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Abstract

In this paper, we further study the forward-backward envelope first introduced in [28] and

[30] for problems whose objective is the sum of a proper closed convex function and a twice con-

tinuously differentiable possibly nonconvex function with Lipschitz continuous gradient. We

derive sufficient conditions on the original problem for the corresponding forward-backward

envelope to be a level-bounded and Kurdyka- Lojasiewicz function with an exponent of 1
2
;

these results are important for the efficient minimization of the forward-backward envelope

by classical optimization algorithms. In addition, we demonstrate how to minimize some

difference-of-convex regularized least squares problems by minimizing a suitably constructed

forward-backward envelope. Our preliminary numerical results on randomly generated in-

stances of large-scale `1−2 regularized least squares problems [37] illustrate that an implemen-

tation of this approach with a limited-memory BFGS scheme usually outperforms standard

first-order methods such as the nonmonotone proximal gradient method in [35].

1 Introduction

In this paper, we consider the following optimization problem

min
x

f(x) + P (x), (1)

where P : IRn → IR ∪ {∞} is a proper closed convex function, f : IRn → IR is twice continuously

differentiable and there exists L > 0 so that all eigenvalues of ∇2f(x) lie within the closed interval

[−L,L], for all x ∈ IRn. We assume that the proximal mapping of τP is easy to compute for

any τ > 0; see Section 2 for the definition of proximal mapping. This problem arises in various

applications where f is typically a loss function and P is introduced to induce desirable structures

in the solution. Concrete examples include many popular models in image processing [10], as well

as compressed sensing [9, 12], where f is the least squares loss function and P is the `1 norm or

the indicator function of the `1 norm ball.

Since these practical problems are often presented in large-scale, a lot of existing methods for

solving (1) are first-order methods, whose cost per iteration is low, thanks to the fact that the

proximal mapping of τP is easy to compute for any τ > 0. We refer the readers to the recent ex-

position [33] for an overview of first-order methods such as the proximal gradient algorithm and its

several accelerated variants for solving (1) when f is, in addition, convex. Despite the prominence
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of first-order methods, tremendous efforts have also been devoted to developing algorithms that

can take into account second-order information to possibly accelerate convergence. A class of such

algorithms involves replacing the computation of the proximal mapping in each iteration by the

computation of a scaled proximal mapping. The resulting subproblem in each iteration then needs

to be solved by an iterative scheme; see [19] for an example of such algorithms, and [15] for efficient

evaluation of scaled proximal mappings. Another class of algorithms involves using semi-smooth

Newton techniques to solve a nonsmooth equation that characterizes optimality/stationarity; see

Section 2 for the definition of stationary points. One example of such equations is

x− proxγP (x− γ∇f(x)) = 0, (2)

for some γ > 0, and we refer the readers to [8, 17, 25, 36] for other variants and more detailed

discussions. An interesting variant along this line was proposed recently in [28] (see also [30]), which

considered a potential function whose gradient is roughly the left hand side of (2). Specifically,

the authors introduced the so-called forward-backward envelope for (1). The forward-backward

envelope corresponding to (1) is defined as

Fγ(x) = f(x)− γ

2
‖∇f(x)‖2 + P γ(x− γ∇f(x)),

where P γ(u) := inf
y

{
P (y) + 1

2γ ‖y − u‖
2
}

and γ ∈ (0, 1
L ). It was shown in [28, Proposition 1] and

[30, Theorem 2.6] that Fγ is smooth with its gradient given by

∇Fγ(x) = γ−1(I − γ∇2f(x))(x− proxγP (x− γ∇f(x))).

In particular, because the proximal mapping of γP is easy to compute by assumption, ∇Fγ(x)

will be easy to compute if ∇2f(x) is simple, say, when f is a quadratic. Comparing the expression

of ∇Fγ with (2), it is not hard to see that (as was established in [28, Proposition 1] and [30,

Theorem 2.6]), when γ ∈ (0, 1
L ), ∇Fγ(x) = 0 if and only if (2) holds. Thus, when γ ∈ (0, 1

L ),

one can find a stationary point of (1) by finding a stationary point of Fγ . If Fγ is level bounded,

a stationary point can then be found by many standard and classical optimization methods such

as nonlinear conjugate gradient, quasi-Newton methods, etc., with standard (monotone or non-

monotone) line-search procedures such as the Armijo rule, thanks to the smoothness of Fγ . In [28],

based on Fγ , the authors proposed a (semi-smooth) Newton-type method with standard line-search

procedures for minimizing Fγ when f is convex and γ ∈ (0, 1
L ); very recently, in [30], the authors

proposed a special algorithm for solving (1) based on Fγ which alternates between a proximal

gradient step and a descent direction, and established convergence under suitable assumptions.

The numerical performances of the above approaches were promising.

In this paper, unlike [30] that designs a special algorithm for solving (1), we further study prop-

erties of Fγ for the efficient application of classical/standard optimization algorithms. Specifically,

we discuss sufficient conditions on (1) that guarantee Fγ to be a level-bounded and Kurdyka-

 Lojasiewicz (KL) function with an exponent of 1
2 ; the latter property is crucial for establishing

local linear convergence of a wide variety of standard optimization methods for minimizing Fγ .

Furthermore, we illustrate how some difference-of-convex regularized least squares problems can

be reformulated in the form of (1) and give conditions on the regularizer so that the correspond-

ing Fγ is level bounded. Consequently, various techniques for smooth unconstrained optimization

including limited-memory BFGS can now be adapted to solve a class of difference-of-convex reg-

ularized least squares problems. Our numerical results show that minimizing a suitable Fγ using

the limited-memory BFGS direction with Armijo line-search usually outperforms standard first-

order methods when solving large-scale `1−2 regularized least squares problems studied in [37] with

simulated data.
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The rest of the paper is organized as follows. In Section 2, we introduce notation and review

some basic properties of Fγ of (1) discussed in [28] and [30]. Level-boundedness and the KL

property of the envelope are studied in Section 3, and the adaptation of the theory to minimize

difference-of-convex regularized least squares problems is presented in Section 4. Numerical results

are presented in Section 5. Finally, we give some concluding remarks in Section 6.

2 Notation and preliminaries

We use IRn to denote the n-dimensional Euclidean space. The standard inner product is denoted by

〈·, ·〉, and the induced norm is denoted by ‖·‖. In addition, for any x ∈ IRn, its ith entry is denoted

by xi, the number of nonzero entries is denoted by ‖x‖0, and the p-norm, p ∈ [1,∞), is denoted by

‖x‖p := (
∑n
i=1 |xi|p)

1
p . We also let B(x, r) denote the closed ball centered at x with radius r > 0,

and let U(x, r) denote its interior. For a nonempty closed set Ω, we let dist(x,Ω) := infy∈Ω ‖x−y‖
and use ProjΩ(x) to denote the set of points in Ω that are closest to x. Such a set reduces to a

singleton set when Ω is convex. Furthermore, we use δΩ to denote the indicator function of the

closed set Ω, i.e.,

δΩ(x) =

{
0 if x ∈ Ω,

∞ otherwise.

For an extended-real-valued function g : IRn → [−∞,∞], we denote its domain by dom g := {x ∈
IRn : g(x) < ∞}. Such a function is called proper if dom g 6= ∅ and g is never −∞. A proper

function g is said to be closed if it is lower semicontinuous, and is said to be convex if its epigraph,

epi g := {(x, r) ∈ IRn × IR : r ≥ g(x)}, is a convex set.

We say that a proper closed function g is level bounded if {x ∈ IRn : g(x) ≤ γ} is bounded for

all γ ∈ IR,1 and is coercive if

lim inf
‖x‖→∞

g(x)

‖x‖
> 0.

Coercive functions are clearly level bounded. Moreover, it is known that for a proper closed convex

function, it is level bounded if and only if it is coercive; see, for example, [4, Proposition 3.1.3].

For a proper closed convex function g, the subdifferential of g at any x ∈ dom g is defined as

∂g(x) := {u ∈ IRn : g(y)− g(x) ≥ 〈u, y − x〉 ∀y ∈ IRn},

and its proximal mapping is defined as

proxg(x) := arg min
y

{
g(y) +

1

2
‖y − x‖2

}
.

It is well known that the proximal mapping is a Lipschitz continuous single-valued mapping with

a Lipschitz constant 1, and that

u = proxg(x) ⇐⇒ x− u ∈ ∂g(u). (3)

Finally, we define dom ∂g := {x ∈ IRn : ∂g(x) 6= ∅}.
For problems of the form (1), it is known that any local minimizer x∗ has to satisfy

0 ∈ ∇f(x∗) + ∂P (x∗); (4)

see [29, Theorem 10.1] and [29, Exercise 8.8]. Using (3), it is not hard to see that (4) is equivalent

to

x∗ = proxγP (x∗ − γ∇f(x∗)) (5)

1This is equivalent to lim inf‖x‖→∞ g(x) =∞; see [4, Page 83].
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for any γ > 0. We say that x̄ is a stationary point of (1) if (4) (or equivalently (5) for some γ > 0)

is satisfied with x̄ in place of x∗. The set of stationary points of (1) is denoted by X . One can

show that if f + P is coercive, then X 6= ∅.
For the class of problem (1), a brilliant way of solving it was proposed in [28] and [30], which

is based on the following function called the forward-backward envelope:

Fγ(x) := inf
y

{
f(x) + 〈∇f(x), y − x〉+

1

2γ
‖y − x‖2 + P (y)

}
= f(x)− γ

2
‖∇f(x)‖2 + P γ(x− γ∇f(x)),

where P γ(u) := inf
y

{
P (y) + 1

2γ ‖y − u‖
2
}

and γ ∈ (0, 1
L ). This function can be interpreted as a

generalized Moreau envelope with a suitable Bregman distance. Indeed, recall that for a differen-

tiable convex function φ, the Bregman distance Dφ(y, x) is defined as

Dφ(y, x) := φ(y)− φ(x)− 〈∇φ(x), y − x〉.

If we take φ(x) = 1
2γ ‖x‖

2 − f(x), then φ is a convex differentiable function. Moreover, it is not

hard to show from the definitions that

Fγ(x) = inf
y
{f(y) + P (y) +Dφ(y, x)} . (6)

Hence, Fγ is just a generalized Moreau envelope that uses a suitable Bregman distance in place of

the square of Euclidean distance. We refer the readers to [6, 18] for more details on the generalized

Moreau envelope and its properties.

It was shown in [28, Proposition 1], [30, Proposition 2.3] and [30, Theorem 2.6] that Fγ enjoys

the following nice properties:

(i) Fγ is continuously differentiable for any γ ∈ (0, 1
L ), with its gradient given by

∇Fγ(x) = γ−1(I − γ∇2f(x))(x− proxγP (x− γ∇f(x))). (7)

(ii) When γ ∈ (0, 1
L ), the set of stationary points of Fγ equals X , and the set of global minimizers

of Fγ equals that of f + P .

Consequently, in order to minimize (1), as suggested in [28] and [30], it is natural to consider the

following possibly nonconvex problem for a fixed γ ∈ (0, 1
L ):

min
x

Fγ(x), (8)

which is an unconstrained optimization problem with a smooth objective and is potentially solvable

by many classical optimization algorithms such as quasi-Newton methods with standard line-search

strategies. As discussed in the introduction of [28] and [30], such an approach is in spirit similar

to the merit function approach for solving variational inequality problems. We will discuss more

properties of Fγ in the next section.

Before ending this section, we state the following Kurdyka- Lojasiewicz (KL) property, which

is a useful property for establishing convergence rate of optimization algorithms; see, for example,

[1, 2, 20]. This property will be further studied in the next section. Its definition given below is

adapted from [20, Definition 2.3].

Definition 2.1. (Kurdyka- Lojasiewicz property for smooth functions) For θ ∈ (0, 1), we

say that a smooth function g is a Kurdyka- Lojasiewicz (KL) function with an exponent of θ if for

any x̄ ∈ IRn, there exist c and ε > 0 so that

c(g(x)− g(x̄))θ ≤ ‖∇g(x)‖

whenever ‖x− x̄‖ < ε and g(x̄) ≤ g(x).
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3 Further properties of the forward-backward envelope

In this section, we further study properties of the forward-backward envelope Fγ of (1) beyond

those already known in [28] and [30]. Specifically, we show that under certain mild conditions on

the original problem (1), the function Fγ is level bounded, which would guarantee boundedness of

the sequence generated by standard descent methods for solving (8). In addition, we also establish

that Fγ has the KL property under suitable assumptions on the original problem (1). These results

will then be applied to establishing convergence of some classical optimization algorithms applied

to minimizing Fγ .

We start by giving a sufficient condition for the level-boundedness of Fγ .

Theorem 3.1. (Level-boundedness of Fγ) If f +P is coercive and γ ∈ (0, 1
L ), then Fγ is level

bounded.

Remark 3.1. Recall from [4, Proposition 3.1.3] that a proper closed convex function is level

bounded if and only if it is coercive. Thus, when f is in addition convex, we see from Theorem 3.1

that, if f + P is level bounded and γ ∈ (0, 1
L ), then Fγ is level bounded.

Proof. First, notice that f has a Lipschitz continuous gradient with a Lipschitz constant of L > 0.

From this, it is not hard to show that for any x and y,

Dφ(y, x) ≥ 1

2

(
1

γ
− L

)
‖y − x‖2

when φ(·) = 1
2γ ‖ · ‖

2 − f(·) and γ ∈ (0, 1
L ). Combining this with (6), we see further that

Fγ(x) = inf
y
{f(y) + P (y) +Dφ(y, x)} ≥ inf

y

{
f(y) + P (y) +

1

2

(
1

γ
− L

)
‖y − x‖2

}
. (9)

Next, from the definition of coerciveness, there are r > 0 and α > 0 so that

(f + P )(x) >
α

2
‖x‖

whenever ‖x‖ > r. Moreover, since f + P is proper lower semicontinuous, it follows that there

exists β > −∞ so that

inf
‖x‖≤r

(f + P )(x) = β.

These together with (9) give further that

Fγ(x) ≥ min

{
inf
‖y‖≤r

{
β +

1

2

(
1

γ
− L

)
‖y − x‖2

}
, inf
‖y‖>r

{
α

2
‖y‖+

1

2

(
1

γ
− L

)
‖y − x‖2

}}
= min

{
β +

1

2

(
1

γ
− L

)
(‖x‖ − r)2

+, G(x)

}
,

where

G(x) =


αr
2 + 1

2

(
1
γ − L

)
(‖x‖ − r)2 if ‖x‖ − α

2( 1
γ−L)

≤ r,
α
2 ‖x‖ −

α2

8( 1
γ−L)

else.

From these one easily obtains lim inf‖x‖→∞ Fγ(x) =∞. This completes the proof.

We next derive conditions under which Fγ is a KL function. The KL property is useful for

establishing convergence of the whole sequence generated by some classical descent algorithms for

minimizing Fγ ; see, for example, [1, 2, 3]. In addition, it is known that the so-called KL exponent
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(the θ in Definition 2.1) is closely related to the local convergence rate of these algorithms; see,

for example, [1, 2, 20] and references therein. Specifically, an exponent θ ∈ (0, 1
2 ] typically implies

local linear convergence of the sequence of function values generated to a stationary value. Hence,

it will be useful to derive sufficient conditions that guarantee Fγ to be a KL function with an

exponent of 1
2 . We achieve this by considering the following error bound condition, which was first

introduced in a series of papers [22, 23, 24] for establishing local linear convergence of the matrix

splitting algorithms and some classical feasible descent algorithms.

Assumption 3.1. (Error bound condition) Suppose that X 6= ∅, and that for any ξ ≥ inf(f +

P ), there exist ε > 0 and τ > 0 so that

dist(x,X ) ≤ τ‖x− proxP (x−∇f(x))‖

whenever ‖x− proxP (x−∇f(x))‖ < ε and f(x) + P (x) ≤ ξ.

It is known that if inf(f + P ) > −∞ and the error bound condition holds together with a

condition concerning the separation of stationary values, then many first-order methods applied to

solving (1) can be shown to be locally linearly convergent; see, for example, [23, 32]. In addition,

when X 6= ∅, this error bound condition is satisfied by a large class of functions that arise in

practical applications; for example, it is satisfied when f is a (not necessarily convex) quadratic

function and P is a proper polyhedral function; see [32, Theorem 4]. We refer the readers to

[22, 23, 24, 31, 32, 33] and references therein for more examples.

In the next theorem, we show that if the error bound condition holds, the function f is analytic

and the function P is continuous on dom ∂P , bounded below and subanalytic (see, for example

[5, Definition 2.1] and [13, Definition 6.6.1]), then Fγ is a KL function with an exponent of 1
2 ;

see Theorem 3.2 (b) below. Using this latter property together with some standard assumptions,

many first-order methods applied to solving (8) can be shown to be locally linearly convergent, as

we will also demonstrate later in Proposition 3.1.

We need the following auxiliary lemma for proving our theorem.

Lemma 3.1. Let γ ∈ (0, 1
L ) and define

Pγ(x) = proxγP (x− γ∇f(x)) .

Then for any x and y, we have

‖Pγ(x)− Pγ(y)‖ ≤ 2‖x− y‖.

In particular, if x̄ ∈ X , then ‖Pγ(x)− x̄‖ ≤ 2‖x− x̄‖.

Proof. For any x and y, we have

‖Pγ(x)− Pγ(y)‖ ≤ ‖(x− γ∇f(x))− (y − γ∇f(y))‖ ≤ 2‖x− y‖,

where the first inequality is a consequence of the nonexpansiveness of proximal mappings (see,

for example, [7, Proposition 12.27]), and the second inequality follows from the fact that x 7→
x− γ∇f(x) is Lipschitz continuous with a Lipschitz constant of 2. This proves the first inequality.

The conclusion concerning stationary points follows from this and the fact that Pγ(x̄) = x̄ for any

stationary point x̄ ∈ X .

Theorem 3.2. (Kurdyka- Lojasiewicz property of Fγ) Suppose that the function f is analytic,

and P is continuous on dom ∂P , subanalytic and bounded below (i.e., inf P > −∞). Then the

following statements hold for any γ ∈ (0, 1
L ) and x̄ ∈ IRn.
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(a) There exist an exponent θ ∈ (0, 1) and c, ε > 0 so that

c|Fγ(x)− Fγ(x̄)|θ ≤ ‖∇Fγ(x)‖ (10)

whenever ‖x− x̄‖ < ε.

(b) Suppose in addition that Assumption 3.1 holds. Then there exist c, ε > 0 so that

c
√
Fγ(x)− Fγ(x̄) ≤ ‖∇Fγ(x)‖ (11)

whenever ‖x− x̄‖ < ε and Fγ(x̄) ≤ Fγ(x).

Remark 3.2. Inequality (10) is known as the  Lojasiewicz inequality, originally studied for analytic

functions; see [13, Page 598] and references therein for more discussions. It differs slightly from the

inequality in Definition 2.1 in the sense that it does not exclude those x satisfying Fγ(x) < Fγ(x̄),

and considers |Fγ(x)− Fγ(x̄)| on the left hand side.

Proof. The conclusions of the proposition hold trivially at any x̄ with ‖∇Fγ(x̄)‖ 6= 0 because the

left hand side of the inequalities (10) and (11) are zero at x̄ and Fγ is continuously differentiable.

Thus, without loss of generality, we assume that ‖∇Fγ(x̄)‖ = 0, i.e., x̄ ∈ X .

We first prove (a). We start by showing that Fγ is subanalytic. To this end, note that f(x)−
γ
2 ‖∇f(x)‖2 is clearly analytic, and thus subanalytic. In addition, we have from [5, Proposition 2.9]

that P γ is subanalytic and continuous. Since the composition of two continuous subanalytic

functions is subanalytic [13, Page 597 (p5)], we see that x 7→ P γ(x − γ∇f(x)) is subanalytic.

Finally, since the sum of continuous subanalytic functions is subanalytic [13, Page 597 (p5)], we

conclude that Fγ is subanalytic.

Since Fγ is subanalytic and continuous, by [5, Theorem 3.1], there exist an exponent θ ∈ (0, 1)

and c, ε > 0 so that

c|Fγ(u)− Fγ(x̄)|θ ≤ ‖∇Fγ(u)‖

whenever ‖u− x̄‖ < ε. This proves (a).

We now prove (b). First, from (10), it is not hard to see that for any u with ‖u − x̄‖ < ε, if

u ∈ X , then Fγ(u) = Fγ(x̄). Now, consider any u with ‖u− x̄‖ < ε
2 and any y ∈ ProjX (u). Then

‖y − x̄‖ ≤ ‖y − u‖+ ‖u− x̄‖ = dist(u,X ) + ‖u− x̄‖ ≤ 2‖u− x̄‖ < ε. (12)

Thus, it follows that Fγ(y) = Fγ(x̄). Furthermore, it is routine to show that ∇Fγ is Lipschitz

continuous on B(x̄, ε) using the formula of ∇Fγ and the analyticity of f . We denote a Lipschitz

constant of ∇Fγ by Lf . Then it holds that whenever ‖x − x̄‖ < ε
4 so that ‖Pγ(x) − x̄‖ < ε

2 (see

Lemma 3.1) and hence ProjX (Pγ(x)) ⊆ U(x̄, ε) (see (12)), we have

Fγ(Pγ(x))− Fγ(x̄) = Fγ(Pγ(x))− Fγ(y) ≤ 〈∇Fγ(y),Pγ(x)− y〉+
Lf
2
‖Pγ(x)− y‖2

=
Lf
2
‖Pγ(x)− y‖2 =

Lf
2

[dist(Pγ(x),X )]2,

(13)

where y ∈ ProjX (Pγ(x)) ⊆ U(x̄, ε) and the second equality holds because ∇Fγ(y) = 0 for y ∈ X .

In addition, we also have, whenever ‖x− x̄‖ < ε
4 , that

Fγ(x)− Fγ(Pγ(x)) ≤ 〈∇Fγ(Pγ(x)), x− Pγ(x)〉+
Lf
2
‖x− Pγ(x)‖2

= 〈∇Fγ(Pγ(x))−∇Fγ(x), x− Pγ(x)〉+ 〈∇Fγ(x), x− Pγ(x)〉+
Lf
2
‖x− Pγ(x)‖2

≤ Lf‖x− Pγ(x)‖2 + 〈∇Fγ(x), x− Pγ(x)〉+
Lf
2
‖x− Pγ(x)‖2

≤ 1

2
‖∇Fγ(x)‖2 +

3Lf + 1

2
‖x− Pγ(x)‖2,

(14)
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where the last inequality follows from the relation 2〈∇Fγ(x), x − Pγ(x)〉 ≤ ‖∇Fγ(x)‖2 + ‖x −
Pγ(x)‖2.

Next, let ξ := f(x̄) +P (x̄) + 1, and recall from [32, Lemma 3] that there exist c1 and c2 > 0 so

that

c1‖x− proxP (x−∇f(x))‖ ≤ ‖x− Pγ(x)‖ ≤ c2‖x− proxP (x−∇f(x))‖ (15)

for all x. Combining this with our Assumption 3.1, we see that there exist η and τ > 0 so that

dist(u,X ) ≤ τ‖u− Pγ(u)‖ (16)

whenever ‖u−Pγ(u)‖ < η and f(u)+P (u) ≤ ξ. Since both u 7→ ‖u−Pγ(u)‖ and u 7→ f(u)+P (u)

are continuous on dom ∂P , and x̄ = Pγ(x̄) due to x̄ ∈ X , by choosing a sufficiently small ε′ ∈ (0, ε4 ),

we conclude that (16) holds whenever ‖u− x̄‖ < 2ε′ and u ∈ dom ∂P .

Now, consider any x with ‖x − x̄‖ < ε′. This means ‖Pγ(x) − x̄‖ < 2ε′ thanks to Lemma 3.1,

and hence we have by applying (16) with u = Pγ(x) ∈ dom ∂P that

dist(Pγ(x),X ) ≤ τ‖Pγ(x)− Pγ(Pγ(x))‖ ≤ 2τ‖x− Pγ(x)‖, (17)

where the last inequality follows from Lemma 3.1.

Finally, note from the formula of ∇Fγ(x) that ‖x − Pγ(x)‖ ≤ c0‖∇Fγ(x)‖ for some c0 > 0,

thanks to the assumption that γ ∈ (0, 1
L ). Using this fact, together with (13), (14) and (17), we

see further that whenever ‖x− x̄‖ < ε′ < ε
4 ,

Fγ(x)− Fγ(x̄) = Fγ(Pγ(x))− Fγ(x̄) + Fγ(x)− Fγ(Pγ(x))

≤ Lf
2

[dist(Pγ(x),X )]2 +
1

2
‖∇Fγ(x)‖2 +

3Lf + 1

2
‖x− Pγ(x)‖2

≤ 2Lfτ
2‖x− Pγ(x)‖2 +

1

2
‖∇Fγ(x)‖2 +

3Lf + 1

2
‖x− Pγ(x)‖2 ≤ C‖∇Fγ(x)‖2

for some C > 0. This completes the proof.

We next prove a converse to Theorem 3.2 (b) under suitable conditions, which is of independent

interest. Our proof is largely inspired by recent convergence analysis of first-order methods based

on the KL property; see, for example, [3].

Theorem 3.3. Suppose that f + P is level-bounded, X = Arg min(f + P ) and γ ∈ (0, 1
L ). If for

any x̄ ∈ X , there exist c and ε > 0 so that

c
√
Fγ(x)− Fγ(x̄) ≤ ‖∇Fγ(x)‖ (18)

whenever ‖x − x̄‖ < ε and Fγ(x̄) ≤ Fγ(x), then the error bound condition holds, i.e., X 6= ∅ and

for any ξ ≥ inf(f + P ), there exist ε > 0 and τ > 0 so that

dist(x,X ) ≤ τ‖x− proxP (x−∇f(x))‖

whenever ‖x− proxP (x−∇f(x))‖ < ε and f(x) + P (x) ≤ ξ.

Proof. Since f +P is level-bounded, it holds that Arg min(f +P ) is nonempty and compact. Then

we have from [30, Proposition 2.3] and our assumptions X = Arg min(f + P ) and γ ∈ (0, 1
L ) that

Arg minFγ = X 6= ∅. In particular, it holds that Fγ(x) ≥ Fγ(x̄) for any x ∈ IRn and any x̄ ∈ X .

Fix an x̄ ∈ X . Then, by assumption and the fact that Arg minFγ = X , there exist c and ε > 0

so that (18) holds whenever ‖x− x̄‖ < ε. Define

Υε :=

{
x : ‖x− x̄‖+

2

cc1c2

√
Fγ(x)− Fγ(x̄) < ε

}
⊆ U(x̄, ε),
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where c1 and c2 are positive numbers so that

‖x− Pγ(x)‖ ≥ c1‖∇Fγ(x)‖ and Fγ(x)− Fγ(Pγ(x)) ≥ c2‖x− Pγ(x)‖2 (19)

for all x: the existence of c1 follows from the definition of ∇Fγ , while the existence of c2 follows

from [30, Proposition 2.2] and the assumption that γ ∈ (0, 1
L ).

Consider any x ∈ Υε\X . Define xk := Pkγ (x) for k ≥ 0 and k0 := inf{k ≥ 0 : xk ∈ X}. Then

it is easy to see that k0 ∈ {1, 2, 3, . . .}∪ {∞} and that Fγ(xk) > Fγ(x̄) whenever k < k0, thanks to

the fact that Arg minFγ = X .

We now establish a key inequality when xk ∈ U(x̄, ε) for some 0 ≤ k < k0. In this case,

‖xk − xk+1‖
[√

Fγ(xk)− Fγ(x̄)−
√
Fγ(xk+1)− Fγ(x̄)

]
≥ c1‖∇Fγ(xk)‖

[√
Fγ(xk)− Fγ(x̄)−

√
Fγ(xk+1)− Fγ(x̄)

]
≥ c1‖∇Fγ(xk)‖

[
1

2
√
Fγ(xk)− Fγ(x̄)

(Fγ(xk)− Fγ(xk+1))

]
≥ cc1

2
(Fγ(xk)− Fγ(xk+1)) ≥ cc1c2

2
‖xk − xk+1‖2,

(20)

where the first inequality follows from (19) and the fact that xk+1 = Pγ(xk), the second inequality

follows from the concavity of t→
√
t, the third inequality follows from (18), and the last inequality

follows again from (19). Consequently, we have from (20) that if xk ∈ U(x̄, ε) for some 0 ≤ k < k0,

then

‖xk − xk+1‖ ≤ 2

cc1c2

[√
Fγ(xk)− Fγ(x̄)−

√
Fγ(xk+1)− Fγ(x̄)

]
. (21)

We next prove by induction that xk ∈ U(x̄, ε) for any 0 ≤ k < k0. First of all, it is true that

x0 = x ∈ Υε ⊆ U(x̄, ε). Now, suppose that there exists 0 ≤ k < k0 so that xt ∈ U(x̄, ε) for all

0 ≤ t ≤ k. Then we have

‖xk+1 − x̄‖ ≤ ‖x0 − x̄‖+

k∑
t=0

‖xt − xt+1‖ ≤ ‖x0 − x̄‖+
2

cc1c2

√
Fγ(x0)− Fγ(x̄)

= ‖x− x̄‖+
2

cc1c2

√
Fγ(x)− Fγ(x̄) < ε,

where the second inequality follows from (21) and the induction hypothesis that xt ∈ U(x̄, ε) for

all 0 ≤ t ≤ k < k0, the equality follows from the fact that x0 = x, and the last inequality is due

to x ∈ Υε. Thus, by induction, we conclude that xk ∈ U(x̄, ε) for any 0 ≤ k < k0, from which one

can readily deduce that (21) holds for any 0 ≤ k < k0.

Now, notice that when k0 < ∞, we have x̃ := xk0 ∈ X by the definition of k0, and that when

k0 =∞, we have from the convergence theory of the proximal gradient algorithm (see, for example,

[7, Corollary 27.9]) applied to (1) that x̃ := limk→∞ xk exists and x̃ ∈ X . Thus, in either case, we

can sum both sides of (21) from k = 0 to k0 − 1 and deduce that

dist(x,X ) ≤ ‖x− x̃‖ ≤
k0−1∑
k=0

‖xk − xk+1‖ ≤ 2

cc1c2

√
Fγ(x0)− Fγ(x̄)

≤ 2

c2c1c2
‖∇Fγ(x)‖ ≤ 2

c2c21c2
‖x− Pγ(x)‖,

where the first inequality follows from the fact that x̃ ∈ X , the second last inequality follows from

(18) and the fact that x0 = x, while the last inequality follows from (19).
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Thus, we have shown that, for any x̄ ∈ X , there exist ε > 0 and c4 > 0 so that

dist(x,X ) ≤ c4‖x− Pγ(x)‖

whenever x ∈ Υε. Combining this with (15), we see further that there exist c5 > 0 so that

dist(x,X ) ≤ c5‖x− proxP (x−∇f(x))‖ (22)

whenever x ∈ Υε. Since X is compact and Υε is an open set, a standard argument then shows that

there exist ε > 0 and c4 > 0 so that (22) holds whenever dist(x,X ) < ε. In particular, it holds that

for any ξ ≥ inf(f +P ), there exist ε > 0 and c5 > 0 so that (22) holds whenever dist(x,X ) < ε and

f(x) +P (x) ≤ ξ. The desired conclusion can now be deduced by using this, the level-boundedness

of f + P and following the proof of [39, Proposition 3]. This completes the proof.

Under condition (10) and some standard assumptions, it can be shown that many standard

optimization methods applied to minimizing Fγ will generate a sequence such that the whole

sequence is convergent to a stationary point of Fγ . As a concrete example, we consider the

following proto-typical algorithm (Algorithm 1).

Algorithm 1 Algorithm for minimizing Fγ(x)

Parameters : 0 < σ < 1, 0 < η < 1, 0 < c1 < 1 ≤ c2.

1. Choose an initial point x0. Set k = 0.

2. Compute a search direction dk that satisfies the following conditions:

∇Fγ(xk)T dk ≤ −c1‖∇Fγ(xk)‖‖dk‖, (23)

1

c2
‖∇Fγ(xk)‖ ≤ ‖dk‖ ≤ c2‖∇Fγ(xk)‖. (24)

3. Set αk to be the largest element in {ηj : j = 0, 1, 2, ...} satisfying

Fγ(xk + αkd
k) ≤ Fγ(xk) + σαk∇Fγ(xk)T dk. (25)

and set xk+1 = xk + αkd
k.

4. If a termination criterion is not met, update k ← k + 1 and go to Step 2.

In this algorithm, in each iteration, one computes a search direction that is gradient-related in

the sense that it satisfies (23) and (24). Note that these two conditions are trivially satisfied by the

choice of dk = −∇Fγ(xk), for example. One then perform a line-search via backtracking to satisfy

the Armijo condition (25). Since Fγ is continuously differentiable, and at any nonstationary point

xk, it holds that

∇Fγ(xk)T dk ≤ −c1‖∇Fγ(xk)‖‖dk‖ ≤ −c1
c2
‖∇Fγ(xk)‖2 < 0

due to (23) and (24), one can readily show that for any such xk the Armijo condition (25) must be

satisfied for some sufficiently small αk > 0. On the other hand, it is clear from (24) that if xk is a

stationary point, then dk = 0 and inductively, xk+l = xk and αk+l = 1 for all l ≥ 0. Combining the

above observations, we conclude that the sequences {αk} and {xk} are well defined. We next show

that the stepsize sequence {αk} is indeed uniformly bounded away from zero if f + P is coercive

and f is, in addition, analytic. The proof is standard; see, for example, [32]. We include a simple

proof for completeness.
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Lemma 3.2. Suppose that f +P is coercive, f is analytic and γ ∈ (0, 1
L ). Then there exists α > 0

such that αk ∈ [α, 1] for all k, where {αk} is generated by Algorithm 1.

Proof. Note from Theorem 3.1 that Fγ is level bounded. This together with (25) and (23) shows

that {xk} ⊆ {x : Fγ(x) ≤ Fγ(x0)} ⊆ B(0, R1) for some R1 > 0. Additionally, we have from (24)

and the definition of ∇Fγ that

‖dk‖ ≤ c2‖∇Fγ(xk)‖ = c2‖γ−1(I − γ∇2f(xk))(xk − proxγP (xk − γ∇f(xk)))‖

≤ c2
γ

(1 + γL)‖xk − proxγP (xk − γ∇f(xk))‖ ≤ R2

for some R2 > 0, where the second inequality follows from the definition of L, while the last

inequality follows from the continuity of x 7→ ‖x− proxγP (x− γ∇f(x))‖ and the fact that {xk} ⊆
B(0, R1). Consequently, it holds that

{xk + αdk : α ∈ [0, 1], k = 0, 1, . . .} ⊆ B(0, R), (26)

where R = R1 +R2.

Next, due to the analyticity of f , we see that x 7→ ∇Fγ(x) is Lipschitz continuous on the

compact set B(0, R). Denote a Lipschitz constant of ∇Fγ on B(0, R) by LF . Then, because of

(26), we have for any α ∈ [0, 1] and any k ≥ 0 that

Fγ(xk + αdk) ≤ Fγ(xk) + α∇Fγ(xk)T dk +
LFα

2

2
‖dk‖2.

Rearranging terms in the above relation and invoking (23) and (24), we obtain further that

Fγ(xk + αdk)− Fγ(xk) ≤ (1− σ)α∇Fγ(xk)T dk +
LFα

2

2
‖dk‖2 + σα∇Fγ(xk)T dk

≤ −c1(1− σ)α‖∇Fγ(xk)‖‖dk‖+
LFα

2

2
‖dk‖2 + σα∇Fγ(xk)T dk

≤ −c1(1− σ)α

c2
‖dk‖2 +

LFα
2

2
‖dk‖2 + σα∇Fγ(xk)T dk

=
LFα

2
‖dk‖2

(
α− 2c1(1− σ)

c2LF

)
+ σα∇Fγ(xk)T dk,

where the second inequality follows from (23), while the third inequality follows from (24). There-

fore, the Armijo condition (25) holds whenever α ≤ 2c1(1−σ)
c2LF

. Since αk ∈ {ηj : j = 0, 1, 2, ...}, we

must then have 1 ≥ αk ≥ α := min{1, 2c1(1−σ)η
c2LF

} for all k. This completes the proof.

We now show that the whole sequence generated by Algorithm 1 is convergent under suitable

assumptions, and establish a local linear convergence rate of the sequence when Assumption 3.1 is

satisfied. The proof technique is standard in the literature; similar kinds of results can be found in

[27], which studied a slightly different algorithm. We include the details for the ease of the readers.

Proposition 3.1. (Convergence of Algorithm 1) Suppose that f +P is coercive, the function

f is analytic, P is continuous on dom ∂P , subanalytic and bounded below (i.e., inf P > −∞), and

γ ∈ (0, 1
L ). Let {xk} be the sequence generated by Algorithm 1. Then the following statements hold

true.

(a) The whole sequence {xk} converges to a stationary point x̄ of Fγ .

(b) Suppose in addition that Assumption 3.1 holds. Then the sequences {xk} and {Fγ(xk)} are

locally linearly convergent.
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Proof. (a) If ∇Fγ(xk) = 0 for some k, then xk is a stationary point of Fγ . Moreover, since our

choice of dk satisfies (24), we must have xk+l = xk for all l ≥ 0. Thus, to prove part (a), it suffices

to consider the case when ∇Fγ(xk) 6= 0 for all k. In this case, we have from (25) that

Fγ(xk+1)− Fγ(xk) ≤ σαk∇Fγ(xk)T dk
(i)

≤ −c1σα‖∇Fγ(xk)‖‖dk‖
(ii)

≤ −c1σα
c2
‖∇Fγ(xk)‖2

(iii)

≤ −c1σα
c32
‖dk‖2 (27)

(iv)

≤ −c1σα
c32
‖xk+1 − xk‖2, (28)

where (i) follows from (23) and Lemma 3.2, (ii) and (iii) follow from (24), while (iv) follows from

the definition of xk+1. In particular, we see that the sequence {Fγ(xk)} is nonincreasing. Since Fγ
is also level bounded due to Theorem 3.1 and the coerciveness of f + P , we conclude further that

{xk} is bounded. Consequently, the nonincreasing sequence {Fγ(xk)} is bounded from below and

is therefore convergent. Summing both sides of (27) from 0 to ∞ gives

−∞ < lim
k→∞

Fγ(xk+1)− Fγ(x0) ≤ −c1σα
c2

∞∑
k=0

‖∇Fγ(xk)‖2,

showing that limk→∞∇Fγ(xk) = 0. Then it is routine to show from this and the continuity of ∇Fγ
that any accumulation point of {xk}, which exists due to the boundedness of {xk}, is a stationary

point of Fγ . To complete the proof, it remains to show that the whole sequence {xk} is indeed

convergent.

To proceed, for notational simplicity, we assume without loss of generality that limk→∞ Fγ(xk) =

0. If Fγ(xk) = 0 for some k ≥ 0, since Fγ is nonincreasing, we must then have Fγ(xk+l) = 0 for

any l ≥ 0. Consequently, we see from (27) that ∇Fγ(xk+l) = 0 for any l ≥ 0, a contradiction to our

assumption that ∇Fγ(xt) 6= 0 for any t. Thus, it remains to consider the case where Fγ(xk) > 0

for all k.

In this case, let Ω denote the set of accumulation points of {xk}, which is clearly a compact

set and satisfies dist(xk,Ω) → 0. In addition, it is routine to show that Fγ(x̄) = 0 whenever

x̄ ∈ Ω. Using these, Theorem 3.2 (a) and [1, Lemma 1], we conclude that there exist an exponent

θ ∈ (0, 1), c > 0 and N0 > 0 such that

cFγ(xk)θ = c|Fγ(xk)|θ ≤ ‖∇Fγ(xk)‖ (29)

for all k ≥ N0. Combining this with the concavity of the function s→ s1−θ (for s > 0), we have

Fγ(xk)1−θ − Fγ(xk+1)1−θ ≥ (1− θ)Fγ(xk)−θ(Fγ(xk)− Fγ(xk+1))

≥ c(1− θ)Fγ(xk)− Fγ(xk+1)

‖∇Fγ(xk)‖
≥ C1‖∇Fγ(xk)‖ ≥ C2‖xk+1 − xk‖,

for some positive constants C1 and C2, where the second inequality follows from (29), the third

inequality follows from (27) and the last inequality follows from (28). Summing both sides of the

above relation from N0 to ∞, we see further that

∞∑
k=N0

‖xk+1 − xk‖ ≤ 1

C2
[Fγ(xN0)1−θ − lim

N→∞
Fγ(xN+1)1−θ] ≤ 1

C2
Fγ(xN0)1−θ,

which implies that {xk} is a Cauchy sequence. Thus, the whole sequence {xk} is actually conver-

gent. This completes the proof.
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(b) Suppose in addition that Assumption 3.1 holds and we again focus on the case where

∇Fγ(xk) 6= 0 for all k. Then in view of (11), the convergence of {xk} to a stationary point x̄ of

Fγ and the fact that {Fγ(xk)} is nonincreasing, we conclude that there exist c > 0 and an integer

N such that

‖∇Fγ(xk)‖ ≥ c
√
Fγ(xk)− Fγ(x̄)

whenever k ≥ N . Combining this with (27), we obtain further that

Fγ(xk)− Fγ(xk+1) ≥ c1σα

c2
‖∇Fγ(xk)‖2 ≥ C0(Fγ(xk)− Fγ(x̄)),

for some C0 > 0, and one can always choose C0 ∈ (0, 1) without loss of generality, since Fγ(xk) ≥
Fγ(x̄) for all k. Then we have, upon rearranging terms, that

Fγ(xk+1)− Fγ(x̄) ≤ (1− C0)[Fγ(xk)− Fγ(x̄)]

whenever k ≥ N . Since 1−C0 ∈ (0, 1), this shows that {Fγ(xk)} is (at least) Q-linearly convergent.

Next, we note from (28) that there exist C, C3 > 0 and η ∈ (0, 1) such that

‖xk+1 − xk‖ ≤ C
√
Fγ(xk)− Fγ(xk+1) ≤ C

√
Fγ(xk)− Fγ(x̄) ≤ C3η

k,

where the second inequality follows from the fact that {Fγ(xk)} is nonincreasing, while the last

inequality follows from the fact that {Fγ(xk)} is Q-linearly convergent. Consequently, we have

‖xk − x̄‖ ≤
∞∑
t=k

‖xt+1 − xt‖ ≤ C3η
k

1− η
,

showing that {xk} is (at least) R-linearly convergent. This completes the proof.

On passing, we would like to point out that the algorithm we consider here is different from

those considered in [30]. In [30], in each iteration of their algorithms, after moving along the

search direction dk with a certain stepsize, they induce sufficient descent by performing one step

of proximal gradient algorithm on the function f + P . In contrast, we choose dk to satisfy (23)

and (24) without resorting to the proximal gradient update in each iteration.

4 Applications to difference-of-convex programming

In this section, we describe a class of problems that can be reformulated into (1). We also derive suf-

ficient conditions so that the results in Section 3 can be applied to deducing the level-boundedness

of the corresponding forward-backward envelope.

We first describe our class of problems. This is a class of regularized least squares problems

and arises frequently in applications such as statistical machine learning. The problems take the

following form:

vµ1,µ2
:= min

z
J(z) :=

1

2
‖Az − b‖2 + µ1H1(z)− µ2H2(z), (30)

where µ1 ≥ µ2 > 0, A ∈ IRm×n and b ∈ IRm, the regularization functions H1(z) and H2(z) are

proper closed convex functions and there exists a norm ρ such that

0 ≤ H2(z) ≤ min{ρ(z), H1(z)} for all z.

In particular, H2 is continuous, and we also conclude from the above assumptions that vµ1,µ2
≥ 0 for

any µ1 ≥ µ2 > 0. Concrete examples of regularization functions that satisfy the above assumptions

include
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• H1(z) = ‖z‖1 and H2(z) = ‖z‖, and µ1 = µ2. This is known as the `1−2 regularization; see,

for example, [37];

• H1(z) = ‖z‖1 and H2(z) =
∑k
i=1 |z[i]|, where z[i] denotes the ith largest element in magni-

tude, and k ≤ n; see, for example, [34].

• H1(z) = ‖z‖1 and H2(z) =
∑n
i=1

∫ |zi|
0

[min(θλ,t)−λ]+
(θ−1)λ dt (θ > 2), and µ1 = µ2 = λ. This is

known as the smoothly clipped absolute deviation (SCAD) regularization; see, for example,

[14, 16].

• H1(z) = ‖z‖1 and H2(z) =
∑n
i=1

∫ |zi|
0

min(1, t/(θλ))dt (θ > 0), and µ1 = µ2 = λ. This is

known as the minimax concave penalty (MCP) regularization; see, for example, [16, 38].

Since H2 can be nonsmooth in general as in the first two examples above, it appears that (30)

does not readily take the form of (1). Nonetheless, one can equivalently reformulate (30) as

min
y,z

1

2
‖Az − b‖2 − µ2〈y, z〉︸ ︷︷ ︸

f

+µ1H1(z) + µ2H
∗
2 (y)︸ ︷︷ ︸

P

, (31)

where H∗2 (y) := supz{〈y, z〉 − H2(z)} is the convex conjugate of H2. This is in the form of (1).

Thus, one can then consider minimizing the corresponding forward-backward envelope Fγ instead.

In the next proposition, we give a sufficient condition so that the Fγ corresponding to (31) is level

bounded.

Proposition 4.1. (Coerciveness of f+P in (31)) Suppose that the objective function J in (30)

is coercive. Then the objective function in (31) is coercive. Consequently, for any γ ∈ (0, 1
L ), the

corresponding Fγ is level bounded.

Proof. Since H2(z) ≤ ρ(z) for all z, we have from the definition of conjugate functions that

H∗2 (u) ≥ ρ∗(u) = δρ◦(·)≤1(u) for all u, where ρ◦ is the dual norm of ρ. Using this and the

definitions of f and P in (31), we see that

(f + P )(y, z) =
1

2
‖Az − b‖2 − µ2〈y, z〉+ µ1H1(z) + µ2H

∗
2 (y)

=
1

2
‖Az − b‖2 − µ2〈y, z〉+ µ1H1(z) + µ2H

∗
2 (y) + δρ◦(·)≤1(y)

≥ 1

2
‖Az − b‖2 + µ1H1(z)− µ2H2(z) + δρ◦(·)≤1(y) = J(z) + δρ◦(·)≤1(y).

(32)

From our assumption, J is coercive. In addition, the function y 7→ δρ◦(·)≤1(y) is level bounded,

and hence coercive due to [4, Proposition 3.1.3]. Then it is routine to check that the function

(y, z) 7→ J(z) + δρ◦(·)≤1(y) is also coercive. Consequently, f + P is coercive in view of (32). As a

consequence of this and Theorem 3.1, we conclude that, for any γ ∈ (0, 1
L ), the corresponding Fγ

is level bounded. This completes the proof.

We now present some sufficient conditions for the function J in (30) to be coercive.

Proposition 4.2. (Coerciveness of J) The function J in (30) is coercive when

(a) µ1 > µ2 and H1 is level bounded; or

(b) µ1 = µ2 and H1 and H2 are norms such that H1(z) > H2(z) whenever ‖z‖0 ≥ rA + 1, where

rA = max{i : Any i columns of A are linearly independent.}.
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Proof. (a) Recall from (30) and the definition of vµ2,µ2
that

J(z) =
1

2
‖Az − b‖2 + µ1H1(z)− µ2H2(z) ≥ vµ2,µ2 + (µ1 − µ2)H1(z).

Since H1 is proper closed convex and level bounded, it is also coercive according to [4, Proposi-

tion 3.1.3]. The coerciveness of J now follows immediately.

(b) Suppose to the contrary that J is not coercive. Since H2 is a norm, we then have from the

definition that

lim inf
H2(z)→∞

J(z)

H2(z)
≤ 0.

Consequently, there exists a sequence {zk} such that H2(zk)→∞ and

1
2‖Az

k − b‖2 + µ(H1(zk)−H2(zk))

H2(zk)
≤ 1

k
;

here, we use µ to denote the common value of µ1 and µ2. Since H1(zk) ≥ H2(zk), we have further

that for all k,

1

2
‖Azk − b‖2 ≤ H2(zk)

k
and µ(H1(zk)−H2(zk)) ≤ H2(zk)

k
. (33)

Since H2 is a norm, by passing to a subsequence if necessary, we assume without loss of generality

that zk

H2(zk)
→ d for some d ∈ IRn. Thus, H2(d) = 1 and hence d 6= 0 in particular. Dividing both

sides of the first and second inequalities in (33) by [H2(zk)]2 and H2(zk) respectively, using the

fact that H1 is a norm and passing to the limit, we obtain further that

Ad = 0 and H1(d) ≤ 1. (34)

The first relation in (34) together with the fact that d 6= 0 and the assumption on the columns of

A implies that ‖d‖0 ≥ rA + 1. Hence, we have from the assumption that H2(d) < H1(d). This

together with the second relation in (34) gives H2(d) < H1(d) ≤ 1, which is a contradiction to the

fact that H2(d) = 1. This completes the proof.

Example 4.1. We give some concrete examples satisfying the conditions in Proposition 4.2:

(a) µ1 > µ2 and H1(z) = ‖z‖p, p ∈ [1,∞): such H1 are clearly level bounded.

(b) µ1 = µ2 and H1(z) = ‖z‖1, with H2(z) = ‖z‖p, p ∈ (1,∞), and A does not have zero columns.

In this case, it is easy to see that rA ≥ 1. Moreover, ‖z‖1 > ‖z‖p whenever ‖z‖0 > 1 and

p ∈ (1,∞). This is a consequence of the fact that zp1 + · · · + zpn < 1 for any z ≥ 0 satisfying∑n
i=1 zi = 1 and ‖z‖0 > 1. In particular, ‖z‖1 > ‖z‖p whenever ‖z‖0 ≥ rA + 1(> 1) and

p ∈ (1,∞).

(c) µ1 = µ2 and H1(z) = ‖z‖1, with H2(z) =
∑k
i=1 |z[i]|, where z[i] denotes the ith largest element

in magnitude, k ≤ rank(A), and any k columns of A are linearly independent. In this case,

we have rA ≥ k, and moreover ‖z‖1 >
∑k
i=1 |z[i]| whenever ‖z‖0 ≥ k + 1 and hence, whenever

‖z‖0 ≥ rA + 1.

Before ending this section, we derive a bound L on the magnitude of the eigenvalues of∇2f(y, z)

for the f in (31), which is necessary for obtaining an upper bound on the γ used in the corresponding

forward-backward envelope. Note that for any (y, z), we have

∇2f(y, z) =

[
0 −µ2I

−µ2I ATA

]
.
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Hence, the operator norm can be upper bounded as follows

‖∇2f(y, z)‖ = sup
‖(u,v)‖=1

∥∥∥∥[ 0 −µ2I

−µ2I ATA

] [
u

v

]∥∥∥∥ ≤ sup
‖(u,v)‖=1

∥∥∥∥[ 0 µ2

µ2 ‖ATA‖

] [
‖u‖
‖v‖

]∥∥∥∥
≤ λmax

([
0 µ2

µ2 ‖ATA‖

])
=
λmax(ATA) +

√
λ2

max(ATA) + 4µ2
2

2
,

where ‖ATA‖ denotes the operator norm of ATA, which is equal to λmax(ATA), the maximum

eigenvalue of ATA. Thus, one can set L =
λmax(ATA)+

√
λ2
max(ATA)+4µ2

2

2 .

5 Numerical experiments on least squares problems with

`1−2 regularization

In this section, we perform numerical experiments to test the efficiency of solving (30) via mini-

mizing the corresponding Fγ . All the experiments are performed in MATLAB version R2015b on

a desktop computer with a 3.6GHz CPU and 32G RAM, and all codes are written in MATLAB.

In our experiments, we take the least squares problems with `1−2 regularization as our test

problems. This class of problem is given by

min
z

h(z) :=
1

2
‖Az − b‖2 + µ(‖z‖1 − ‖z‖), (35)

where A ∈ IRm×n does not have zero columns, b ∈ IRm and µ > 0. This model is a special case of

(30) with µ1 = µ2 = µ, H1(z) = ‖z‖1 and H2(z) = ‖z‖, and has been considered in [37] for sparse

recovery.

We compare three different approaches for solving (35): FBEL−BFGS, NPG and NPGmajor.

The first approach is based on our discussion of the forward-backward envelope, while the other

two approaches are standard applications of proximal gradient type algorithms for solving (35).

These two latter approaches are included here as benchmark. We now discuss these approaches in

further details below.

FBEL−BFGS. In this approach, we apply Algorithm 1 to minimizing Fγ with γ = 0.95/L under

a specific choice of dk to be made explicit below. Here, Fγ is the forward-backward envelope

corresponding to the following equivalent reformulation of (35):

min
y,z

1

2
‖Az − b‖2 − µ〈y, z〉︸ ︷︷ ︸

f

+µ‖z‖1 + δB(0,1)(y)︸ ︷︷ ︸
P

(36)

and L is computed as in the end of Section 4.2 It is easy to see that f is analytic, P is continuous

on its domain, bounded below and subanalytic. Moreover, since A has no zero columns, f + P is

coercive in view of Example 4.1 (b), Proposition 4.2 (b) and Proposition 4.1. Thus, according to

Proposition 3.1, the whole sequence generated by Algorithm 1 converges to a stationary point of

(36).

In our experiments below, we set σ = 10−4, η = 0.5, c1 = 1
c2

= 10−5 in Algorithm 1. Moreover,

in each iteration, we compute a dB as the output of [26, Algorithm 9.1] using a memory of 10, and

set

dk =

{
−dB if −dB satisfies (23) and (24),

−∇Fγ(xk) otherwise;

2λmax(ATA) is computed via the MATLAB code opts.issym = 1; lambda= eigs(A*A’,1,’LM’,opts); when m >

2000, and by lambda = norm(A*A’) otherwise.
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i.e., we use the limited-memory BFGS search direction, and resort to the steepest descent direction

if (23) or (24) fails.3 Finally, we initialize the algorithm at the origin, and terminate it when

‖∇Fγ(xk)‖
max{1, Fγ(xk)}

< tol

for some tol > 0.

NPG. In this approach, we apply the nonmonotone proximal gradient method discussed in [35]

(see also [16] and [11, Appendix A]) for solving (35). Following the notation in [11, Appendix A,

Algorithm 1], in our experiments, we apply the method with f(z) = 1
2‖Az − b‖2 and P (z) =

µ(‖z‖1 − ‖z‖), and set τ = 2, c = 10−4, M = 4, L0
0 = 1 and

L0
k := min

{
max

{
‖A(zk − zk−1)‖2

‖zk − zk−1‖2
, 10−8

}
, 108

}
for k ≥ 1. We note that the subproblem in [11, Equation A.5] now becomes

min
z
〈AT (Azk − b), z − zk〉+

Lk
2
‖z − zk‖2 + µ(‖z‖1 − ‖z‖); (37)

we will discuss its closed form solution in Appendix A. Finally, we initialize the algorithm at the

origin, and terminate it when
‖zk − zk−1‖

max{1, h(zk)}
< tol,

where tol > 0.

NPGmajor. This approach is the same as NPG except that in each iteration, the subproblem

takes the following form (in place of (37)):

min
z
〈AT (Azk − b)− µξk, z − zk〉+

Lk
2
‖z − zk‖2 + µ‖z‖1, (38)

for a fixed ξk ∈ ∂‖zk‖; i.e., we replace the function −‖z‖ by its majorant −‖zk‖ − 〈ξk, z − zk〉.
Note that the subproblem (38) has a closed form solution in terms of the `1 shrinkage operator.

In our experiments, we use the same parameters τ , c, M and L0
k as in NPG. We initialize this

algorithm also at the origin, and terminate it when

‖zk − zk−1‖
max{1, h(zk)}

< tol,

where tol > 0.

In our first experiment, we compare FBEL−BFGS against NPG and NPGmajor for solving

(35) on randomly generated instances. These random instances are generated as follows. We

first generate a matrix A ∈ IRm×n with i.i.d. standard Gaussian entries.4 The matrix is further

normalized so that each column has unit norm. Next, we choose an index set T ⊆ {1, . . . , n} of

size s uniformly at random and generate a vector y ∈ IRs with i.i.d. standard Gaussian entries.

The measurement vector b is then generated as b = AT y + σn̂, where AT is the submatrix formed

by those columns of A indexed by T , σ > 0 and n̂ ∈ IRm is a random vector with i.i.d. standard

Gaussian entries.
3We note on passing that the computation of ∇Fγ is simple: it involves the proximal mapping of P in (36),

which boils down to evaluating the `1 shrinkage operator (proximal mapping of `1 norm) and the projection onto

B(0, 1). In addition, in our numerical experiments below, the steepest descent direction was never invoked.
4Thus, with high probability, A does not have zero columns.
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In our numerical tests, for each (m,n, s) = (720i, 2560i, 160i) for i = 1, . . . , 10, we generate 10

random instances as described above with σ = 10−2.5 We terminate FBEL−BFGS at tol = 10−6,

and the other two algorithms at tol = 10−4. The computational results are presented in Tables 1

and 2, which correspond to (35) with µ = 5×10−4 and 10−3, respectively. In these tables, we denote

the algorithm FBEL−BFGS by FBE, the algorithm NPG by NPG and the algorithm NPGmajor

by Major. We report the time for computing λmax(ATA) (tλmax
), the number of iterations (iter),

CPU time in seconds (CPU)6 and the terminating function values (fval)7, averaged over the 10

random instances. We see that FBEL−BFGS generally outperforms the other two algorithms in

terms of both the number of iterations and CPU time. Moreover, the function values obtained

at termination from all three algorithms are comparable, with FBEL−BFGS giving slightly smaller

function values. In addition, the performance of FBEL−BFGS becomes better as the dimension

increases and µ decreases.

Table 1: Results for random A with unit column norms, µ = 5 × 10−4

size iter CPU fval

m n s tλmax FBE NPG Major FBE NPG Major FBE NPG Major

720 2560 160 0.1 1371 3596 3595 5.1 6.9 6.8 5.51199e-02 5.51702e-02 5.51662e-02

1440 5120 320 0.7 1552 4148 4108 21.5 35.6 35.0 1.20602e-01 1.20660e-01 1.20663e-01

2160 7680 480 0.7 1621 4203 4221 46.5 77.7 77.8 1.81414e-01 1.81472e-01 1.81473e-01

2880 10240 640 1.4 1579 4326 4293 77.3 139.2 137.7 2.47298e-01 2.47356e-01 2.47359e-01

3600 12800 800 2.5 1653 4479 4461 125.8 225.5 224.1 3.08809e-01 3.08873e-01 3.08874e-01

4320 15360 960 3.8 1672 4484 4484 177.2 317.0 316.7 3.77171e-01 3.77235e-01 3.77235e-01

5040 17920 1120 6.3 1757 4506 4602 251.7 433.8 442.7 4.39237e-01 4.39302e-01 4.39301e-01

5760 20480 1280 8.2 1702 4528 4539 314.3 559.1 561.5 4.98815e-01 4.98878e-01 4.98882e-01

6480 23040 1440 11.1 1708 4546 4539 401.5 719.2 716.2 5.69171e-01 5.69241e-01 5.69240e-01

7200 25600 1600 15.1 1756 4578 4582 519.0 910.2 907.1 6.31546e-01 6.31609e-01 6.31614e-01

Table 2: Results for random A with unit column norms, µ = 10−3

size iter CPU fval

m n s tλmax FBE NPG Major FBE NPG Major FBE NPG Major

720 2560 160 0.1 898 2045 2054 3.2 3.7 3.7 1.16014e-01 1.16035e-01 1.16034e-01

1440 5120 320 0.7 966 2240 2225 13.1 18.6 18.4 2.45325e-01 2.45348e-01 2.45350e-01

2160 7680 480 0.6 1017 2291 2280 28.1 40.3 40.0 3.68869e-01 3.68896e-01 3.68897e-01

2880 10240 640 1.3 1017 2339 2327 48.6 72.7 72.0 4.94971e-01 4.94997e-01 4.94996e-01

3600 12800 800 2.4 1058 2398 2388 78.7 117.1 116.3 6.23388e-01 6.23416e-01 6.23418e-01

4320 15360 960 3.6 1057 2383 2384 109.2 163.6 163.1 7.50537e-01 7.50569e-01 7.50568e-01

5040 17920 1120 5.9 1051 2386 2376 147.5 223.0 221.8 8.69880e-01 8.69912e-01 8.69912e-01

5760 20480 1280 7.8 1064 2469 2433 193.8 296.7 293.5 1.01434e+00 1.01437e+00 1.01437e+00

6480 23040 1440 10.5 1092 2482 2448 251.7 380.2 375.8 1.13181e+00 1.13186e+00 1.13186e+00

7200 25600 1600 14.1 1084 2388 2409 313.4 458.8 461.6 1.25184e+00 1.25189e+00 1.25189e+00

We also test some variants of FBEL−BFGS with a choice of γ other than 0.95/L. Specifically,

we adopt the same algorithmic parameters as in FBEL−BFGS except that we consider three dif-

ferent γ’s: 0.5/L, 0.7/L and 0.9/L. These variants are denoted by FBE0.5, FBE0.7 and FBE0.9

respectively. We use the same random instances from the previous experiment for µ = 10−3 in our

test. The numerical results, averaged over the 10 random instances for each (m,n, s), are shown in

Table 3. We see that FBE0.9 takes the fewest number of iteration and the least CPU time, while

5The dimension parameters are similar to those used in [21, Section 3], except that our s is twice as large. This

indicates that the test instances we consider here are harder in terms of sparse recovery.
6The CPU times under the FBE column do not include the times for computing λmax(ATA). The latter are

reported separately in the fourth column of each table.
7For all three algorithms, we output the zk at termination and compute the function value h(zk).
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it returns similar function values as FBE0.5 and FBE0.7. Moreover, comparing with Table 2, we

see that FBEL−BFGS (whose γ = 0.95/L) is the fastest.

Table 3: Results for FBE0.5, FBE0.7 and FBE0.9 with µ = 10−3

size iter CPU fval

m n s FBE0.5 FBE0.7 FBE0.9 FBE0.5 FBE0.7 FBE0.9 FBE0.5 FBE0.7 FBE0.9

720 2560 160 1266 1066 934 4.7 4.0 3.5 1.16014e-01 1.16014e-01 1.16014e-01

1440 5120 320 1349 1135 993 18.6 15.6 13.6 2.45325e-01 2.45325e-01 2.45325e-01

2160 7680 480 1434 1200 1052 41.1 34.4 30.1 3.68869e-01 3.68869e-01 3.68869e-01

2880 10240 640 1459 1203 1049 71.6 59.0 51.4 4.94971e-01 4.94971e-01 4.94971e-01

3600 12800 800 1500 1240 1085 115.1 95.2 83.3 6.23388e-01 6.23388e-01 6.23388e-01

4320 15360 960 1499 1256 1096 160.2 133.8 116.8 7.50537e-01 7.50537e-01 7.50537e-01

5040 17920 1120 1491 1234 1076 215.6 177.9 155.3 8.69880e-01 8.69880e-01 8.69880e-01

5760 20480 1280 1522 1248 1090 281.9 231.5 202.1 1.01434e+00 1.01434e+00 1.01434e+00

6480 23040 1440 1560 1294 1117 364.5 301.8 260.4 1.13181e+00 1.13181e+00 1.13181e+00

7200 25600 1600 1542 1285 1120 452.6 378.0 329.0 1.25184e+00 1.25184e+00 1.25184e+00

Finally, we consider ill-conditioned problems to further evaluate the performance of FBEL−BFGS,

i.e., the matrix A in (35) is ill-conditioned. Specifically, as in [37, Section 5], we let A be a randomly

over-sampled partial DCT matrix with columns given by

Aj =
1√
m

cos(2πjw/F ), j = 1, ..., n, (39)

where w ∈ IRm is a vector with independent entries uniformly sampled from [0, 1] and F is a

positive integer.

In our experiments below, we compare FBEL−BFGS with NPG for solving (35) on random

instances where A is generated by (39). We first randomly generate a vector x ∈ IRn with sparsity

s and its entries in the support set are following i.i.d. standard Gaussian distribution. Then we let

b = Ax+ σε, where σ > 0 and ε ∈ IRm is a random vector with i.i.d. standard Gaussian entries.

In our numerical tests, for each (m,n, s) = (100i, 1500i, 10ki) for i = 1, 1.2 and k = 2, 3, 4, we

generate 30 random instances as described above with F = 20 and σ = 10−2. The computational

results corresponding to (35) with µ = 10−4 are presented in Table 4, where we denote the algo-

rithm FBEL−BFGS with tol = 10−6 by FBE, the algorithm NPG terminated at tol = 10−6 and

tol = 10−5 by NPG−6 and NPG−5 respectively. In the table, we report the time for computing

λmax(ATA) (tλmax), the number of iterations (iter), CPU time in seconds (CPU) and the termi-

nating function values (fval), averaged over the 30 random instances. We see that FBEL−BFGS

always outperforms the NPG−6 in terms of the number of iterations, CPU time and function

values. On the other hand, while NPG−5 takes the fewest iterations and least CPU time, it has

much worse function values, indicating that the termination is likely premature.

Table 4: Results for randomly over-sampled partial DCT matrix A, µ = 10−4

size iter CPU fval

m n s tλmax FBE NPG−6 NPG−5 FBE NPG−6 NPG−5 FBE NPG−6 NPG−5

100 1500 20 0.0 3e+04 2e+05 1e+04 18.7 25.8 1.6 1.5844e-03 1.5873e-03 1.8627e-03

100 1500 30 0.0 3e+04 2e+05 1e+04 18.9 30.7 1.9 2.1274e-03 2.1325e-03 2.4659e-03

100 1500 40 0.0 3e+04 3e+05 2e+04 21.3 36.7 2.3 2.7476e-03 2.7521e-03 3.1333e-03

120 1800 24 0.0 3e+04 2e+05 1e+04 25.2 36.3 2.4 2.0271e-03 2.0306e-03 2.3160e-03

120 1800 36 0.0 4e+04 3e+05 2e+04 32.9 46.6 2.7 2.6018e-03 2.6053e-03 2.9544e-03

120 1800 48 0.0 3e+04 3e+05 2e+04 31.2 49.2 3.4 3.0467e-03 3.0505e-03 3.4297e-03
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6 Concluding remarks

In this paper, we further studied the forward-backward envelope first introduced in [28] and [30],

and established sufficient conditions for the envelope to be a level-bounded and KL function with

an exponent of 1
2 . We also illustrated how to solve a class of difference-of-convex regularized

least squares problem via a suitable forward-backward envelope. This opens up the possibility of

applying techniques for smooth unconstrained optimization to this special class of difference-of-

convex programming problems.

One open question is how to extend the concept of forward-backward envelope to (1) in the

case when f only has locally Lipschitz continuous gradients; this instance also arises frequently

in applications. Another open question is to identify more classes of (nonconvex) problems that

satisfy the error bound condition (Assumption 3.1). In particular, it is still unknown to us whether

the objective function in (36) satisfies the error bound condition.

A Closed form formula for NPG subproblems

In this appendix, we derive a closed form formula for the following problem,

min
x

1

2
‖x− y‖2 + µ1‖x‖1 − µ2‖x‖, (40)

where µ1 ≥ µ2 > 0 and y ∈ IRn is given. It is easy to see that (40) covers (37) as a special case

and hence we will obtain a closed form formula for these NPG subproblems. To proceed with our

derivation, we first establish the following lemma.

Lemma A.1. Let v ∈ IRn and define I := {i : vi < 0}. Consider the optimization problem

min
‖x‖=1,x≥0

vTx (41)

(i) Suppose that I 6= ∅. Then an optimal solution x∗ of (41) is given by

x∗i =

{
− vi
‖vI‖ if i ∈ I,

0 otherwise,
(42)

where vI is the subvector of v indexed by I.

(ii) Suppose that I = ∅ and take an i∗ ∈ {i : vi = mink vk}. Then an optimal solution x∗ of

(41) is given by

x∗i =

{
1 if i = i∗,

0 otherwise.
(43)

Proof. It is clear that an optimal solution of (41) exists.

Suppose first that I 6= ∅. In this case, we consider the following relaxation of (41):

min
‖x‖≤1,x≥0

vTx (44)

Let x∗ be an optimal solution of (44). Then it is easy to see that for any i that corresponds to

vi > 0, we must have x∗i = 0; because otherwise, one can zero out these x∗i to obtain a feasible

solution with a strictly smaller objective value. Next, since I is nonempty, it is not hard to see

that one must have x∗i = 0 for all i corresponding to vi = 0, because otherwise, one can further

decrease the objective value by setting these entries to zero while increasing some x∗i with i ∈ I.
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Thus, x∗i = 0 for all i that correspond to vi ≥ 0. Finally, it must hold that ‖x∗‖ = 1 because

otherwise one can further increase x∗i for i ∈ I to decrease the objective value. Thus, we conclude

that x∗ must take the form of (42). Since this x∗ is optimal for (44) and is also feasible for (41),

it must also be optimal for (41).

Next, suppose that I is empty. This means that v is a nonnegative vector. Observe that for

any x feasible for (41) so that ‖x‖ = 1, we have

1 = ‖x‖2 ≤ (eTx)2 ≤ n‖x‖2 = n,

showing that the following optimization problem is a relaxation of (41):

min
1≤eT x≤

√
n,x≥0

vTx. (45)

Since v is nonnegative, a simple scaling argument indicates that any optimal solution x∗ of (45)

has to satisfy eTx∗ = 1. In particular, this shows that the optimal value of (45) is given by mini vi
and the x∗ given by (43) is an optimal solution. Since this x∗ is clearly feasible for (41), it is also

optimal for (41). This completes the proof.

The next proposition gives an explicit formula for a minimizer of (40).

Proposition A.1. Let I = {i : µ1 < |yi|}.

(i) Suppose that I is nonempty. Then a solution x∗ of (40) is given by

x∗i =

{
sgn(yi)(µ2 + ‖|yI | − µ1eI‖) |yi|−µ1

‖|yI |−µ1eI‖ if i ∈ I,
0 otherwise,

where yI is the subvector of y indexed by I, the absolute value |yI | is taken componentwise,

and eI is the vector of all ones of dimension |I|.

(ii) Suppose that I is empty and take an i∗ ∈ {i : µ1 − |yi| = mink{µ1 − |yk|}}. Then a solution

x∗ of (40) is given by

x∗i =

{
sgn(yi∗) max{µ2 − (µ1 − |yi∗ |), 0} if i = i∗,

0 otherwise.

Proof. Using a substitution x = α◦w, where α ∈ {−1, 1}n, w ≥ 0 and ◦ denotes entrywise product,

and expanding the quadratic term, we see that problem (40) can be equivalently written as

min
α∈{−1,1}n,w≥0

1

2
‖w‖2 − (α ◦ y)Tw + µ1e

Tw − µ2‖w‖.

Applying a further substitution w = ru with a number r ≥ 0 and a nonnegative vector ‖u‖ = 1,

the above problem can be further reformulated as

min
α∈{−1,1}n
u≥0,‖u‖=1

min
r≥0

1

2
r2 − r(α ◦ y)Tu+ µ1re

Tu− µ2r.

It is easy to check that the inner minimization is attained at r = max{µ2 − (µ1e − α ◦ y)Tu, 0}.
Plugging this back, the optimization problem now becomes

min
α∈{−1,1}n
u≥0,‖u‖=1

−1

2
(max{µ2 − (µ1e− α ◦ y)Tu, 0})2.
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Since the function t 7→ − 1
2 (max{µ2− t, 0})2 is nondecreasing, to obtain an optimal solution of the

above optimization problem, one only needs to consider the problem

min
α∈{−1,1}n
u≥0,‖u‖=1

(µ1e− α ◦ y)Tu.

For this problem, since u ≥ 0, we must have α∗ = sgn(y) at optimality. This further reduces the

above problem to

min
u≥0,‖u‖=1

(µ1e− |y|)Tu.

The conclusion of this proposition now follows from this observation, Lemma A.1, the facts that

x = α ◦ (ru) with r = max{µ2 − (µ1e− α ◦ y)Tu, 0} and α∗ = sgn(y).
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