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ABSTRACT

Nowadays structural health monitoring systems (SHMS) play important roles in assuring the serviceability and
safety of some critical infrastructures during their long service lives. The operational performance of SHMS
substantially relies on the features of sensor system, including types, number and spatial allocation in structures.
Since the number of sensors is always limited compared with degrees-of-freedom of a large-scale structure, the
determination of sensor number and locations becomes a critical issue encountered in the design and
implementation of an effective SHMS. Meanwhile, the fast development of sensor technology makes various
types of sensors available for structural health monitoring purpose, enabling the monitoring of both global
behavior and local response. Even though such comprehensive SHMS have been instrumented in many newly-
built critical structures, surprisingly little work in the literature focuses on the optimal design of global and local
sensors for structural health monitoring. Therefore, this paper attempts to addresses this knowledge gap—the
location selection and data fusion of a multi-type sensor system in a structure including displacement
transducers, accelerometers and strain gauges, all of which are commonly used in SHMS. The number and
locations of the three types of sensors are optimized with the objective of minimizing the estimation error of
unobserved structural responses based on incomplete measurement. Unlike traditional approaches for sensor
placement in which each type sensors are designed separately, this study designs the whole sensor system
simultaneously. By minimizing the overall estimation errors at the locations of interest and reducing estimation
errors to a desired target level, the initial set of candidate sensor locations is reduced to a smaller optimal set.
Kalman filter algorithm is employed in the sensor placement and data fusion. A numerical examples—a two-
dimensional truss structure—was presented to illustrate the effectiveness and accuracy of the proposed approach
for the location selection and data fusion of multi-type sensors.
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INTRODUCTION

In the past two decades, quite a few important structures have established the comprehensive structural health
monitoring systems (SHMS) which has become a trend with the utmost goals of ensuring the functionality and
safety of the structures during their long service life. The operational performance of SHMS substantially relies
on the features of the sensor system such as the type, number, spatial location and signal quality. Meanwhile,
with the fast development of sensor technology, various types of sensors are now available to measure not only
the global but also the local response or features of the structure, both of which are important to SHMS. It is
impractical to install sensors on every part of a structure, especially for a large-scale structure. Therefore, there
arise two critical issues in the implementation of an effective SHMS, (1) optimal location selection and data
fusion of multi-type sensors; (2) estimation of unmeasured response based on measurements at limited locations.

Numerous techniques have been developed over the past decades on solving the problem of optimal sensor
placement for the purpose of parameter identification, structural control and structural health monitoring. To
provide maximum information on the state of structures, a class of information based approaches has been
extensively studied by some researches, for example, Effective Independence (Efl) method (Kammer 1991),
Effective Independence-Drive point residue (EfI-DPR) method (Imamovic 1998), Variance method (Meo and
Zumpano 2005) and information entropy method (Paradinitriou et al., 2000). Meo and Zumpano compared the
variance method with other five methods in their study, concluding that the Efl-DPR method provides an
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effective way for optimal sensor placement to identify the low frequency vibration characteristics. Another class
of sensor optimal placement method is energy based method (Hemez and Farhat 1994; Heo et al. 1997). Further
examples of energy based sensor placement method include the eigenvalue vector product (Jarvis, 1991) and
non-optimal drive point (Imamovic, 1998) methods. Lim (1992) employed a function of the system
controllability and observability to develop a sensor placement approach. Another method called modal
assurance criterion (MAC) based method was presented by Carne and Dohrmann (1995) to attain the sensor
configuration by minimizing the off-diagonal terms in the MAC matrix. Beal et al. (2008) formulated optimal
sensor placement as a mixed variable programming (MVP) problem. In addition to the above-mentioned
examples, many other sensor placement approaches exist in the literature, and a good review is provided by
Barthorpe and Worden (2009). Most existing approaches are intended for system identification or damage
detection based on single-type sensor system. So far very few attentions have been paid to the estimation of
unmeasured response with a multi-type sensor system. As a well-known state estimator algorithm, Kalman filter
has found wide applications in data fusion problems (Bar-Shalom and Li 1995). Two common examples are
Kalman filter based measurement fusion and state fusion (Gao and Harris 2002). Kalman filter has also been
applied by some researchers in chemical fields to select sensor locations of multi-types (Amaya and Aoki 1999;
Musulin et al. 2005). However, the complex structures in civil engineering field may bring more challenges to
multi-type sensor locations selection and data fusion.

This paper investigates a practical and challenging problem how to place multi-type sensors, including strain
gauges, displacement transducers, and accelerometers which are common used in SHMS, so that both local and
global monitoring information can be best integrated for structural health evaluation. The objective is to locate a
small number of sensors that yield a good estimation of the structural response. The number and locations of the
three type sensors are determined aiming to minimize the estimation errors of unobserved structural responses
using limited measurements and Kalman filter algorithm. It should be noted that conventionally the spatial
configurations of multi-type sensors are designed in separate and distinct processes, while in this study the
design of the multi-type sensor system is performed simultaneously, and the measurements from three types of
sensors are fused together to estimate the response of entire structure. The posteriori error covariance is selected
as a performance measure for assessing the estimation accuracy in the optimization process. A case study of a
two-dimensional truss structure is presented as an example. The results of the numerical analysis indicate that
the proposed approach offers an effective way to design a multi-type sensor system and the optimal sensor
locations can produce the estimation of actual response with sufficient accuracy.

SENSOR PLACEMENT
Multi-type Sensor Data Fusion

Based on the finite element representation of a structure, the equations of motions are given by
Mx+C,x+Kx=B,u 1)
in which M, C,, and K are the mass, damping and stiffness matrices, respectively, B, is the location matrix of
excitations, and u is external excitation vector. Eq. (1) can be rewritten with regard to the modal coordinates q.
+280,q+0q=®"B u o))
where q is the vector of modal coordinates; @ is mass normalized vibration mode shapes obtained from finite
element model; € is modal damping coefficient matrix; @, is modal frequency matrix. In practice, only a small

number of vibration modes, often much less the total DOFs of a complex structure, play important roles in
structural dynamic response. Eq. (2) is in a greatly reduced-order compared with Eq. (1) and it can be further
transformed to a state-space form

z=Az+Bu 3)
where
q 0 I 0
Z=:_¢; A, = 5 ;B.=| “)
q -0, —-28n, ®'B,

For a linear structural system, the corresponding general sensor response can be expressed as a linear
combination of the state and input

y=Cz+Du (5)

Assume that the response vector y includes the displacements, strains, and accelerations at the locations of
interest. In this study, the measurement vector monitored by the three types of sensors are directly merged into a
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new measurement vector, i.e.y = [8 d a]T , where g, d and a represent strain, displacement and acceleration
responses respectively. Then the measurement equation has the following form

€ b 4 0 0
y=qd;=| @ 0 Z+ 0 u=Cz+Du 6)
a] |-®o. -20to, ®O'B,

where ¥ denotes strain mode shapes. In reality, the measurements will be sampled at discrete instants with a

sample period of Af . Moreover, sensor noise always influences the sample data practically. Therefore, after
sampling the state space model in a discrete form is
Z,.,=Az, +Bu, +w,
O]
y,=Cz, +Du, +v,

A

wherez, = z(kAt)is the discrete time state vector (k€ N); A =e"" is the discrete state matrix;

At .
B= J.o et dz’Bc denotes the discrete input matrix; w, is the process noise duo to disturbances and

modeling inaccuracies, often assumed as a white noise with zero mean and a variance Q; C represents the direct
output matrix; D is called the direct transmission matrix; v, is the measurement noise due to sensor inaccuracy

with a variance R. It is common to assume that sensors of the same types have equal noise variances.
Kalman Filter Algorithm

The Kalman filter gives an unbiased, minimum error and recursive algorithm to optimally estimate the unknown
state of a linear dynamic system from observations with Gaussian white noise. Suppose that 7,, sensor locations
are chosen, ny, = n'y + n'y+ n'y, where the subscript ‘m’ denotes the measurement, and #°y, , n°,, and n*,
denote the number of strain gauges, displacement transducers and accelerometers respectively. From Eq. (7), the
discrete state-space dynamic model and measurement model has the following form

z,,,=Az, +Bu, +w,

®

y,=C,z, +D u, +v,
where matrix C,, and D, is the output matrix and the direct transmission matrix respectively corresponding to
the positions with sensors.

The Kalman filter equations are divided into two groups: time update equations and measurement update
equations (Welch and Bishop 2001):

Time update equations

ik\k—l = Aik—l\k—l +Buy ©)
P = APk—uk-lAT +Q (10
Measurement update equations

2k\k = ik|k—l + Kk[yk_cmikv(—l —Du, ] (11)
P, =[I-K,C,IP,, (12)

where Kalman gain K is the optimal gain given by

T T -1

K, = Pk|k71Cm[CmPk|k71Cm +R,,] (13)

R,, is the covariance matrix of the measurement noise which has similar format but different dimensions with R.
It should be pointed out that the output influence matrix C tends to be highly ill-conditioned because the strain,
the displacement and the acceleration have different orders of magnitude. The inverse operation in Eq. (13) may
result in inaccuracy. The standard deviation of sensor noise is proposed by Zhang et al. (2011) to normalize the
output matrix C
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¥ 0
O-S
1
C= @ 0 =R 2C (14)
¥
-0n. -20to,
L O-ﬂ O-a .
where,
oy |
R=EW")= ol (15)

o |

a
. . 2
in which o,
gauges’ ,‘displacement transducers’ and ‘accelerometers’ respectively, and I is the identity matrix. Thus, the
optimal Kalman gain can be rewritten as

2 2 . . . .
0, and O, are the noise variance, the subscripts ‘s’, ‘@’ and ‘a’ stand for ‘strain

1

K,=P, C[CP, C +I'R> (16)
P is the covariance matrix of the state vector estimation error. Usually the Kalman filter converges in the
iterations, given any initial conditions P, and Z o- The asymptotic value of Py is considered as a stable
indication of estimation accuracy

P= %{igtl([l)mk D 17)

In this study, the estimation of the structural response is of interest, which can be computed based on the
unbiased estimated state vector.

g, vy 0 0
ye: de = (D 0 2+ 0 u:C2+Du (18)
a,| |-®ol -20fo, ®P'B,

Thereby, the estimation error covariance of y, is given by,

A =cov(y, —y) =cov(Cz + Du—-Cz - Du)
=cov(Cz —Cz) =Ccov(z—z)C" =CPC’

. . r. .
in which y, = [se d, ae] is the estimated response vectors.

19

Sensor Placement

Each diagonal element of A matrix represents the variance of the estimation error for corresponding response
(strain, displacement or accelerometer). Therefore, the maximum diagonal element denotes the maximum
estimation error, while the trace of the matrix A represents the sum of estimation errors at all locations of
interest. The optimal sensor placement can be performed by minimizing the estimation error. However, the
magnitudes of strain, displacement and acceleration response are of different orders, and so are their absolute
estimation errors. As pointed out by Zhang et al. (2011), the optimization procedure may considerably bias one
type of sensors without a proper normalization. In light of this, the relative estimation error is used

T
SRy, —y)=| &9 @) (@ -a) 0
B 04 0,
The noise-normalized estimated response error covariance can be computed by
A = cov(d) = CPCT @)
The maximum and average estimation errors at all locations yields
&2 =max(diag(A)) (22)
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s r(A) _ tr[CPC"]

" 23)
n n
The objective function and constraint function of the sensor location selection can be written as
. ~2 . oy ~T
min &, = min #[{CPC’] (23)
subject to
~2 ~2 ~2 ~2
Jmax S I:Gmax > o-avg S [O-avg (24)

] and [Ejvg] are the target normalized maximum and average estimated errors respectively.

During the optimization procedure, the maximum and average estimation errors will be increased with the
reduction of the number of sensors. The candidate sensor positions are removed one by one, until the prescribed
criterion for estimation errors is achieved (as shown in constraint functions). A simple iterative procedure is
carried out, in which the candidate sensor positions are deleted one by one until the target error level is reached.

in which [,

ax

In each step, one sensor location is removed which results in a minimal trace of the matrix (CPCT) Once the

sensor locations are selected, the response at other locations can be estimated using Eq. (18). It should be noted
that such a simple procedure can be only applied to relative simple structures. For large-scale or complex
structures with a large number of DOFs, this procedure is time-consuming and possibly suboptimal. Some
common optimization methods, e.g. genetic algorithm, could be employed in that case.

NUMERICAL SIMULATION

The processes of sensor location selection and responses estimation are demonstrated using a two-dimensional
truss structure shown in Figure 1(a). The finite element model consists of 25 elements, 14 nodes and 28 degrees
of freedom. The members are connected at pinned joints each with two degrees of freedom. A random excitation
is applied vertically at the node 4, and it induces the flexural vibration of the truss. It should be pointed out that
the proposed approach is suitable for any types of excitation. The random force is adopted only for the purpose
of illustration; because the random force is widely used to represent a general load civil engineering structures
subject to its corresponding response may involve more vibration modes than harmonic excitation or free
vibration. The deformation of each element, the displacement and acceleration of each node are of interest in
this study. Considering that it is not easy to measure the rotations at nodes in practice, rotational degrees of
freedom are eliminated in the concerned mode shapes. The strain gauges are attached to the upper face at the
middle of the elements to measure the flexural deformation of the beam. As a result, 25 element strains, 12
vertical nodal displacements, 13 transversal nodal displacements, 12 vertical nodal accelerations and 13
transversal nodal accelerations are identified as the response of interest, and they are also taken as the candidate
locations for sensors. In practice, however, the sensor installment may be restricted by the approachability of
each location. Meanwhile, strain gauges are supposed to be attached away from the location with stress
concentration, although those locations are also hot-spots of great interest in real applications

In this study, the noise variances are assumed to be constant for each type of sensors, and they are independent
with magnitude of response signals. In reality, sensor noise level depends not only on the type of sensors, but
also on the environment and instrumentations. Hence some site-specific empirical values should be taken for

sensor noise variances. In this study, o, =0.08uge, 647 =0.002mm and o, =0.29m/s™%.

The first six mode shapes are considered in this case study, and the contribution of higher modes is assumed
negligible. The proposed approach is adopted to optimize the locations of strain gauges, displacement
transducers and accelerometers simultaneously, and the total number of sensors is determined based on the
constraints of 5;“ <1.0 and Ejvg <0.5. Figure 2 depicts the variation of the average and maximum

. . . . . . . . ~ ~2 .
normalized estimation error variance in the optimization procedure, i.e. & azvg and o, . The sensor location

which contributes most to minimize the trace of the error variance matrix A is removed from the candidate
locations in each step. Both 52 and ijg become larger with the decrease of the sensor number. Therefore, the

final sensor number is determined when the aforementioned criteria are reached. As a results, totally 10 sensors
are selected, comprising of four strain gauges, one displacement transducers in y-direction, and five
accelerometers in y-direction, and their corresponding optimal locations are shown in Figure 1(b).

The response data contaminated by noises from the optimal multi-type sensor are employed to estimate the
responses at remaining locations using Eq. 18. It should be noted that the Kalman filter gain is computed from
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Eq. 16 to avoid the ill-condition inverse problem. Figures 3-5 illustrates the comparison of the estimated
response and the real response of strain at element 7, element 12, element 23, the vertical response of
displacement and acceleration at node 4, node 10 and node 14, respectively. As displayed in Figures, the
estimated strain, displacement and acceleration can match the real response fairly well.
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Figure 2 Variation of theoretical estimation errors with number of sensors
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Figure 5 Acceleration time history responses

The errors in the estimated results is defined as the relative percentage error (RPE) between the estimated
response and the real response,

RPE =590 =¥n) 19004 (24)
std(y )
where “std” means the standard deviation, y. and yy, are the estimated and measured time histories respectively.
Figure 6 shows the relative percentage errors (RPEs) in the estimated results at the corresponding components.
It can be found from the figure that the estimated results are quite accurate and most of the RPEs are below 10%
except those near the excitation location or near the support locations. This is because the responses near these
locations are much more complex and the responses near the support location are small than others.
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Figure 6 Relative percentage errors
CONCLUSIONS

A multi-type sensor location selection approach is presented for structural monitoring systems consisting of
strain gauges, displacement transducers and accelerometers. The locations of multi-type sensors are selected
simultaneously in this approach instead of being carried out in separate courses. The location optimization
objective is to best estimate the key structural response and the total number of sensors is determined to achieve
the desired error levels in structural response estimations. Noise-normalized responses and mode shapes are
used in this approach. Subsequently, the measurements from the limited three types of sensors are employed
collectively to estimate the response of the entire structure by using the Kalman filter algorithm. A numerical
analysis of a two-dimensional truss structure indicates that this approach offers an effective way to design such a
multi-type sensor system as a whole and the measurement from the limited locations can predict structural
response with sufficient accuracy.
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