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Level set incorporated with an improved MRF model for unsupervised change
detection for satellite images
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ABSTRACT
This study proposes the use of a level set incorporated with an improved Markov random
field (MRF) model in unsupervised change detection for satellite images. MRF provides a
means of modelling the spatial contextual information in the level set, and an edge indica-
tor function is introduced into the MRF model to control the contribution of local information
in the boundary areas to change detection. On the basis of the improved MRF model, local
label relationships and edge information are considered in the level set energy functional to
conduct a novel local term and attract the contours into desired objects. By merging the
novel energy term, the proposed approach not only reduces noise but also obtains accurate
outlines of the changed regions. Experimental results obtained with Landsat 7 Enhanced
Thematic Mapper Plus and SPOT 5 data sets confirm the superiority of the proposed model
when compared with state-of-the-art change detection methods.
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Introduction

Change detection is the process of identifying
changes in multitemporal satellite images that are
acquired over the same geographical area at different
points in time (Hussain, Chen, Cheng, Wei, &
Stanley, 2013; Lu, Mausel, Brondízio, & Moran,
2004). Over the past few years, various change
detection methods for different applications have
been proposed. These methods can be divided into
two kinds, namely, supervised methods and unsu-
pervised methods (Bruzzone & Prieto, 2000).
Unsupervised methods perform change detection
by conducting a direct comparison of two multi-
temporal images without incorporating any addi-
tional information (Celik, 2009). The present study
focuses on unsupervised change detection for multi-
temporal satellite images. Unsupervised change
detection techniques are mainly developed on the
basis of the so-called “difference images”, which are
generated using image differencing, image rationing,
principal component analysis, or change vector ana-
lysis (CVA) (Lu et al., 2004). A few automatic ana-
lysis methods for identifying changes in difference
images have been applied to unsupervised change
detection; these methods include fuzzy c-means
(Ghosh, Mishra, & Ghosh, 2011), Markov random
field (MRF) (Wang et al., 2013), particle swarm
optimization (Kusetogullari, Yavariabdi, & Celik,

2015) and support vector machine (Bovolo,
Bruzzone, & Marconcini, 2008).

In recent years, the active contour model (ACM)
based on level set methods has gained popularity in
the field of change detection for satellite images
because it can achieve robust image segmentation
and naturally handle topological changes (Bazi,
Melgani, & Al-Sharari, 2010; Li, Gong, & Liu, 2015).
The level set method was first introduced into the
ACM by Osher and Sethian (1988) to represent a
contour as the zero level set of a function, and the
level set function evolved according to a partial dif-
ferential equation. Chan and Vese (2001) improved
this model as the Chan–Vese (CV) model based on
the Mumford–Shah energy functional (Mumford &
Shah, 1989). The overall premise of the CV model is
to avoid using gradient information and consequently
reduce the complexity of optimization problems. On
the basis of the CV model, Bazi et al. (2010) proposed
multiresolution level set (MLS) methods for detecting
changes using multispectral satellite images. In
another study, wavelet transformation was adopted
to obtain a multiresolution representation of the dif-
ference image and in turn reduce the effect of noise
contamination; then, the ACM was applied to the
transformed images for change detection (Celik &
Ma, 2011). Ardila, Bijker, Tolpekin, and Stein
(2012) introduced ACMs with a localized data fitting
energy term for identifying tree-crown image regions
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in high resolution multitemporal images. A fuzzy
ACM and genetic algorithm were used in a previous
study to analyse the difference image and reduce
speckle noise for change detection in synthetic aper-
ture radar images (Shi, Wu, Paul, Jiao, & Gong,
2014). Hao, Shi, Zhang, and Li (2014) developed an
expectation–maximization (EM)-based level set
method for change detection, which did not require
initial contours. Li, Shi, Myint, Lu, and Wang (2016)
proposed a semi-automated change detection
approach based on a fast level set algorithm for land-
slide inventory mapping. Normally, level set methods
based on the CV model assume that the label of each
spatial location in an image is independent of others,
thereby ignoring neighbouring label relationships
among image pixels during the evolutions of the
level set curves. Thus, change detection results may
contain much salt-and-pepper noise or lose detailed
changes such as accurate outlines. Within this con-
text, the present work proposes a level set algorithm
incorporating an improved MRF model for unsuper-
vised change detection from satellite images. In order
to generate accurate change detection results, a novel
local energy term considering neighbouring label
relationships and edge information is introduced

into the energy functional on the basis of the
improved MRF model.

The flowchart of our algorithm is shown in
Figure 1. First, the CVA method is conducted on
the multitemporal satellite images to generate a dif-
ference image. Second, image downsampling is per-
formed to generate the multi-scale representation of
the difference image. Next, the initial curves of the
level set are located and the level set function is
initialized as a signed distance function. The level
curves can then evolve with the MRF-based local
energy constraints in the multi-scale framework.
Finally, the change map can be obtained by the
improved level set algorithm.

Proposed change detection method

Consider two coregistered multispectral satellite
images, X1 ¼ x1ði; jÞj1 � i � M; 1 � j � Nf g and
X2 ¼ x2ði; jÞj1 � i � M; 1 � j � Nf g, acquired in the
same geographical area at two different times. Both
images have B bands. The difference image I is gener-
ated by the magnitude of the CVA method with the
same size of M × N.

Figure 1. Flow chart of the proposed change detection algorithm.
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Change detection by level set

Change detection using level set methods aims to find
an optimal contour C, which splits the difference
image I : Ω ! < into non-overlapping regions asso-
ciated with changed classesw1and unchanged classes
w2. In the Bayesian framework, the optimal segmen-
tation is given by the maximum a posteriori estimate,
which is described as follows:

L
^ ¼ arg max

L
½PðLÞpðIjLÞ� (1)

where L ¼ ðl1; l2; . . . ; lnÞ is a label set of the difference
image and n is the pixel number. PðIÞ is a prior
probability distribution of the class labels of the dif-
ference image and PðIjLÞ is the probability density
function of the pixel values in the difference image.
In the variational framework, maximizing the poster-
ior probability in Equation (1) is equivalent to mini-
mizing the following energy functional (Brox &
Weickert, 2006):

EðϕÞ ¼ �
ð
Ω
logðPðw1ÞpðIjw1ÞÞHðϕÞdx �

ð
Ω
logðPðw2Þ

pðIjw2ÞÞð1�HðϕÞÞdxþ
ð
Ω
μj�HðϕÞjdx (2)

where ϕ is the level set function, such that ϕðx; yÞ> 0
if ðx; yÞ 2 Ω1 and ϕðx; yÞ< 0 if ðx; yÞ 2 Ω2; H denotes
the Heaviside step function, i.e. HðzÞ ¼ 1 if z � 0 and
HðzÞ ¼ 0 if otherwise. PðwiÞ is a prior probability of
class wi(i ¼ 1; 2) and pðIjwiÞ represents the probabil-
ity density function, given class wi(i ¼ 1; 2). The
parameter μ is a constant that controls the trade-off
between the goodness of fit and the length of the
contour.

The minimization of the energy function is
achieved by solving the associated Euler–Lagrange
equation. The evolving equation of level set curves
is given by

@ ϕ

@t
¼ δðϕÞ logðPðw1ÞpðIjw1Þ

Pðw2ÞpðIjw2ÞÞ þ μ divð�ϕ=j�ϕjÞ
� �

(3)

where δðϕÞ denotes the Dirac function. The CV
model assumes that the image is a piecewise constant
function (Chan & Vese, 2001). If the prior probabil-
ities Pðw1Þ and Pðw2Þ of both regions are considered
equal, the associated evolving equation can be
obtained as follows:

@ϕ

@t
¼ δðϕÞ½� I � c1j2þ

�� ��I � c2j2

þ μ divð�ϕ=j�ϕjÞ� (4)

where c1 and c2 are the intensity averages of image I
inside and outside the contour C, respectively.

Level set incorporating MRF

In this study, the Markov prior information was
incorporated into CV model to reduce spurious
noisy regions. MRF is an effective approach to exploit
the spatial contextual information within a Bayesian
framework (Bruzzone & Prieto, 2000; Szeliski et al.,
2008). Using the conditional distribution of pixel
labels based on the Markov property, the prior prob-
ability distribution of class labels can be expressed as

PðlxÞ ¼ PðlxjlNxÞ ¼
exp½�UðlxÞ�

Z
(5)

where Nx denotes the local neighborhood of the pixel
x (x‚Nx), UðliÞ is the Gibbs energy function and Z is
a normalizing factor. In the MRF model, if the
boundary pixels are not properly controlled, the
result will reveal over-smooth boundaries and lose
significant details (Tso & Olsen, 2005). Thus, in this
study, the edge information is used to control the
contribution of the spatial information in the bound-
ary areas to change detection. In addition, the Potts
model is utilized to model each of the conditional
distributions of pixel labels in MRF. Then, UðxiÞ is
given as follows:

UðlxÞ ¼
X
y2Nx

βVðlx; lyÞð1� gðxÞÞ (6)

where β is a constant that controls the influence of
the spatial contextual information in the MRF model.
g Represents an edge indicator function, and gðxÞ ¼
1 if the pixel x is recognized as an edge; otherwise, it
is equal to 0. The function V is given by Equation (7):

Vðxi; xjÞ ¼ 0ðxi ¼ xjÞ
1ðxi�xjÞ :

�
(7)

By merging the prior probability distributions of the
two class labels expressed as Equation (5), the evol-
ving formulation of Equation (3) can be written as
follows:

@ϕ

@t
¼ δðϕÞ logðPðlx ¼ w1 NxÞpðIj jw1Þ

Pðlx ¼ w2 NxÞpðIj jw2ÞÞ
�

þμ divð�ϕ=j�ϕjÞÞ: (8)

Then, the final evolving formulation can be expressed
as follows:

@ϕ

@t
¼ δðϕÞ½� I � c1j2þ

�� ��I � c2j2

þ ωð�Uðw1Þ þ Uðw2ÞÞ
þ μ divð�ϕ=j�ϕjÞ� (9)

where the term � I � c1j2þ
�� ��I � c2j2 is the global

data fitting term derived from the CV model and
the term ωð�Uðw1Þ þ Uðw2ÞÞ refers to the proposed
MRF-based local penalty term. ω is set to c1 � c2j j,
which is calculated adaptively according to the inten-
sity averages of image I inside and outside the
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contour during the evolution of level curves. When
the value of ω is very small, which means the inten-
sity averages of the changed and unchanged class are
close to each other, the global term will dominate to
attract the contours to the objects rapidly. As the
value of ω increases, the local term will tend to con-
trol the neighbouring label relationships and generate
an accurate change detection result.

Implementation

Multi-scale analysis was performed to reduce the
search space and avoid being trapped into a local
minimum (Bazi et al., 2010). The multi-scale images
were generated by downsampling the difference
image. The proposed model was then applied to the
images with a coarse-to-fine evolving strategy. The
main steps of the proposed level set algorithm are
summarized as follows:

(1) Decompose the difference image into K scales.
(2) Let k ¼ K and initialize the level set function ϕ.
(3) Evolve the level set function ϕ on the scale-k

image according to Equation (9).
(4) Upsample the result of scale k to initialize the

level set of scale k − 1.
(5) Repeat Steps (3) and (4) until reaching the

image scale of 0, i.e. k ¼ 0.
(6) Return the final change detection result.

Experimental results and discussion

To assess the performance of the proposed model for
change detection, two satellite image data sets were
tested in the experiments. Three standard error mea-
sures were used to evaluate the results (Yetgin, 2012):
(1) missed alarm rate (Pm): the number of changed
pixels in the changed detection map that were incor-
rectly classified as unchanged pixels over the total
number of changed pixels in the ground reference
map; (2) false alarm rate (Pf): the number of

unchanged pixels in the changed detection map that
were incorrectly classified as changed pixels over the
total number of unchanged pixels in the ground
reference map; and (3) total error rate (Pt): the total
number of detection errors caused by either missed
or false detections over the total number of pixels.

In the experiments, the initial curves of the level
set were small circles that evenly covered the entire
difference image. The optimal Canny edge detector
(Canny, 1986) was used in the proposed model to
extract the edge information. We compare the pro-
posed model with the MLS method, CV model, unde-
cimated discrete wavelet transform and active
contour (UDWTAC) approach (Celik & Ma, 2011),
MRF model (Bruzzone & Prieto, 2000) and EM-based
threshold method to prove the effectiveness of the
proposed model.

Experiment on data set 1

The first data set consisted of two satellite images
acquired by the Landsat 7 Enhanced Thematic
Mapper Plus (ETM+) in August 2001 and August
2002 over the Liaoning Province of China. Both
images were coregistered, and the histogram match-
ing method was implemented for the relative radio-
metric correction. Figure 2(a,b) shows band 4 of the
2001 and 2002 images, respectively. The ground
reference map was created manually on the basis of
the analysis of multitemporal input images. This map
is shown in Figure 2(c).

Figure 3 shows the change detection results gener-
ated by the MLS, CV, UDWTAC, MRF, EM and the
proposed model. In the proposed model, we set the
parameter of the level set μ ¼ 0:1, the time step
Δt = 0.1 and β = 3.2. In addition, the β value of the
MRF method is set to 0.8, and the CV model, MLS
and UDWTAC are implemented with the same para-
meters of μ = 0.4 and Δt = 0.1. The visual comparison
between the different changed results confirms that

Figure 2. Band 4 of data set 1 (the centre coordinate: 48°3ʹ N, 126°8ʹ E) acquired by Landsat 7 ETM+ sensor in (a) August 2001
and (b) August 2002, (c) ground reference map.
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the proposed model yields the closest change map to
the ground reference. As marked by the rectangles in
Figure 3, the noise is reduced, and accurate outlines
of the changed regions are detected in the proposed
model. Figure 3(a–c) shows that the results of the
other level set methods contain significant noise and
lost certain detailed change information. Although
the MRF and EM yield homogenous regions more
effectively than the other level set methods, the for-
mer generates over-smooth results on the boundary
areas, and the latter produces much “salt-and-pep-
per” noise, as shown in Figure 3(d,e), respectively.

Figure 4 presents the variations in the missed
detection rates, false alarm rates and total error
rates when different β values are used in the proposed
model. The change maps are generated using β values
ranging from 0 to 3.6 with a step of 0.2. As the β

value increases, the miss detection rates continuously
decrease, while the false alarm rates first slightly drop
and then increase. As a result, the total error rates
decline and reach the minimum at the β value of 3.2.
The change detection result with β ¼ 0 contains
more error pixels than the result with the β value
larger than 0, which reveals that the MRF-based local
energy can improve the accuracy of change detection.

To quantify the effectiveness of the proposed
model, we compare the computations of Pm, Pf
and Pt based on the change maps and the refer-
ence map, as depicted in Table 1. The values of
Pm, Pf and Pt obtained by the proposed model are
21.23%, 0.58% and 4.62%, respectively. Thus, the
proposed model can obtain more accurate change
detection results than the other methods in this
experiment.

Figure 3. Change detection results of data set 1 obtained by (a) MLS, (b) CV, (c) UDWTAC, (d) MRF, (e) EM and (f) the proposed
model.

Figure 4. Variations in (a) false alarm rates, (b) missed detection rates and (c) total error rates of the proposed model when
different change maps were generated by β values ranging from 0 to 3.6 with a step of 0.2 for data set 1.
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Experiment on data set 2

The second data set represented two 2.5 m spatial
resolution images acquired by the SPOT 5 satellite
over the Wuqing district in Tianjin, China, in 2008
(t1, shown in Figure 5(a)) and 2009 (t2, shown in
Figure 5(b)). The t1 image was registered to the t2
image, and the histogram matching method was used
in the relative radiometric correction. Figure 5(c)
displays the ground reference map that was collected
manually by comparing the multitemporal images.

In the proposed model, we set the parameter of the
level set μ ¼ 0:1, the time step Δt = 0.1 and β = 2. The
MLS, CV and UDWTAC are also implemented to gen-
erate change detection maps with the same parameters
μ= 0.4 andΔt = 0.1. Furthermore, the β value of theMRF
method is set to 0.8 for change detection. All change
maps are displayed in Figure 6. From a qualitative point
of view, the changemap provided by the proposedmodel
appears to be closer to the ground reference, compared
with change detection maps. The rectangles in Figure 6
show that MLS, CV and UDWTAC yield several false
alarms and generate certain noise in large change blocks.
By contrast, the proposed model reduces the false alarms
and retains detailed changes in the homogenous regions,
as shown in Figure 6(f).

The variations in the three indices (i.e. missed
detection rate, false alarm rate and total error rate)
with different β values in the proposed model are

displayed in Figure 7. Different change maps pro-
duced by β values ranging from 0 to 3.6 with a step
of 0.2 are used to analyse the effects of different β
values on change detection results. The false alarm
rates decrease with an increase in the β value, while
the miss detection rates first remain nearly constant
and then increase. The total error rates decline and
reach the minimum when the change map is gener-
ated by the β value of 2. As shown in Figure 7(c), the
change detection method generates the largest num-
ber of error pixels when the β value equals 0, which
proves the effectiveness of the local energy term.

Table 2 illustrates the quantitative error measures
obtained by all the change detection methods used in
this research. For the proposed model, the Pm, Pf and Pt
values calculated by comparing the generated change
map with the ground reference map are equal to 6.97%,
8.24% and 8.17%, respectively. The proposed model
generates the most accurate change detection result
among all the methods in the experiment.

Discussion

Since the proposed level set model incorporates
MRF-based local information to fully describe the
mutual relationships of pixel labels in the spatial
neighbourhood system, the noise in the change detec-
tion map can be reduced. In addition, an edge indi-
cator function is used to avoid the excessive use of
local information in the detailed areas and the pro-
posed model can consequently retain accurate out-
lines of the changed regions. The experimental results
confirm that the accuracy of the change detection
result is adequately improved by the proposed model.

The penalty coefficient β in MRF controls the
influence of the local term in the level set evolution
functional. For the change detection result with the
elimination of the local penalty term in the level set
evolution, namely, β ¼ 0, there exist more error

Table 1. Quantitative change detection results in experiment 1.

False alarms
Missed

detections Total errors

Method
No. of
pixels Pf (%)

No. of
pixels

Pm
(%)

No. of
pixels

Pt
(%)

MLS 397 0.59 4328 26.31 4725 5.63
CV 398 0.59 4378 26.84 4765 5.73
UDWTAC 395 0.58 4028 24.48 4423 5.27
MRF 6377 9.44 708 4.30 7085 8.43
EM 8128 12.03 693 4.21 8821 10.50
Proposed model 390 0.58 3493 21.23 3883 4.62

Figure 5. Data set 2 (the centre coordinate: 39°6ʹ N, 117°5ʹ W) acquired by SPOT5 on (a) April 2008 and (b) February 2009, (c)
ground reference map.
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Figure 6. Change detection results of data set 2 obtained by (a) MLS, (b) CV, (c) UDWTAC, (d) MRF, (e) EM and (f) the proposed model.

Figure 7. Variations in (a) false alarm rates, (b) missed detection rates and (c) total errors rates of the proposed model when
different change maps were generated by β values ranging from 0 to 3.6 with a step of 0.2 for data set 2.

Table 2. Quantitative change detection results in experiment 2.
False alarms Missed detections Total errors

Method No. of pixels Pf (%) No. of pixels Pm (%) No. of pixels Pt (%)

MLS 5800 12.21 199 7.15 6007 11.93
CV 5896 12.40 212 7.62 6108 12.13
UDWTAC 4840 10.18 202 7.26 5042 10.01
MRF 8924 18.76 116 4.17 9094 17.95
EM 9714 20.42 163 5.86 9877 19.62
Proposed model 3920 8.24 194 6.97 4114 8.17
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pixels than the result with a larger β value. This
indicates that the MRF-based local energy term can
guide the level curve evolution correctly and improve
the accuracy of change detection.

Conclusion

This study develops a novel change detection approach
for satellite images using a level set method incorporated
with an improved MRF model. Both local information
considering neighbouring label relationships and edge
information are introduced into the level set energy
functional to conduct a local penalty term. Due to the
introduction of the novel MRF-based term, the proposed
model can reduce noise andwhile preserving the outlines
in boundary areas. The experiments conducted on the
multitemporal Landsat 7 ETM+ and SPOT 5 data sets
confirm the superiority of the proposed approach in
generating accurate change detection results when quan-
titatively and qualitatively compared with state-of-the-art
change detection methods. Apart from spatial contextual
information, other information, such as texture informa-
tion and morphology characteristics, can be used in this
method to improve the accuracy of change detection in
future work.
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