
J. Math. Phys. 58, 073505 (2017); https://doi.org/10.1063/1.4995392 58, 073505

© 2017 Author(s).

Classical and quantum stochastic
models of resistive and memristive
circuits
Cite as: J. Math. Phys. 58, 073505 (2017); https://doi.org/10.1063/1.4995392
Submitted: 14 November 2016 . Accepted: 11 July 2017 . Published Online: 27 July 2017

John E. Gough , and Guofeng Zhang 

ARTICLES YOU MAY BE INTERESTED IN

Power dissipation in fractal Feynman-Sierpinski AC circuits
Journal of Mathematical Physics 58, 073503 (2017); https://
doi.org/10.1063/1.4994197

Derivatives of Horn hypergeometric functions with respect to their parameters
Journal of Mathematical Physics 58, 073504 (2017); https://
doi.org/10.1063/1.4994059

Classification of Hamiltonians in neighborhoods of band crossings in terms of the
theory of singularities
Journal of Mathematical Physics 58, 073502 (2017); https://
doi.org/10.1063/1.4991662

https://images.scitation.org/redirect.spark?MID=176720&plid=1087480&setID=406887&channelID=0&CID=358799&banID=519828206&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=bcf0998991a65fb62c1c3b6e88d8397e82c6c5f3&location=
https://doi.org/10.1063/1.4995392
https://doi.org/10.1063/1.4995392
https://aip.scitation.org/author/Gough%2C+John+E
http://orcid.org/0000-0002-1374-328X
https://aip.scitation.org/author/Zhang%2C+Guofeng
http://orcid.org/0000-0002-8832-1364
https://doi.org/10.1063/1.4995392
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.4995392
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.4995392&domain=aip.scitation.org&date_stamp=2017-07-27
https://aip.scitation.org/doi/10.1063/1.4994197
https://doi.org/10.1063/1.4994197
https://doi.org/10.1063/1.4994197
https://aip.scitation.org/doi/10.1063/1.4994059
https://doi.org/10.1063/1.4994059
https://doi.org/10.1063/1.4994059
https://aip.scitation.org/doi/10.1063/1.4991662
https://aip.scitation.org/doi/10.1063/1.4991662
https://doi.org/10.1063/1.4991662
https://doi.org/10.1063/1.4991662


JOURNAL OF MATHEMATICAL PHYSICS 58, 073505 (2017)

Classical and quantum stochastic models of resistive
and memristive circuits

John E. Gough1,a) and Guofeng Zhang2,b)
1Aberystwyth University, SY23 3BZ Wales, United Kingdom
2The Hong Kong Polytechnic University, Hong Kong, Hong Kong

(Received 14 November 2016; accepted 11 July 2017; published online 27 July 2017)

The purpose of this paper is to examine stochastic Markovian models for circuits in
phase space for which the drift term is equivalent to the standard circuit equations.
In particular, we include dissipative components corresponding to both a resistor and
a memristor in series. We obtain a dilation of the problem which is canonical in the
sense that the underlying Poisson bracket structure is preserved under the stochastic
flow. We do this first of all for standard Wiener noise but also treat the problem using a
new concept of symplectic noise, where the Poisson structure is extended to the noise
as well as the circuit variables, and in particular where we have canonically conju-
gate noises. Finally, we construct a dilation which describes the quantum mechanical
analogue. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4995392]

I. INTRODUCTION

Dissipation has long been realized as a feature, though also a resource, in the design of engineered
systems.1–11 The question of how exactly to model dissipation, given that the fundamental physical
dynamical equations of motion are Hamiltonian, remains of fundamental importance; the issue applies
to both classical and quantum systems.12–22 Hamiltonian systems with a finite number of degrees of
freedom have dynamical evolutions that preserve the canonical structure, that is, the Poisson brackets
in classical theory and the commutation relations in quantum theory. In this setting, dissipation is
per se impossible. There exist a number of ingenious approaches to tackling this problem such as
approximations using lossless systems22 and redefining the Poisson bracket to include dissipative
effects.5

The approach to introducing dissipation adopted in this paper is to embed the system in an
environment (leading to a joint coupled Hamiltonian model) and average out the environment. In
other words, we consider stochastic models which are Hamiltonian in structure which dilate the
dissipative dynamics. It is well-known that under various assumptions about the bulk limit of the
environment, negligible autocorrelation of the environment processes (memoryless property), ignor-
ing rapid oscillations (the rotating wave approximation in the quantum case), etc., one may obtain
limiting dynamical models with an irreversible semi-group evolution. Moreover, this semi-group may
often be dilated to a stochastic Markov system: in the classical case, this may be described by stochas-
tic differential equations of motion, for instance, for a diffusion process, where the generator is the
second-order differential operator on phase space coinciding with the generator of the semi-group;
in the quantum setting, this may be a unitary quantum stochastic process, leading to an evolution
described by quantum stochastic calculus,23 where the generator is Lindbladian.24,25

The purpose of this paper is to carry out this programme in the setting of electronic circuit
models, where we allow for dissipation beyond the usual ohmic damping. It is well known that con-
stant inductance-capacitance (LC) circuits are Hamiltonian and are readily quantized26 (Sec. 3.4.3).
Markovian models that include dissipation may then be formulated on purely phenomenological
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grounds; however, it is clear that it is desirable to have a theory that is capable of dealing with
non-linear dissipation, in particular, we wish to include charge and current dependent resistances,
which brings us to the formalism introduced by Chua27 for a unified axiomatic description of passive
circuit components. While originally a theoretical construct,27–34 there is evidence to suggest that
ideal memristors also occur in quantum models.35

A. Organization of the paper

The layout and main contributions of this paper are summarized as follows. In Sec. II, we recall
the framework of Chua for describing general classical circuit models and present the canonical
formulation in phase space.

In Sec. III, we show how we may obtain a stochastic dilation of these models for an arbitrary
resistor and memristor in series, and remarkably, we are able to give explicit constructions based
on the principle that the dilation should in some sense be Hamiltonian: more exactly, this emerges
from the requirement that the stochastic evolution be canonical. In the theory of quantum stochastic
evolutions,23 this turns out to arise automatically from the requirement of a unitarity of the evolution
process. The classical theory is more flexible, but less transparent as one has to put in the requirement of
preservation of the Poisson brackets as an additional constraint on the stochastic evolution explicitly.
Here the algebraic features encoded in the quantum case are replaced by geometric features imposed
on the diffusion process.

Our first construction (Theorem 5) deals with the classical problem and utilizes a result by one
of the authors in Ref. 37. This however involves standard Wiener noise which has no symplectic
structure of its own, leading to a rather involved form of the dilation. Motivated by the situation that
occurs in quantum models, we consider canonically conjugate pairs of Wiener noise that satisfy their
own non-trivial Poisson bracket relations: these symplectic noises38 were only recently introduced
and they parallel the corresponding situation in quantum theory, where the noise is actually a quantum
electromagnetic field. We give the corresponding result, Theorem 9, for symplectic noise, and this
constitutes a genuine extension of Theorem 5 as we obtain the latter in the case where only one of
each of the canonical pairs of symplectic noise is present. The construction in Theorem 9 to obtain the
general canonical dilation of a resistor and memristor in series is markedly more simple and natural
than that of Theorem 5 due to the role of the canonically conjugate noises.

For completeness, in Sec. IV, we show how these models are readily quantized and establish the
analogous result, Theorem 10. In Sec. V, we discuss the origin of the stochastic models proposed in
Secs. III and IV.

There has been much interest into how Hamiltonian systems can approximate dissipative systems,
see Ref. 16 for classical and Refs. 39 and 40 for quantum, and there have been a control theoretic
models of lossless approximations to dissipative systems.20,22 In Sec. V, we show how these models
may arise from approximations by physically realistic microscopic systems. This involves a Wong-
Zakai type limit procedure—more exactly, the quantum stochastic analogue of this, which contains
the classical result as a special case. Finally, we conclude the paper in Sec. VI.

II. GENERAL CIRCUIT THEORY

The concept of a memristor was introduced by Leon Chua in 1971 as a missing fourth element in
the theory of idealized passive components in electronics.27,28 There are four variables to consider in
a circuit: the charge q, the current I, the flux ϕ, and the voltage V. They are actually paired naturally
as (q, I) and (ϕ, V ), and we always have the fundamental relations

I = q̇, V = ϕ̇, (1)

and however, it is mathematically useful to treat these as four independent variables.
An ideal resistor R is a component that leads to a fixed I-V characteristic, that is, the voltage

V across the resistor and the current I through the resistor are constrained by an equation of the
form

fR (I , V )= 0,
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FIG. 1. Chua’s fourfold way! The inclusion of the memristor conceptually completes the set of idealized passive circuit
elements.

and assuming that the relation is differentiable and bijective (that is, each voltage determines a unique
current and vice versa), we may always write

dV =R (I) dI .

Note that we can always choose R to be a function of I only by assumption. The coefficient R is the
resistance, and in the case where it is a constant R, we obtain Ohm’s law V = RI.

Likewise, an ideal capacitor C is a component that determines a q-V characteristic fC (q, V )= 0
and under similar assumptions, we may write

dV =
1

C (q)
dq,

while an inductor L is a component that determines a ϕ-I characteristic fL (ϕ, I) and under similar
assumptions, we have

dϕ=L (I) dI .

The physical quantities C and L arising are the capacitance and inductance, respectively, and it is
convenient to take them as functions of q and I, respectively.

Chua’s insight was that the mathematical theory missed out an idealized component M that
determined a q-ϕ characteristic: see Fig. 1. This fourth element he called a memristor and it fixed
a relationship fM (q, ϕ)= 0, and again assuming differentiability and bijective, we are led to the
differential relation

dϕ=M (q) dq.

In fact, it immediately follows from (1) that for a memristor, we have the relation

V =M (q) I ,

and comparison with Ohm’s law suggests that the physical quantity M (q) is a charge dependent
resistance. Indeed as the memristor relates the integral of the voltage ϕ (t)= ∫

t
−∞ V (t ′) dt ′ to the

integral of the current q (t)= ∫
t
−∞ I (t ′) dt ′, the component acts as a resistive element with memory of

past voltages and currents—whence the name memristor.
The capacitor and inductor are both capable of storing energy and we have the associated energies

EC =

∫
qdV =

∫
qdq

C (q)
, EL =

∫
Idϕ=

∫
L (I) IdI .

These four components will then form the building blocks for general passive electric circuits.
While they are clearly idealizations, it is nevertheless the case that they are the fundamental elements
that can be combined to produce physical systems.
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We may summarize the main properties of the four components as follows:

The introduction of the memristor by Chua has the important theoretical implication that we
can model a wider class of dissipative systems than just described by the resistor alone. We will
explore this shortly, but the main feature is that we may have dissipative models where the damping
is dependent on the charge in addition to the current.

A. Lagrangian and Hamiltonian models for energy storing components

The situation where we have an inductor and capacitor in series is well-known to be a conservative
system with a Lagrangian formulation, see also Refs. 30, 32, and 34. For a prescribed applied emf
e(t), we have VL + VC = e (t) and so the equation of motion is

L(q̇) q̈ + Φ′C(q)= e(t),

withΦ′C(q)= ∫
dq

C(q) . We assume the existence of a twice-differentiable function K such that K ′(I)> 0
and K ′′(I)=L(I). The equations of the LC-circuit then follow from the Euler-Lagrange equations
d
dt (

∂L
∂q̇ ) − ∂L

∂q = 0 with Lagrangian

L(q, q̇, t)=K(q̇) − ΦC(q) + e(t)q.

The canonical momentum is then given by

p=
∂L
∂q̇
=K ′(q̇),

and by assumption on K, this is a bijection with inverse q̇= I(p), that is, the Lagrangian is hyper-regular.
Note that

ṗ=L(q̇) q̈=L(I) İ ≡VL = ϕ̇L,

so in a sense, p may be identified with the inductor flux ϕL. The corresponding Hamiltonian is
then

H(q, p, t)=K(p) + ΦC(q) − e(t)q, (2)

and we have the Legendre transform K(p)= supI {pI − K(I)} ≡ pI(p) − K(I(p)) .
In the special case where the inductance is L(I) = L0 (constant), we take K(I)= 1

2 L0I2, and
here

I(p)= p/L0, K(p)=
1

2L0
p2.

Likewise, in the special case where the capacitance is C(q) = C0, we may take ΦC(q)= 1
2C0

q2. Here,
the Hamiltonian takes the explicit form

H0(q, p, t)=
p2

2L0
+

q2

2C0
− q e(t), (3)

with p=L0q̇ and that this is a driven harmonic oscillator with resonant frequency ω0 = (L0C0)−1/2.
Note that with e(t) = 0, H0 is equal to the physically stored energy EL + EC with the appropriate
substitution q̇= p/L0.
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FIG. 2. All four idealized components in series.

B. Dissipative circuits

We begin by examining a circuit having all four components in series, see Fig. 2.
The applied emf e(t) driving the circuit is related by Kirchhoff’s voltage law to the total voltage

drop over the circuit,

VL + VC + VR + VM = e (t) .

Recalling that VL = ṗ, the dynamical equation may instead be expressed as

ṗ=−
∫

dq
C (q)

−

∫
R(I)dI −M (q) q̇ + e (t) .

Let us introduce the functions

D′R(I)=
∫

R(I)dI , Ψ
′
R(p)=D′R(I(p)), (4)

then we obtain the system of equations in the (q, p) phase space of the circuit

q̇= I(p), ṗ=−Φ′C (q) − Ψ′R(p) −M (q) I(p) + e (t) . (5)

The negative divergence of the velocity field of phase points is then

γ (q, p)=−

(
∂

∂q
q̇ +

∂

∂p
ṗ

)
=Ψ′′R(p) + M (q)

∂I
∂p
=

1
L(p)

(R(p) + M (q)) , (6)

where we define the p-dependent resistance and inductance as

R(p)=R(I(p)), L(p)=L(I(p)).

The equations of motion are now

q̇=
∂H
∂p

, ṗ=−
∂H
∂q
− VR(p) − VM(q, p), (7)

with H the Hamiltonian (2) for the energy storing components L and C and the voltages associated
with the energy dissipating components R and M are

VR(p)=
∫

R(I)dI
�����I=I(p)

≡Ψ′R(p), (8)

VM(q, p)=M (q) I(p). (9)

In the situation where the inductance is a constant L0, the system of Eq. (5) reduces to q̇= vq,
ṗ= vp with

vq =
p
L0

, vp =−Φ′C (q) − Ψ′R(p) −
1
L0

M (q) p + e (t) . (10)

We shall generally be interested in the behaviour of the Poisson brackets {f , g} = ∂f
∂q

∂g
∂p −

∂g
∂q

∂f
∂p under

general dynamical flows on phase space.
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In general, let wq and wp be twice-differentiable coefficients of a vector field in phase space
along the coordinate axes, then the tangent vector field is the operator

w = wq ∂

∂q
+ wp ∂

∂p
.

We say that the field is Hamiltonian if it can be written in terms of the Poisson brackets as w(·)≡ {·, H },
for some smooth function H. In coordinate form, this reads as wq = ∂H

∂p , wp =− ∂H
∂q .

Given a general vector field w, the flow it generates is the family of diffeomorphisms {φt }, for t in
a neighbourhood of 0, such that t 7→ (qt , pt)≡ φt(q0, p0) gives the integral curve of w passing through
(q0, p0) at t = 0. The flow is canonical if it preserves the Poisson brackets. To obtain a necessary
condition, we look at small times t where locally we have

qt = q0 + tvq (q0, p0) + O
(
t2

)
, pt = p0 + tvp (q0, p0) + O

(
t2

)
,

and so

∂qt

∂q
= 1 + tvq

,q + O
(
t2

)
,

∂qt

∂p
= tvq

,p + O
(
t2

)
,

∂pt

∂q
= tvp

,q + O
(
t2

)
,

∂pt

∂p
= 1 + tvp

,p + O
(
t2

)
.

We therefore see that

{qt , pt } = 1 + t
(
v

q
,q + vp

,p

)
+ O

(
t2

)
= 1 − γ(q0, p0)t + O

(
t2

)
.

A necessary condition for the flow to be canonical is therefore that γ(q, p)≡ 0, and, as is well-known,
the possible solutions take the form vq = ∂H

∂p , vp =− ∂H
∂q for some function H; in other words, w must

be a Hamiltonian vector field. More generally, the infinitesimal expression describing the preservation
of the Poisson brackets under the flow integral to w is

w ({f , g})= {w(f ), g} + {f , w(g)} (11)

for every pair of smooth functions f, g on phase space. Again it can be shown that this holds if and
only if w is divergence free, that is, ∂

∂qw
q + ∂

∂pw
p = 0, and this of course is equivalent to w being a

Hamiltonian vector field.
In general, the dissipation γ(q, p) gives the exponential rate at which the phase area in the qp

phase space is decreasing. As physically R ≥ 0 and M ≥ 0 for passive systems, we must have γ ≥ 0.
Geometrically, γ characterizes exactly the non-Hamiltonian nature of the dynamical flow on phase
space, and we conclude that a dynamical flow on phase space will preserve the Poisson brackets if
and only if it corresponds to the evolution governed by some Hamiltonian function H.

For the systems in series as above, we may decompose

γ(q, p)= γR(p) + γM(q, p)

with γR(p)= ∂
∂pVR and γM(q, p)= ∂

∂pVM. In the case where the inductances are constant, we
find

γR(p)=
1
L0

R(p), γM(q, p)=
1
L0

M(q),

and in particular, these are functions of p only and q only, respectively. Therefore we have a natural
decomposition (up to an additive constant) of the resistor and memristor elements as providing
the p only and q only contributions for the dissipation γ, respectively, when the inductances are
constant.

It is fairly easy to construct dissipative components that do not have the special decomposition
γ(q, p)= γR(p) + γM(q) for constant inductance. A simple example is a resistor and memristor in
parallel, where now
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FIG. 3. A resistor and memristor in parallel.

V(q, p)=
(
VR(p)−1 + VM(q)−1

)−1
,

see Fig. 3.
Without going into explicit details, it is intuitively obvious that an arbitrary damping function

γ(q, p) ≥ 0 may be approximated by a network of resistive and memristive components in series and
parallel.

The dynamical equations may also be written in Lagrangian terms as

d
dt

(
∂L
∂q̇

)
−
∂L
∂q
=−

∂D
∂q̇

,

where we must now introduce the so-called dissipation potential D(q, q̇)=DR(q̇) + 1
2 M(q)q̇2, which

is a sum of the resistance potential DR introduced in (4) and a memristive Rayleigh type dissipation
function. However, we shall work in the Hamiltonian formalism.

C. Equivalent circuit theorem

Based on the above discussions, we have the following separation of arbitrary passive circuits
into idealized energy storing and energy dissipating components.

Theorem 1. An arbitrary passive circuit may be decomposed in energy storing components,
the Hamiltonor, described by a Hamilton’s function H and an energy dissipating component, the
Dissipator, described by a voltage function VD, see Fig. 4, such that the circuit equations are

q̇=
∂H
∂p

,

ṗ=−
∂H
∂q
− VD(q, p). (12)

The dissipation is then the negative divergence of the phase velocity, and this is given by

γ(q, p)=
∂

∂p
VD(q, p) ≥ 0.

From the mathematical perspective, the beauty of Chua’s introduction of the memristor as a
dissipative element is that it enlarges the class of possible dissipators in a maximal way.

FIG. 4. A Hamiltonian component (Hamiltonor) and dissipative component (dissipator) in series.
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III. CLASSICAL STOCHASTIC MODELS

A. Diffusion noise models

We now consider a stochastic dynamics on phase space given by the Stratonovich stochastic
differential equation (SDE),

dq= wq dt +
∑
α

σ
q
α ◦ dBαt , dp= wp dt +

∑
α

σ
p
α ◦ dBαt , (13)

where the coefficients wq, wp,σq
α,σp

α are assumed to be twice-differentiable functions of the coor-
dinates (q, p) and satisfy Lipschitz and growth conditions to ensure existence and uniqueness of
solution.41 Here we take independent standard Wiener processes (Bαt )t≥0. The equation may be cast
in Itō form as

dq= *
,
wq +

1
2

∑
α

σ
q
α
∂σ

q
α

∂q
+

1
2

∑
α

σ
p
α
∂σ

q
α

∂p
+
-

dt +
∑
α

σ
q
α dBαt ,

dp= *
,
wp +

1
2

∑
α

σ
q
α
∂σ

p
α

∂q
+

1
2

∑
α

σ
p
α
∂σ

p
α

∂p
+
-

dt +
∑
α

σ
p
α dBαt .

We now require that a stochastic differential flow preserves the Poisson structure in the sense that
we now obtain a random family of canonical diffeomorphisms on phase space. In the Itō calculus,
this implies that

d{ft , gt }t = {dft , gt }t + {ft , dgt }t + {dft , dgt }t .

The structure for symplectic manifolds is given in chapter V of Bismut’s Mechanique Aléatoire,36

and essentially the vector fields w andσα must be Hamiltonian vector fields, see also Ref. 37, Sec. III,
for a discussion on general Poisson manifolds.

Theorem 2. A stochastic dynamics determined by the system of stochastic differential equa-
tions (13) on phase space will be canonical if and only if the vector fields w and σα are
Hamiltonian.

We now suppose that this is the case and take wq = ∂H
∂p , wp =− ∂H

∂q and σq
α =

∂Fα

∂p , σp
α =−

∂Fα

∂q .
In the Itō calculus, we find the following Langevin equation for functions f t = f (qt , pt),

dft =
(
{f , H }t +

1
2

∑
α

{{f , Fα}t , Fα}t
)

dt +
∑
α

{f , Fα}t dBαt .

The dissipative component of the evolution is described by the double Poisson bracket with respect
to the Fα in the drift (dt-term). This is the generator of the diffusion, which in fact is the second-order
differential operator

L= {·, H } +
1
2

∑
α

{{·, Fα}, Fα}. (14)

We have, for instance,
L (q)= vq, L (p)= vp,

where

vq =
∂H
∂p

+
1
2

∑
α

{ ∂Fα
∂p

∂2Fα
∂q∂p

−
1
2
∂Fα
∂q

∂2Fα
∂p2

}
, vp =−

∂H
∂q
−

1
2

∑
α

{ ∂Fα
∂p

∂2Fα
∂q2

+
1
2
∂Fα
∂q

∂2Fα
∂p∂q

}
.

(15)
The Itō equations for the coordinates become

dq= vq dt +
∑
α

∂Fα
∂p

dBαt , dp= vp dt −
∑
α

∂Fα
∂q

dBαt .

Note that (15) may be written more compactly as

v = J∇H +
1
2

∑
α

JF ′′α J∇Fα,



073505-9 J. E. Gough and G. Zhang J. Math. Phys. 58, 073505 (2017)

where the symplectic matrix J and the Hessian F ′′ are defined, respectively, as

J =

[
0 1
−1 0

]
, F ′′ =



∂2F

∂q2

∂2F
∂q∂p

∂2F
∂q∂p

∂2F

∂p2



.

Proposition 3. The dissipation associated with the system of Eq. (15) is the sum of the Hessian
determinants of the Fα,

γ(q, p)=
∑
α

*
,

∂2Fα
∂q2

∂2Fα
∂p2

−

(
∂2Fα
∂q∂p

)2
+
-

. (16)

Proof. This follows by substituting expressions (15) for the Itō drift coefficients into γ(q, p)
=−

(
∂vq

∂q + ∂vp

∂p

)
. �

The stochastic flow will, however, be canonical as the dissipation is balanced geometrically by
the fluctuations in the noise term. That is,

dqtdpt =−
∑
α

∂Fα
∂p

∂Fα
∂q

dt. (17)

The model is said to be passive if we have dissipation γ(q, p) ≥ 0 at all phase points (q, p),
otherwise it is active. The van der Pol oscillator has γ(q, p)= c(q2 − a2) for constants a, c > 0 and is
an example of an active model: this can be cast in the above form with a single Wiener process, see
Ref. 37 (Sec. V B) for detail.

We would now like to realize models of form (12) as the stochastic canonical models. That is,
to obtain the velocity fields vq = ∂H

∂p and vp =− ∂H
∂q − VD, where VD(q, p) is the voltage from the

dissipative circuit elements, as the Itō drift of a given stochastic canonical model. This is possible if
we can solve the following system of equations for {Fα}:∑

α

∂Fα
∂p

∂2Fα
∂q∂p

−
∑
α

∂Fα
∂q

∂2Fα
∂p2

= 0, (18)

∑
α

∂Fα
∂p

∂2Fα
∂q2

−
∑
α

∂Fα
∂q

∂2Fα
∂p∂q

= 2VD. (19)

In the following, we shall restrict to the problem of a single Wiener process Bt and function F.

Lemma 4. Equation (18) requires that there exists a function ξ(q) such that ξ(q) ∂F
∂p =

∂F
∂q .

Proof. We may rewrite Eq. (18) as

(
∂F
∂p

)−1 ∂

∂p
(
∂F
∂p

) − (
∂F
∂q

)−1 ∂

∂p
(
∂F
∂q

)= 0,

and so
∂

∂p
log

(
∂F
∂q

/
∂F
∂p

)
= 0

and so ∂F
∂q /

∂F
∂p = ξ(q) for some function ξ of q only. �

We see that we may now substitute the identity ξ(q) ∂F
∂p =

∂F
∂q into the second relation (19) to get

ξ ′(q)( ∂F
∂p )

2
= 2VD. However, we note that solving this partial differential equation for F is in general

a difficult problem. We next show, remarkably, that there exist a broad class of solutions to physically
important cases.

Theorem 5. A stochastic evolution with Itō drift velocity (vq, vp) given by the phase velocity
field (10) can be achieved by a stochastic canonical model driven by a pair of independent Wiener
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processes (B1
t , B2

t ), for the resistance and memristance components, respectively, with the following
choices:

H =
p2

2L0
+ ΦC(q) +

1
2

W ′(p)q +
1
2

G′(q)p − e(t)q,

F1 =
q2

2c
+ cW (p), F2 =

p2

2`
+ `G(q), (20)

where c and ` are constants with units of capacitance and inductance, respectively, and we choose
W(p) and G(q) such that

W ′(p)=Ψ′R(p), G′′(q)=
1
L0

M(q). (21)

Proof. Substituting in the expressions for the Itō drift in (15) leads to

vq =
p
L0

,

vp =−Φ′C(q) −W ′(p) − G′′(q)p + e(t).

The system of equations has the desired form, and it remains only to choose w and G as in Eq. (21)
to specify the required resistance and memristance. �

To see explicitly what the stochastic differential equations (SDEs) for qt and pt look like for this
model, we first observe that

dqt = v
q(qt , pt) dt + {q, F1}t dB1

t + {q, F2}t dB2
t

= vq(qt , pt) dt + cW ′(qt) dB1
t +

pt

`
dB2

t ,

with a similar expression for the momentum. According to Theorem 5, the phase coordinate SDEs
are therefore

dqt =
pt

L0
dt + cW ′(pt) dB1

t +
pt

`
dB2

t , (22)

dpt =

(
− Φ′C (qt) − Ψ

′
R(pt) −

1
L0

M (qt) pt + e (t)
)

dt −
qt

c
dB1

t − `G
′(qt) dB2

t . (23)

We note that the dissipation here is

γ(q, p)=W ′′(p) + G′′(q)=
R(p) + M(q)

L0
, (24)

which is consistent with Eq. (6). Moreover, we also have non-trivial fluctuations, and, for instance,

dqt dpt =−
(
qtW

′(pt) + ptG
′(qt)

)
dt. (25)

The fluctuations and dissipation balance out to preserve the Poisson structure.
It is a feature of canonical diffusions that the stochastic process pt is no longer simply 1

L0
q̇t . We

would need a noise that was more singular than Weiner processes if we wanted to have dqt =
1

L0
pt dt

and still preserve the Poisson structure. In fact, to ensure that the dBαt terms did not arise in the dqt

SDE, we would need that {q, Fα} = 0 for each α. But this would imply that each Fα is a function
of q only, in which case the drift terms vq and vp would be purely Hamiltonian since we also have
{{p, Fα}, Fα} ≡ 0.

B. Symplectic noise models

In Ref. 38, the concept of canonically conjugate Wiener processes was introduced. Here one
extends the Poisson bracket structure to include the noise so that in addition to each Wiener process
Bk , which we now relabel as Qk , we have a conjugate process Pk , so the collection (Qk , Pk) have the
statistics of independent Wiener processes so that

dQj(t) dQk(t)= δjkdt = dPj(t)dPk(t),

dQj(t) dPk(t)= 0= dPj(t) dQk(t)
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but additionally satisfy
{Qj(t), Pk(s)} = Γ δjk min(t, s), (26)

where Γ > 0. We shall restrict to just a single canonical pair (Q, P) in the following, although the
generalization is straightforward. For stochastic processes X t and Y t adapted to the filtration generated
by the Weiner processes (Qs, Ps)s≤t , we have the infinitesimal relations

{Xt dQj(t), Yt } = {Xt , Yt } dQj(t),

{Xt dPj(t), Yt } = {Xt , Yt } dPj(t),

and

{XtdQj(t), YtdPk(t)} = {Xt , Yt } dQj(t)dPk(t) + XtYt {dQj(t), dPk(t)}

= δjk Γ XtYt dt.

Let us now consider a diffusion on phase space driven by a canonical pair of Wiener processes,

dqt = w
q (qt , pt) dt + σq (qt , pt) dQt + ςq (qt , pt) dPt , (27)

dpt = w
p (qt , pt) dt + σp (qt , pt) dQt + ςp (qt , pt) dPt , (28)

with the coefficients assumed to be Lipschitz, etc., so as to guarantee the existence and uniqueness
of solution. The main result, Theorem 2, of Ref. 38 is stated below.

Lemma 6. The diffusion (27) and (28) on phase space driven by a canonically conjugate pair
of Wiener processes is canonical for the full Poisson brackets if the vector fields w,σ and ς are all
Hamiltonian, say w (·)= {·, H }, σ (·)= {·, F}, and ς (·)= {·, G}, in which case we have

dft = (Lf )t dt + {f , F}t dQ(t) + {f , G}t dP(t)

with generator

L= {·, H } + u.∇ +
1
2
{
{·, F}, F

}
+

1
2
{
{·, G}, G

}
, (29)

where u is a vector field with
∇.u=−Γ{F, G}. (30)

In this case, the dissipation function on phase space is given by

γ (q, p)= Γ {F, G} +

{
∂F
∂q

,
∂F
∂p

}
+

{
∂G
∂q

,
∂G
∂p

}
. (31)

As an example, we consider the linear LC model with the Hamiltonian H0 defined in Eq. (3)
and

F = p, G=−q.

By Eq. (30), we have ∇.u=−Γ. A particular solution is given by uq = 0, up =−Γp. As a result, the
equations of motion are

dqt =
pt

L0
dt + dQt , (32)

dpt =−

(
1

C0
qt + Γpt − e(t)

)
dt + dPt . (33)

Finally, it is easy to show that
γ (q, p)≡ Γ.

It is easy to see that dqtdpt = 0. However, noises (Qt , Pt) do leave their imprint by adding the term
−Γpt to the momentum.

In the above example, the proposed particular solution to ∇.u=−Γ can be given by

u.∇=−Γp
∂

∂p
.

The next two results show how to find the vector field u in general.
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Lemma 7. Given the family of twice-differentiable functions (Fα, Gα), a particular solution to
the equation

∇.u=−Γ
∑
α

{Fα, Gα} (34)

is given by the vector field u0 with components

uq
0 =

1
2
Γ

∑
α

(
Gα

∂Fα
∂p
− Fα

∂Gα

∂p

)
,

up
0 =

1
2
Γ

∑
α

(
Fα

∂Gα

∂q
− Gα

∂Fα
∂q

)
.

The general solution is then the particular solution plus an arbitrary Hamiltonian vector field.

Proof. We verify directly that

∂uq
0

∂q
=−

1
2
Γ

∑
α

{Fα, Ga} +
1
2
Γ

∑
α

(
Gα

∂2Fα
∂q∂p

− Fα
∂2Gα

∂q∂p

)
,

∂up
0

∂p
=−

1
2
Γ

∑
α

{Fα, Ga} −
1
2
Γ

∑
α

(
Gα

∂2Fα
∂p∂q

− Fα
∂2Gα

∂p∂q

)
,

so adding the terms gives
∂uq

0

∂q
+
∂up

0

∂p
=−Γ

∑
α

{Fα, Ga}

as required. �

Corollary 8. Given the family of functions Fα, Gα, assumed to be twice-differentiable, a
particular solution to Eq. (34) is given by the vector field u with components

uq =−Γ
∑
α

Fα
∂Gα

∂p
, up = Γ

∑
α

Fα
∂Gα

∂q
. (35)

Proof. This can be verified by direct substitution into Eq. (34). Alternatively, note that

uq = uq
0 +

∂K
∂p

, up = up
0 −

∂K
∂q

,

with K =
∑
α FαGa. �

The following result gives the symplectic stochastic model which realizes the velocity fields
(10).

Theorem 9. A stochastic evolution with Itō drift velocity (vq, vp) given by the phase velocity field
(10) can be achieved by the stochastic canonical model driven by a pair of independent symplectic
Wiener processes (Q1, P1) and (Q2, P2), for the resistance and memristance components, respectively,
with the following choices:

H =
p2

2L0
+ ΦC(q) − e(t)q, (36)

F1 = %(p), G1 =−q, (37)

F2 = p, G2 =−µ(q), (38)

where %(p)= 1
Γ
Ψ′R(p) and µ′(q)= 1

ΓL0
M(q). Here we take u to be the vector field obtained from

Corollary 8. The symplectic stochastic model of system (10) is

dqt = v
qdt +

R(p)
ΓL0

dQ1(t) + dQ2(t), (39)

dpt = v
pdt − dP1(t) −

M ′(q)
ΓL0

dP2(t), (40)
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with Itō drift

vq =
1
L0

p, (41)

vp =−Φ′C (q) + e (t) − Ψ′R(p) −
1
L0

M (q) p. (42)

The negative divergence of the velocity field is

γ (q, p)=
1
L0

(R (p) + M (q)) . (43)

Proof. For the choices (Fα, Gα) in the statement of the Theorem, we have that the vector field
obtained in Corollary 8 will be

uq = 0, up =−Γ
(
% (p) + pµ′ (q)

)
≡−Ψ′R(p) −

p
L0

M (q) .

The Itō drift may be calculated from the generator in Lemma 6, for instance, by vq =Lq, and we
have

vq =
∂H
∂p

+ uq +
1
2

∑
α

( {
∂Fα
∂p

, Fα

}
+

{
∂Gα

∂p
, Gα

} )
.

However
∑
α

{
∂Fα

∂p , Fα
}
= {%′ (p) , % (p)} + {p, 1} = 0 and

∑
α

{
∂Gα

∂p , Gα

}
≡ 0 since Gα do not depend

on q.
So we have

vq =
∂H
∂p

+ uq =
1
L0

p. (44)

Similarly

vp =−
∂H
∂q

+ up −
1
2

∑
α

{
∂Fα
∂q

, Fα

}
−

1
2

∑
α

{
∂Gα

∂q
, Gα

}
,

but again
∑
α

{
∂Fα

∂q , Fα
}
≡ 0, as the functions Fα do not depend on p and

∑
α

{
∂Gα

∂q , Gα

}
= {1, q}

+ {µ′ (q) , µ (q)} = 0. Therefore, we have

vp =−
∂H
∂q

+ up =−Φ′C (q) + e (t) − Ψ′R(p) −
1
L0

M (q) p. (45)

Equations (44) and (45) are the desired form of the Itō drift (41) and (42). The stochastic evolution
(39) and (40) follows immediately. Finally, we note that the dissipation will be

γ (q, p)= Γ
∑
α

{Fα, Gα} = Γ
(
%′(p) + µ′ (q)

)
=

1
L0

(R (p) + M (q)) (46)

which is the correct form, (recall that Ψ′′R(p)≡R (p) /L0, cf. Eq. (6)). Equation (43) is
established. �

IV. QUANTUM STOCHASTIC MODELS

To quantize, we replace q and p by operators satisfying the commutation relations[
q̂, p̂

]
= i~.

In the case of an LC circuit driven by a classical emf e, we have the Hamiltonian

Ĥ0 =
1

2L0
p̂2 +

1
2C0

q̂2 − e(t)q̂.

We may introduce annihilation operators, defined as

â= (2~ω0L0)−1/2 (ω0L0q̂ + ip) ,

and so q̂=
√
~ω0C0

2 (â + â∗) and p̂= i
√
~ω0L0

2 (â∗ − â).
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The Hamiltonian is then

Ĥ0 = ~ω0

(
â∗â +

1
2

)
−

√
~ω0C0

2
(
â + â∗

)
e (t) . (47)

While the formalism is identical to the quantum mechanical oscillator, we may give an entirely
different interpretation physically. The state |n〉 for the quantized circuit describes the situation where
there are n quanta (photons) in the circuit. In this case, the number operator N̂ = â∗â is the observable
corresponding to the number of photons in the circuit. Note that we may have zero photons, and this
corresponds to a physical state |0〉. The source term in the Hamiltonian is proportional to e (t) and
involves the creation â∗ and annihilation â of photons.

We are in the situation that there exists a theory of quantum stochastic integration generalizing the
Itō calculus. The mathematical theory was developed in 1984 by Hudson and Parthasarathy23 though
was also derived on a physical basis for modelling physical noise in quantum photonic models by
Gardiner and Collett in 1985.42 In essence, we have a quantum system with underlying Hilbert space
h which is in interaction with an infinite environment modelled as a quantum field.23,43,26 Without
going too far into the details, we have quantum white noise fields âα (t) which are operators satisfying
commutation relations [

âα (t) , â∗β (s)
]
= δαβ δ (t − s) .

We also fix the vacuum state which is the unique vector such that âα (t) |Ω〉= 0.
The integrated fields Âα (t)= ∫

t
0 âα (s) ds and Â∗α (t)= ∫

t
0 â∗α (s) ds are well defined operators on

Bose Fock space F satisfying
[
Âα (t) , Â∗β (s)

]
= δαβ min {t, s} .

The quadrature processes are defined by

Q̂α (t)= Âα (t) + Â∗α (t) , P̂α (t)=
1
i

(
Âα (t) − Â∗α (t)

)
,

both of which are self-commuting operator-valued processes, that is,
[
Q̂α (t) , Q̂β (s)

]
= 0=

[
P̂α (t) , P̂β (s)

]
.

In the vacuum state of the noise, they both have the statistics of a standard Wiener process. However,
the quadrature processes do not commute and we have instead

[
Q̂α (t) , P̂β (s)

]
= 2iδαβ min {t, s} . (48)

Hudson and Parthasarathy developed a theory of quantum stochastic integration with respect to these
processes. This involves the following nontrivial product of Itō increments:

dÂα (t) dÂ∗β (t)= δαβdt.

They show that a quantum stochastic process Û (t) can be defined on the joint system+noise space
h ⊗ F by

dÛ (t)=
(∑
α

L̂αdÂ∗α (t) −
∑
α

L̂∗αdÂα (t) −
1
2

∗∑
α

L̂∗αLαdt −
i
~

Ĥ0dt
)

Û (t) ,

Û(0)= Ih ⊗ IF

and that the process is unitary. (Technically they require the system operators Ĥ0 = Ĥ∗0 and L̂α to
be bounded; however, the theory extends to unbounded coefficients.) The dynamical evolution of a
system observable X̂ is given by

jt
(
X̂
)
= Û(t)∗

(
X̂ ⊗ IF

)
Û (t) ,

and one can deduce the following dynamical equations of motion:

djt
(
X̂
)
=

∑
α

jt
( [

X̂, L̂α
] )

dÂ∗α (t) +
∑
α

jt
( [

L̂∗α, X̂
] )

dÂα (t) + jt
(
LX̂

)
dt, (49)
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where the generator takes the form

LX̂ =
1
2

∑
α

[
L̂∗α, X̂

]
L̂α +

1
2

∑
α

L̂∗α
[
X̂, L̂α

]
+

1
i~

[
X̂, Ĥ0

]
.

This is the well-known GKS-Lindblad generator from the theory of quantum dynamical semi-
groups.24,25,45,46 The Hudson-Parthasarathy theory therefore offers a unitary dilation of such quantum
Markov semi-groups.

We now show how to realize the analogue of the Itō drift corresponding to the phase velocity
field (10). Note that in this case, the terms pM(q) are ambiguous as p̂ and M(q̂) generally do not
commute. We naturally interpret this as the symmetrically ordered term 1

2 p̂M(q̂)+ 1
2 M(q̂)p̂. Motivated

by the previous Theorem 9 giving the construction of such a diffusion in the classical setting with
two independent canonical pairs of symplectic Wiener noise, we now establish the corresponding
quantum analogue.

Theorem 10. Given the function ΦC, ΨR, and M, we obtain the Itō drift terms

vq =Lq̂=
p̂
L0

,

vp =Lp̂=−Φ′C (q̂) − Ψ′R(p̂) −
1

2L0
(M (q̂) p̂ + p̂M (q̂)) + e (t)

for the choice Ĥ = Ĥ0 + K̂ , where Ĥ0 is the Hamiltonian (47) and

K̂ =
1
2

[
f (p̂)q̂ + q̂f (p̂)

]
+

1
2

[
p̂g (q̂) + g (q̂) p̂

]
and coupling terms

L̂1 = q̂ + i
1
~

f (p̂) , (50)

L̂2 =
1
~

g (q̂) + ip̂, (51)

with the functions f and g given by f (p̂)= 1
2Ψ
′
R(p̂) and g′ (q̂)= 1

2L0
M (q̂). The quantum stochastic

model of system (10) is then

djt(q̂)= jt(v
q)dt − jt(f

′(p̂))dQ̂1(t) − ~dQ̂2(t), (52)

djt(p̂)= jt(v
p)dt − ~dP̂1(t) − jt(g

′(q̂))dP̂2(t). (53)

Proof. We have, for instance,

1
i~

[
q̂, Ĥ

]
=

p̂
L0

+
1
2

[
f ′ (p̂) q̂ + q̂f ′ (p̂)

]
+ g (q̂)

and that

1
2

[
L̂∗1, q̂

]
L̂1 +

1
2

L̂∗1
[
q̂, L̂1

]
=−

f ′ (p̂) q̂ + q̂f ′ (p̂)
2

,

1
2

[
L̂∗2, q̂

]
L̂2 +

1
2

L̂∗2
[
q̂, L̂2

]
=−g (q̂) ,

which combine to give Lq̂= p̂
L0

. Similarly, we have

1
i~

[
p̂, Ĥ

]
=−Φ′C (q̂) + e(t) − f (p̂) −

1
2

[
g′ (q̂) p̂ + p̂f ′ (q̂)

]
,

and
1
2

[
L̂∗1, p̂

]
L̂1 +

1
2

L̂∗1
[
p̂, L̂1

]
=−f (p̂),

1
2

[
L̂∗2, q̂

]
L̂2 +

1
2

L̂∗2
[
q̂, L̂2

]
=−

g′(q̂)p̂ + p̂g′(q̂)
2

,
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which combine to give

Lp̂=−Φ′C (q̂) + e(t) − 2f (p̂) − g′ (q̂) p̂ − p̂g′ (q̂)

so that the choices f (p̂)= 1
2Ψ
′
R(p̂) and g′ (q̂)= 1

2L0
M (q̂) give the desired form. �

If we choose Γ= 2 in Eq. (26) (notice that there exists factor 2 for the canonical commutator in
Eq. (48)), then Eqs. (37) and (38) become

F1 =
1
2
Ψ
′
R(p), F2 = p,

G1 = q, G2 =
1

2L0
M ′(q).

As a result,

G1 +
i
~

F1 = q +
i
~

1
2
Ψ
′
R(p), (54)

1
~

G2 + iF2 =
1
~

1
2L0

M ′(q) + ip. (55)

Replacing q and p by q̂ and p̂, respectively, in Eqs. (54) and (55), we get exactly operators L̂1 and L̂2

in Eqs. (50) and (51).

V. APPROXIMATIONS

In Secs. III and IV, we have proposed stochastic models for dissipative electronic circuits. A
natural question to ask is whether the noisy dynamics can be approximated by systems which are
lossless, or, more specifically, Hamiltonian. In this section, we give an affirmative answer to this
question.

We remark that we may readily find approximation schemes to Wiener noise. For instance, it
is possible to construct processes B(n)(t) that are continuously differentiable in the time t variable
and which converge almost surely to a Wiener process B(t) uniformly in t in compacts. The random
Hamiltonian

Υ
(n)(q, p)=H(q, p) + F(q, p) B(n)(t)

generates the following equations of motion for the state x(n)(t) = (q(n)(t), p(n)(t)):

d
dt

q(n)(t)=
∂H
∂p
|x(n)(t) +

∂F
∂p
|x(n)(t) B(n)(t),

d
dt

p(n)(t)=−
∂H
∂q
|x(n)(t) −

∂F
∂q
|x(n)(t) B(n)(t).

By the Wong-Zakai theorem,44 the process x(n)(t) then converges uniformly in t on compact
almost surely to the solution of the Stratonovich SDEs

dq(t)=
∂H
∂p
|x(t)dt +

∂F
∂p
|x(t) ◦ dB(t),

dp(t)=−
∂H
∂q
|x(t)dt −

∂F
∂q
|x(t) ◦ dB(t).

This is the single noise case of Theorem 2. The multiple noise case is the obvious generalization.
In order to describe the symplectic noise, we set about developing an approximation using

lossless circuits. In particular, a continuous transmission line may be approximated by shunted LC
circuits.

Let qk , pk be the canonical variables satisfying the relations {qj, qk} = 0 = {pj, pk} and {qj, pk }

= δjk . For t > 0 and integer N > 0, let us set

Q(N)(t)=
1
√

N

bNtc∑
k

qk , P(N)(t)=
1
√

N

bNtc∑
k

pk ,
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where bxc means rounding down to the nearest integer value. We evidently have {Q(N)(t), P(N)(t)}
= 1

N bNtc which evidently converges to t as N→∞. Let us take the energy of the kth circuit to
be 1

2L0
p2

k + 1
2C0

q2
k and consider the canonical ensemble corresponding to circuits in thermal equi-

librium at temperature T. (In practice, for t and N finite, we only need a finite number in the
assembly.) The pairs of variables (qk , pk) are then independent and identically distributed with
mean zero and variance Var(qk) = C0kBT, Var(pk) = L0kBT and covariance Cov(qk , pk) = 0, where
kB is the Boltzmann constant. By the central limit effect, we see that the pair (Q(N ), P(N )) con-
verges to independent Wiener processes with temperature dependent variances (which we can always
absorb). The result is a limit symplectic noise obtained as a limit of thermalized lossless oscillator
circuits.

There is a related result for quantum stochastic evolutions. We start with the Schrödinger
equation

i~
d
dt

Û (N) = Υ̂(N) (t) Û (N) (t)

with the time dependent Hamiltonian

Υ̂
(N) (t)= Ê ⊗ â(N)(t)∗ + Ê∗ ⊗ â(N) (t) + Ĥ,

where we have regular reservoir field operators satisfying commutation relations
[
â(N) (t) , â(N)(s)∗

]
= g(N) (t − s) .

We fix the vacuum state |Ω〉 for the reservoir so that â(N) (t) |Ω〉= 0. In the limit N→∞, we
assume that g(N) (τ)→ δ (τ) in distribution with ∫

∞
0 g(N) (τ) dτ = 1

2 .
Then we find the limit

lim
N→∞
〈φ1 ⊗ e∫ f1(u)â(N)(u)∗du

Ω| Û (N) (t) φ2 ⊗ e∫ f2(v)â(N)(v)∗dv
Ω〉

= 〈φ1 ⊗ e∫ f1(u)dA∗(u)
Ω| Û (t) φ2 ⊗ e∫ f2(v)aA∗(v)

Ω〉 (56)

for arbitrary φ1, φ2 in the system Hilbert space h and L2 functions f 1, f 2, where Û is the solution to
the quantum stochastic differential equation (QSDE)

dÛ (t)=
{
L̂dÂ∗ (t) − L̂∗dÂ (t) −

(
1
2

L̂∗L̂ +
i
~

Ĥ

)
dt

}
Û (t) , (57)

with L̂ = Ê/i~. (In both cases, we start with the initial condition that the unitary is the identity.)
This limit is clearly the single noise channel quantum stochastic evolution considered in Sec. IV. A
similar result holds for the Heisenberg equations, as well as generalizations to thermal states of the
reservoir.

VI. CONCLUSION

In this paper, we have proposed stochastic models for electric circuits that may contain memris-
tors, and both the classical and quantum versions of noisy dynamics have been obtained. Preservation
of the canonical structure was used as a guiding principle and the resulting theory allows for approxi-
mation schemes using Hamiltonian systems. Future research includes the application of the proposed
stochastic models to more general memristive electric circuits and making deeper connections with
the underlying statistical mechanical derivations.

ACKNOWLEDGMENTS

This work was supported by the Royal Academy of Engineering’s UK-China Research Exchange
Scheme, National Natural Science Foundation of China Grant (No. 61374057), Hong Kong RGC
Grant (Nos. 531213 and 15206915), and both the authors are grateful to the Isaac Newton Institute
for support during the programme Quantum Control Engineering in July 2014. J.E.G. also gratefully
acknowledges the kind hospitality of Hong Kong Polytechnic during a visit in the Fall of 2014.



073505-18 J. E. Gough and G. Zhang J. Math. Phys. 58, 073505 (2017)

1 J. C. Willems, Arch. Ration. Mech. Anal. 45, 321–351 (1972).
2 J. C. Willems, Arch. Ration. Mech. Anal. 45, 352–393 (1972).
3 R. W. Brockett and J. C. Willems, “Stochastic control and the second law of thermodynamics,” in Proceedings of the IEEE

Conference on Decision and Control, San Diego, California (IEEE, 1978), pp. 1007–1011.
4 L. O. Chua, IEEE Trans. Circuits Syst. 46(1), 71–82 (1999).
5 A. van der Schaft, L2 Gain and Passivity Techniques in Nonlinear Control, Communications and Control Engineering Series

(Springer, London 2000).
6 A. M. Bloch, “Dissipative dynamics in conservative classical and quantum systems,” in Mathematical Systems Theory in

Biology, Communications, Computation, and Finance, Volume 134 of the series The IMA Volumes in Mathematics and its
Applications (Springer, 2003), pp. 121–155.

7 B. Brogliato, R. Lozano, B. Maschke, and O. Egeland, Dissipative Systems Analysis and Control: Theory and Applications,
2nd ed. (Springer-Verlag, London, 2007), pp. 576–581.

8 F. Verstraete, M. M. Wolf, and J. I. Cirac, Nat. Phys. 5, 633–636 (2009).
9 M. R. James and J. E. Gough, IEEE Trans. Autom. Control 55, 1806–1821 (2010).

10 G. Zhang and M. R. James, IEEE Trans. Autom. Control 56(7), 1535–1550 (2011).
11 J. Delvenne and H. Sandberg, “Towards a thermodynamics of control: Entropy, energy and Kalman filtering,” in IEEE

Conference on Decision and Control (IEEE, 2013), pp. 3109–3114
12 R. Zwanzig, J. Stat. Phys. 9(3), 215–220 (1973).
13 H. Spohn and J. L. Lebowitz, Adv. Chem. Phys. 38, 109–142 (1978).
14 G. Ford and M. Kac, J. Stat. Phys. 46(5-6), 803–810 (1987).
15 A. Caldeira and A. Leggett, Phys. A 121(3), 587–616 (1983).
16 H. Spohn, Large Scale Dynamics of Interacting Particles, Texts and Monographs in Physics (Springer, Berlin, 1991).
17 A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden, and T. S. Ratiu, Commun. Math. Phys. 175(1), 1–42 (1996).
18 J. L. Lebowitz, Phys. A 263, 516–527 (1999).
19 M. Le Bellac, F. Mortessagne, and G. G. Batrouni, Equilibrium and Non-Equilibrium Statistical Thermodynamics, 1st ed.

(Cambridge University Press, 2010).
20 H. Sandberg, J. Delvenne, and J. C. Doyle, “The statistical mechanics of fluctuation-dissipation theorem and measure-

ment back actions,” in Proceedings of the 2007 American Control Conference (IEEE, New York City, New York, 2007),
pp. 1033–1038.

21 C. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences, Springer Series in Synergetics, 4th ed.
(Springer-Verlag, Berlin, Heidelberg, 2009).

22 H. Sandberg, J. Delvenne, and J. C. Doyle, IEEE Trans. Autom. Control 56(2), 293–308 (2011).
23 R. L. Hudson and K. R. Parthasarathy, Commun. Math. Phys. 93, 301–323 (1984).
24 G. Lindblad, Commun. Math. Phys. 48(2), 119–130 (1976).
25 V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys. 17(5), 821–825 (1976).
26 C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin, 2004).
27 L. O. Chua, IEEE Trans. Circuit Theory 18(5), 507–519 (1971).
28 L. O. Chua and S. M. Kang, Proc. IEEE 64, 209–223 (1976).
29 D. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature 453, 80–83 (2008).
30 D. Jeltsema, “Memory elements: A paradigm shift in Lagrangian modeling of electrical circuits,” in IFAC Proceedings

Volumes (Elsevier, 2012), Vol. 45, Issue 2, pp. 445–450.
31 P. M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, and W. D. Lu, Nat. Nanotechnol. (2017).
32 M. Di Ventra, Y. Pershin, and L. O. Chua, Proc. IEEE 97(10), 1717–1724 (2009).
33 H. H. C. Iu, D. Yu, A. L. Fitch, V. Sreeram, and H. Chen, IEEE Trans. Circuits Syst. Part I 58(6), 1337–1344 (2011).
34 G. Z. Cohen, Y. V. Pershin, and M. Di Ventra, Phys. Rev. B 85, 165428 (2012).
35 D. S. Yu, Y. Liang, H. H. C. Iu, and L. O. Chua, IEEE Trans. Circuits Syst. Part II 61(10), 758–762 (2014).
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