MFD case: with and without demand noise

case. The Bang-bang like controller, shows a fast chattering behavior at the beginning and enters the steady-state in
accordance with the state. In Guangzhou, such control is implemented by the lane based signal control. For example a
gating site be of six lanes with each lane equipped with a signal, then �εj(ñ) = 1/3 and ω̄ j(ñ) = 1 for some time means
two lanes can be served for cross boundary traffic. When the state is sufficiently close to the desired equilibrium (i.e.,
in the steady-state period), both the control input sequences are constant defined by steady-state inputs. This is the
so-called SCP.

Next we assume the travel demand function is subject to a biased noise, i.e., where ξ(t) = [ξ11(t), ξ12(t), ξ21(t), ξ22(t)]T

with ξi j(t) ∼ U(0, 0.1) uniformly distributed. The almost smooth control and the Bang-bang like control are respec-
tively applied to regulate the traffic dynamics to the desired equilibrium with a very small steady-state error caused
by the biased noise in the demand pattern. The convergent rate under uncertain demand case is a bit slower than that
under certain demand case for both controls. As we can see that both controllers behave very similar to the cases
without disturbance except the chattering behavior continues even if the traffic states attain their steady states. This is
because further control effort is required to suppress the fluctuation effect of disturbance on the traffic state so as to
maintain the steady state. Such phenomenon was also observed in the literature, see e.g., Geroliminis et al. (2013).
When there is no noise in the demand pattern, the SCP is well satisfied. When the biased noise presents, a small
chattering is induced by the noise.

Finally, we study the effects of calibration errors of the MFD and the impacts of the noise in travel demands on
the performance of the proposed schemes. The settings of this scenario are identical to that of the previous case but
with additional MFD uncertainties introduced in the simulation model, see Figure 7(a). Observe from Figure 7(b)
that the almost smooth controller outperforms the Bang-bang like control in terms of convergent rate. Both the
almost smooth and Bang-bang like controls behave similar to the previous case. The simulation results depicted in
Figure 7(b) indicate that the calibration errors of both regions do not significantly affect the state trajectory evolution
when compared with the case without neither demand nor supply uncertainty case. This confirms that when the
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uncertainties are bounded by certain compact sets, the closed-loop system is robustly stable by the uniform CLF
(regarding the demand uncertainty) and the RSM property (regarding the supply uncertainty).
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Figure 7: Time-varying demand with both MFD error and noise case

5. Conclusion

The MFD based traffic network gating control problem in presence of inherent demand and MFD parametric uncer-
tainties was investigated. Based on the feasible and admissible demand concepts, we have developed a CLF based
approach to establish two universal control laws, both of which can globally stabilize the nonlinear traffic system.
Then we showed that under certain assumptions on the demand and parameter uncertainties the closed loop system
is robustly stable. Distinguished from most of existing studies, the proposed results never rely on linearization of the
underlying traffic dynamics and constant demand assumption.

The almost smooth and Bang-bang like controls can be applied to different implementation scenarios, respectively.
Specifically, the almost smooth control can be used for road pricing while the Bang-bang like control can be used for
signal timing. Numerical results indicate that the control can drive the system dynamics towards the desired equi-
librium under various uncertain MFDs and travel demand wherein the stability and robustness can still be guaranteed.
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The future direction is as follows. On one hand, it is of greater interest to extend the present study to more general
multi-region networks. On the other hand, the admissible demand suggests that for congested networks with exceed-
ing travel demand, both demand and supply regulation schemes should be simultaneously implemented so as to better
manage the network traffic.
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Appendix A.

This appendix presents the derivation of the steady-state values of n∗11, n∗12, n∗21, n∗22, u∗1 and u∗2 by extending the
analysis in Haddad and Shraiber (2014); Luspay et al. (2015). During the steady-state period it holds that the time
derivatives of the variables n11, n12, n21 and n22 are equal to zero, i.e.,

0 = −n∗11

n̄1
G1(n̄1) +

n∗21

n̄2
G2(n̄2)u∗2 + q̄11, 0 = −n∗12

n̄1
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G1(n̄1)u∗1 + q̄22, 0 = −n∗21

n̄2
G2(n̄2)u∗2 + q̄21, n̄2 = n∗21 + n∗22 (A.1)

Then by summation of suitable equations in (A.1), we have

0 = −n∗11

n̄1
G1(n̄1) + q̄21 + q̄11, 0 = −n∗22

n̄2
G2(n̄2) + q̄12 + q̄22. (A.2)

By using n̄i = n∗ii + n∗i j for i, j = 1, 2, we have

n∗11 =
n̄1(q̄11 + q̄21)

G1(n̄1)
, n∗12 = n̄1

G1(n̄1) − (q̄11 + q̄21)
G1(n̄1)

, n∗21 = n̄2
G2(n̄2) − (q̄12 + q̄22)

G2(n̄2)
, n∗22 =

n̄2(q̄12 + q̄22)
G2(n̄2)

. (A.3)

Further from (A.1), we obtain

u∗1 =
q̄12 · n̄1

n∗12 ·G1(n̄1)
=

q̄12

G1(n̄1) − q̄21 − q̄11
, u∗2 =

q̄21 · n̄2

n∗21 ·G2(n̄2)
=

q̄21

G2(n̄2) − q̄12 − q̄22
.
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uncertainties are bounded by certain compact sets, the closed-loop system is robustly stable by the uniform CLF
(regarding the demand uncertainty) and the RSM property (regarding the supply uncertainty).
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Figure 7: Time-varying demand with both MFD error and noise case

5. Conclusion

The MFD based traffic network gating control problem in presence of inherent demand and MFD parametric uncer-
tainties was investigated. Based on the feasible and admissible demand concepts, we have developed a CLF based
approach to establish two universal control laws, both of which can globally stabilize the nonlinear traffic system.
Then we showed that under certain assumptions on the demand and parameter uncertainties the closed loop system
is robustly stable. Distinguished from most of existing studies, the proposed results never rely on linearization of the
underlying traffic dynamics and constant demand assumption.

The almost smooth and Bang-bang like controls can be applied to different implementation scenarios, respectively.
Specifically, the almost smooth control can be used for road pricing while the Bang-bang like control can be used for
signal timing. Numerical results indicate that the control can drive the system dynamics towards the desired equi-
librium under various uncertain MFDs and travel demand wherein the stability and robustness can still be guaranteed.
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manage the network traffic.
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