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This work is an experimental study of the turbulent vortex structures, and heat
and momentum transport in the wake of two side-by-side circular cylinders. The
spacing T between the cylinder axes was varied from 1.5d to 3d (d is the cylinder
diameter). Both cylinders were slightly heated. A movable three-wire probe measured
the velocity and temperature fluctuations, and an X-wire provided a phase reference.
Measurements were conducted at x/d = 10, 20 and 40 at a Reynolds number of
5800 (based on d and the free-stream velocity U∞). At T/d = 1.5, the phase-averaged
velocity and temperature fields display a single vortex street. The two rows of vortices
exhibit a significant difference in the maximum vorticity, size and lateral distance
from the flow centreline. As T/d is increased to 3.0, the flow is totally different. Two
antiphase streets occur initially. They are less stable, with vortices weakening faster,
than the street at T/d = 1.5. By x/d = 40, one street only is identifiable. Effective
vorticity flux density indicates that, while the outer vortex nearer to the free stream
interacts largely with the adjacent oppositely signed inner vortices located near the
flow centreline, the inner vortex interacts with the cross-stream inner vortices as well
as with adjacent outer vortices. As a result, vorticity associated with the inner vortex
is annihilated quicker than that associated with the outer vortex, leading to the early
disappearance of inner vortices and formation of a single street. The contribution of
the coherent motion of various Reynolds-averaged quantities such as the momentum
and heat fluxes has also been quantified and discussed in conjunction with the vortex
structures of the flow and temperature fields.

1. Introduction
The flow around two side-by-side cylinders is inherently important and of practical

significance in many branches of engineering (Zdravkovich 1997; Sumner et al. 1999).
The type of flow behind two side-by-side cylinders depends on the ratio T/d (T is the
centre-to-centre cylinder spacing and d is the cylinder diameter) and other parameters,
e.g. initial conditions, pressure gradient and Reynolds number (Re). At T/d < 1.2, the
two cylinders behave like one structure, generating a single street (Sumner et al. 1999).
For 1.5 < T/d < 2.0, the gap flow between the cylinders is deflected, resulting in one
wide and one narrow wake. The deflected gap flow is bi-stable and randomly changes
over from one side to the other (Ishigai et al. 1972; Bearman & Wadcock 1973).
The timescale for the changeover is several orders of magnitude longer than that of
vortex shedding and of the instability of the separated shear flows (Kim & Durbin
1988). The deflected gap flow nature is nominally independent of Re. As T/d is



304 Y. Zhou, H. J. Zhang and M. W. Yiu

increased beyond 2, two distinct vortex streets have been observed (Landweber 1942).
The two streets are coupled, with a definite phase relationship. Williamson (1985)
showed at Re = 100–200 (Re ≡ U∞d/ν, where U∞ is the free-stream velocity and ν
is the kinematic viscosity) that the two streets may occur in phase or in antiphase.
The vortex centres and saddle points of two in-phase streets are antisymmetrical
about the flow centreline, but symmetrical for the antiphase case. The in-phase streets
eventually merged downstream to form a single street, while the in-antiphase streets
remained distinct farther downstream.

Most of the information obtained on the turbulent two-cylinder wake has been
based on flow visualization data at a low Re, thus providing only a qualitative
description of the flow. Based on ensemble-averaged LDA measurements, Kolář, Lin
& Rodi (1997) studied the turbulent near wake of two side-by-side square cylinders
for T/d = 3.0 and Re = 23 100. They found that the circulation of inner vortices, i.e.
those shed on the side towards the flow centreline, decreased faster than that of outer
vortices, which were shed on the free-stream side. Their study, however, did not cover
the regime of T/d < 2.0. Sumner et al. (1999) investigated the wake of two and three
side-by-side circular cylinders in the range of T/d = 1–6 for Re = 500–3000. Their
flow visualization revealed some interesting details of vortex shedding and the gap
flow between cylinders for a relatively high Re. Using a combination of an X-wire and
a cold wire, Zhou et al. (2000) measured the velocity and temperature fluctuations at
Re = 1800. They observed that the cross-stream distributions of the Reynolds stresses
and heat flux varied significantly as T/d decreased from 3.0 to 1.5, implying a different
vortex pattern. Although it is now well-known that the number of vortex streets is
different between the two flow regimes, many details of the flow structure, especially
the temperature field, remain unknown. Therefore, the first objective of the present
work is to study the effect of T/d on the flow structure of the velocity and temperature
fields. One may surmise that the momentum and heat transport characteristics of the
flow may not be the same as those in a single cylinder wake. The second objective
is to understand the manner in which the momentum and heat transport occurs as
T/d varies and to compare it with a single-cylinder wake. Following the detection
of vortical structures based on the lateral velocity fluctuation, the contribution from
the structures is quantified and discussed in the context of the vortex pattern of the
velocity and temperature fields. The results point to a significant effect of T/d on the
flow structure and transport characteristics. The streamwise evolution of the flow is
also discussed in detail.

2. Experimental details
Experiments were carried out in a closed circuit wind tunnel with a square cross-

section (0.6 m × 0.6 m) of 2.4 m in length. The wake was generated by two brass
cylinders (d = 12.7 mm) arranged side-by-side (figure 1). The cylinders were installed
horizontally in the mid-plane and spanned the full width of the working section. They
were located 20 cm downstream of the exit plane of the contraction. This resulted
in a maximum blockage of about 4.2% and an aspect ratio of 47. The transverse
spacing between the cylinders was varied from T/d = 1.5 to 3.0. Both cylinders
were electrically heated. The maximum temperature difference between the heated
flow and the ambient fluid, Θ1, was approximately 1.0 ◦C. At this level of heating,
temperature can be safely treated as a passive scalar at the three measurement stations,
x/d = 10, 20 and 40, where x is the streamwise coordinate measured from the centre
of the cylinder. Measurements were made at a free-stream velocity U∞ of 7 m s−1,
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Figure 1. Experimental arrangement.

or Re = 5800. For the purpose of comparison, the same measurements were also
conducted in a single cylinder wake (T/d = ∞). In the free stream, the longitudinal
turbulence intensity was measured to be approximately 0.4%.

A three-wire probe (an X-wire plus a cold wire, the latter placed about 1 mm
upstream of the X-wire crossing point and orthogonal to the X-wire plane) was used
to measure the velocity fluctuations, u and v, in the streamwise and lateral directions,
respectively, and the temperature fluctuation, θ. The three-wire probe was traversed at
an increment of 3 mm across the flow. One X-wire, fixed at 4d below the centre of the
lower cylinder (figure 1), was used in conjunction with the three-wire probe in order
to provide a phase reference for the signals from the three-wire probe. The hot wires
were etched from a 5 µm diameter Wollaston (Pt–10% Rh) wire to a length of about
1 mm. For the cold wire, a 1.27 µm diameter Wollaston (Pt–10% Rh) wire was etched
to a length of about 1.2 mm and a temperature coefficient of 1.69×10−3 ◦C−1 (Browne
& Antonia 1986) was used. Constant-temperature and constant-current circuits were
used for the operation of the hot wires and the cold wire, respectively. An overheat
ratio of 1.8 was applied for the X-wire, while a current of 0.1 mA was used for
the cold wire. The sensitivity of the cold wire to velocity fluctuations was negligible
since the length-to-diameter ratio was about 1000. Such a ratio is sufficiently large to
allow the neglect of any low-wavenumber attenuation of the temperature variance.
The frequency response of the wire, as indicated by −3 dB frequency, was estimated
to be 2.2 kHz at the wind speed investigated (Antonia, Browne & Chambers 1981).
This was sufficient to avoid any high-frequency attenuation of the main quantities
of interest to the present study. Signals from the circuits were offset, amplified and
then digitized using a 16 channel (12bit) A/D board and a personal computer at a
sampling frequency fsampling = 3.5 kHz per channel. The duration of each record was
about 10 s.

Noting that the gap flow deflection could change over randomly from one side
to the other at T/d = 1.5, it would not be desirable if data taken at the same x/d
include both modes of gap flow deflection. A test was conducted to estimate the time
interval for the gap flow to change its deflection from one side to the other. For
a sampling duration of five minutes, only one change was recorded for the present
Re. This result was consistent with the measurement by Kim & Durbin (1988), who
found that the switching interval of the gap flow deflection was in the order of
minutes for Re = 3.5×103, a few orders longer than the vortex shedding frequency fs.
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Figure 2. Signal v from the movable probe and vR from the fixed probe. The thicker line
represents the filtered signal vf . (a) T/d = 1.5, x/d = 10; (b) 1.5, 40; (c) 3.0, 10; (d ) 3.0, 40.

Therefore, it would be unlikely that the present 10 s sampling duration would include
both modes of gap flow deflection. However, the change of gap flow deflection could
occur for different points at the same x/d. Great care was taken to avoid collecting
these data during experiments. The cross-flow distributions of the mean velocity (§ 4)
and Reynolds stresses (§ 6) at each x/d were quite smooth, suggesting an absence of
change in the gap flow deflection.

3. Phase and structural averaging
3.1. Phase averaging

Vortices shed from a bluff body are characterized by a marked periodicity. In the
near or intermediate wake, a small dispersion is expected in the spanwise spacing,
lateral location, strength and shape of the vortices. The marked periodicity persists
even in the presence of a neighbouring cylinder. Figure 2 illustrates at T/d = 1.5
and 3.0 the ν-signals from the three-wire probe at a few typical lateral locations,
along with the simultaneously obtained reference vR-signals from the fixed X-wire
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probe. The signals exhibit a periodicity. Furthermore, a phase relationship between
v and vR is evident. The spectral phase shift (not shown) at fs between the v- and
vR-signals at x/d = 10 is near zero across the wake for T/d = ∞ and 1.5, indicating
the antisymmetrical spatial arrangement of vortices. Here, fs is identified with the
frequency where the v-spectrum is maximum. In the case of T/d = 3.0, this phase
shift is zero for y/d < 0 but close to −π for y/d > 0, suggesting the symmetrical
spatial arrangement of vortex streets. (A detailed discussion on the flow structure will
be given in § 5). The behaviours of this phase shift at x/d = 20 and 40 are similar.
Therefore, the u-, v- and θ-signals were phase-averaged. The phase-averaging method
is similar to that used by Matsumura & Antonia (1993). Briefly, the v-signals from
the two probes were both digitally band-pass filtered with the centre frequency set
at fs. The low- and high-pass frequencies were chosen to be the same as fs, that is,
a zero band-pass width was chosen, following Matsumura & Antonia (1993). This
choice allowed a better focus on the vortical structures at fs. It was tested to allow
the low- and high-pass frequencies to be slightly higher and lower than fs. The flow
structure thus obtained was essentially unchanged. A fourth order Butterworth filter
was used. The phase shift caused by filtering is very small, about 0.5% of the vortex-
shedding period, and almost identical for all signals since the shift depends largely
on the filtering frequency set at fs. The filtered signal vf is given by the thicker line
in figure 2. Two phases of particular interest were identified on vf , namely

Phase A : vf = 0 and
dvf
dt

> 0,

Phase B : vf = 0 and
dvf
dt

< 0.

The two phases correspond to time tA,i and tB,i (measured from an arbitrary time ori-
gin), respectively. The filtered signal from the three-wire probe was used to determine
the phase of the θ-, u- and v-signals of the three-wire probe, namely

φ = π
t− tA,i
tB,i − tA,i , tA,i 6 t 6 tB,i,

φ = π
t− tB,i

tA,i+1 − tB,i + π, tB,i < t 6 tA,i+1.

The interval between phases A and B was made equal to 0.5Ts = 0.5/fs by compres-
sion or stretching; it was farther divided into 30 equal intervals. Phase averaging was
then conducted on the measured signals, not on the filtered signals. The difference
between the local phase at each y-location of the three-wire probe and the refer-
ence phase of the fixed X-wire probe was used to produce phase-averaged sectional
streamlines or contours of coherent or incoherent quantities in the (φ, y)-plane.

The phase average of an instantaneous quantity B is given by

〈B〉k =
1

N

N∑
i=1

Bk,i,

where k represents phase. For convenience, the subscript k will be omitted hereinafter.
N is about 600 for T/d = 1.5 and 1200 for T/d = ∞ and 3.0.

The variable B can be viewed as the sum of the time-mean component B̄ and the
fluctuation component β. The latter can be further decomposed into the coherent
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fluctuation β̃ = 〈β〉 and a remainder (incoherent fluctuation) βr:

β = β̃ + βr.

Also,

〈βγ〉 = β̃γ̃ + 〈βrγr〉,
where β and γ can each stand for either u or v or θ.

3.2. Structural average

Once the coherent components of the u-, v- and θ-fluctuations are extracted, the
coherent contributions to the conventional Reynolds stresses, temperature variance
and heat fluxes can be given in terms of the structural average. The conditionally
averaged structure begins at k1 samples (corresponding to φ = −π) before φ = 0 and
ends at k2 samples (corresponding to φ = π) after φ = 0. The structural average,
denoted by a double overbar, is defined by

β̃γ̃ =
1

k1 + k2 + 1

k2∑
−k1

β̃γ̃.

The structurally averaged quantities provide a description of the transport character-
istics of vortical structures.

4. Time-averaged mean velocity and temperature
Figure 3 shows the cross-stream distributions of the time-averaged streamwise

velocity Ū∗ and temperature Θ̄∗ of the two-cylinder wake, compared with the single
cylinder wake. In this paper, a single overbar denotes conventional time averaging.
Here and elsewhere, an asterisk denotes normalization by U∞, Θ1 and d. This
normalization is used for convenience because the velocity and temperature fields
of the present flow are not self-preserving. The experimental uncertainty for time-
averaged velocity and temperature is estimated to be 2% and 3%, respectively. This
is largely caused by velocity calibration or drifting in hot- and cold-wire performance
due to a possible slow change in surrounding conditions. The profiles generally appear
reasonably symmetrical about the flow centreline y∗ = 0, except Θ̄∗ at T/d = 1.5.
The asymmetry of Θ̄∗ is apparently due to an asymmetrical turbulence field (Zhou et
al. 2000). Both Ū∗ and Θ̄∗ display one single peak around y∗ = 0 for T/d = ∞ and
1.5, but a twin peak for T/d = 3.0. These results suggest the occurrence of a single
vortex street for T/d = 1.5 and T/d = ∞, and two streets for T/d = 3.0.

The maximum velocity defect, temperature excess, mean velocity and temperature
half-widths are summarized in table 1. From x∗ = 10 to 40, the wake growth for
T/d = 1.5 and 3.0 is slow, relatively to T/d = ∞. For example, the half-width Lu of
the mean velocity almost doubles from x/d = 10 to 40 for T/d = ∞, but increases
only about 26% and 27% for T/d = 1.5 and 3.0, respectively. A similar observation is
made for the temperature field. The half-width Lθ of the mean temperature increases
from x∗ = 10 to 40 by about 160% for T/d = ∞ but only 25% for T/d = 1.5 and
45% for 3.0. Note that, while the velocity fields at T/d = 1.5 and 3.0 grow at the
same rate, the temperature field at T/d = 3.0 appears to be growing faster. It would
seem that the occurrence and interaction of two streets at T/d = 3.0 may enhance
the entrainment of passive scalars.
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Figure 3. Time-averaged streamwise velocity Ū∗ and temperature Θ̄∗:
(a, b) T/d = ∞; (c, d ) 1.5; (e, f ) 3.0.

T/d ∞ 1.5 3.0

x/d 10 20 40 10 20 40 10 20 40

U∗1 0.22 0.22 0.16 0.42 0.31 0.24 0.28 0.21 0.20

Θ1 (◦C) 0.73 0.44 0.30 0.89 0.57 0.44 0.69 0.48 0.41

L∗u 1.58 2.44 2.98 3.84 3.84 4.83 4.79 5.53 6.10

L∗θ 2.07 4.37 5.36 5.93 6.45 7.46 5.67 6.89 8.19

Table 1. Velocity defect, temperature excess and half-width.

5. Phased-averaged velocity and temperature fields
5.1. Characteristic properties of vortices

The average convection velocity Uc of vortices is given by the velocity Ū + ũ at the
vortex centre, which is identified with the location of the maximum phase-averaged
vorticity ω̃max. Vorticity is calculated by

ω̃ =
∂(V̄ + ṽ)

∂x
− ∂(Ū + ũ)

∂y
≈ ∆ṽ

∆x
− ∆(Ū + ũ)

∆y
,

where ∆x = −Uc∆t = −Uc/fsampling . The estimate of Uc is given in table 2. Upper
and Lower in the table stand for the vortices above and below y∗ = 0, respectively. It
will be seen that, at T/d = 3.0, two vortex streets occur. Outer in the table denotes
the outer vortices, which are shed from the side of a cylinder nearer to the free
stream; Inner represents the inner vortices shed from the side of a cylinder close to
y∗ = 0. The result for Uc at T/d = ∞ is in good agreement with Zhou & Antonia’s
(1992) measurement, lending credence to the present estimate. For T/d = 3.0, Uc
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T/d ∞ 1.5 3.0

x/d 10 20 40 10 20 40 10 20 40

Outer Upper 0.23 0.80 1.29 1.18 1.18 1.89 1.88 2.06 2.44
Lower −1.67 −1.10 −1.89 −1.87 −1.97 −2.3

y∗c Inner Upper 1.24
Lower −1.28

Outer Upper 0.86 0.87 0.92 0.77 0.80 0.87 0.83 0.84 0.88
Lower 0.85 0.81 0.89 0.83 0.84 0.87

U∗c Inner Upper 0.81
Lower 0.81

Outer Upper −1.216 −0.516 −0.151 −0.490 −0.579 −0.184 −0.77 −0.28 −0.10
Lower 1.267 0.461 0.128 1.025 0.292 0.263 0.85 0.33 0.10

ω̃∗max Inner Upper 0.63 0.07
Lower −0.72 −0.11

Table 2. Some characteristic properties of vortices.

is practically the same for the upper- and lower-row vortices but the outer vortex
appears to have a larger Uc than the inner. The maximum difference in Uc between
the inner and outer vortices is about 2.5%. In view of a 2% experimental uncertainty
in the estimate of velocity and also experimental uncertainties in locating the vortex
centre, this difference may not be statistically significant. There is a considerable
difference, about 10% at x∗ = 10, in Uc between the upper- and lower-row vortices
for T/d = 1.5, probably because the lower-row vortices are further away from the
flow centreline than the upper row. The vortex path, i.e. the most likely lateral distance
y∗c (table 2) of the vortex from the flow centreline, is about 1.67 for the lower vortices
and 1.18 for the upper vortices. Note that Uc at x/d = 20 is 4.7% smaller than that at
x/d = 10. The difference is likely due to experimental errors. One error comes from
the 2% uncertainty in velocity measurement. Furthermore, since the ω̃∗ concentration
is impaired as x/d increases, an uncertainty in determining y∗c arises, thus adversely
affecting the estimate of Uc. The resulting error in Uc could be up to 3% at x/d = 20.
This error is even worse for the inner vortices for T/d = 3.0. Therefore, the yc and
Uc values of inner vortices are not given in table 2 for x/d > 20. The Uc value of the
outer vortex is used to calculate the averaged vortex wavelength, i.e. UcTs = Uc/fs.

Power spectra (not shown), calculated from the measured fluctuating velocities
without filtering, indicate a single dominant frequency across the wake (this is also
true for T/d = 3.0). The corresponding Strouhal number St = fsd/U∞ is 0.11, about
one half of that (0.21) at T/d = ∞ or 3.0, in agreement with Zhou et al.’s (2000)
report. The present measurement fails to detect two different frequencies, as previously
reported for T/d 6 2.0 by e.g. Ishigai et al. (1972). This was initially suspected to be
due to a relatively large x∗(> 10). Therefore, velocity measurements were conducted
at x/d = 2 using two-component laser Doppler anemometry. Again, one single
frequency only (not shown) was detected across the wake. A close examination of
the available literature indicates a lack of consistency in the previous reports of
vortex frequencies, especially for 1.2 < T/d < 1.5. Ishigai et al. (1972) measured two
dominant Strouhal numbers, near 0.1 and 0.3, respectively, for T/d < 1.25–1.5. The
two Strouhal numbers were detected by Spivack (1946) for T/d = 1.5–2.0. Spivac
further detected a frequency at 0.2, which could be interpreted as the second harmonic
of 0.1. But he failed to detect the frequency 0.3 at T/d ≈ 1.25. Bearman & Wadcock
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(1973) and Kim & Durbin (1988) measured two Strouhal numbers, near 0.1 and 0.3,
respectively, for T/d = 1.5–2.0, but detected only one dominant frequency, 0.1, for
T/d < 1.5. Presumably, the generation of gap vortices is essential for the formation
of two vortex streets. A very small gap, say T/d < 1.2, between the cylinders may
prohibit the gap vortices from being generated, and thus the two cylinders behave
like a single structure, generating a single vortex street (Sumner et al. 1999; Zhou
et al. 2001). Speculatively, a possible transition occurs for T/d = 1.2–1.5 from the
regime of a wide and a narrow vortex street to that of a single vortex street. During
transition, the gap flow is probably still deflected, as evidenced by different base
pressures associated with the two cylinders (Kim & Durbin 1988). But gap vortices
may or may not be generated, depending on the initial conditions or experimental
set-up. This transition could be responsible for the scattered observations.

A remark is due on the alternating occurrence of the maximum phase-averaged
vorticity |ω̃∗max| between the upper and the lower row of vortices (table 2). The stream-
wise meandering motion, if any, of the vortical structures is unlikely to contribute
to the observation. Instead, the bi-stability and random changeover of the gap flow
deflection, which leads to a significant difference in |ω̃∗max| between the two rows of
vortices, is probably responsible. While being carefully avoided at the same x/d (§ 2),
the changeover may occur for different x/d. This also explains why the |ω̃∗max| of the
upper vortex at x/d = 20 exceeds its counterpart at x/d = 10.

5.2. Vortex patterns

5.2.1. T/d = 1.5

Figures 4 and 5 present the iso-contours of phase-averaged vorticity and the
corresponding sectional streamlines. The phase φ, ranging from −2π to +2π, can be
interpreted in terms of a longitudinal distance; φ = 2π corresponds to the average
vortex wavelength. To avoid any distortion of the physical space, the same scales are
used in the φ- and y∗-directions in figures 4 and 5 and other figures that follow. A
single vortex street is displayed for both T/d = ∞ and 1.5, as suggested earlier by the
cross-stream distributions of Ū∗ and Θ̄∗. The street at T/d = 1.5 is however distinctly
different from that at T/d = ∞. First, the vortices decay slowly, relative to those at
T/d = ∞. For example, the maximum vorticity at x∗ = 40 still amounts to about 25%
of that at x/d = 10 for T/d = 1.5, but only 8% for T/d = ∞ (12% for T/d = 3.0).
Secondly, the counter-rotating vortices differ greatly in |ω̃∗max| (table 2). This difference
diminishes as x/d increases. The |ω̃∗max| ratio of the positively signed vortex to that
of the negative one is 2.1 at x∗ = 10 and drops to 1.4 at x∗ = 40. Thirdly, the flow
structure is different, which may be characterized using critical points, i.e. foci, saddle
points and nodes (e.g. Zhou & Antonia 1994a). The critical points play an important
role in the fluid dynamics of a turbulent single cylinder wake, as is well-documented in
the literature (e.g. Perry & Chong 1987; Zhou & Antonia 1994a). They are expected
to play a similar part in a two-cylinder wake, and are therefore not the focus of the
present study. Since the vortex centres are presently defined as the location where the
maximum concentration of vorticity occurs, the centres will coincide approximately
with foci (Zhou & Antonia 1994a). The saddle points, identified from the sectional
streamlines (figure 5), and vortex centres are marked by ‘×’ and ‘+’ in conditional
vorticity contours (figure 4) and some following plots to help interpret data. Evidently,
the two cases differ in lateral spacing between saddle points or vortex centres. For
example, this spacing for T/d = 1.5 is 2.85, 2.28 and 3.8 for x/d = 10, 20 and 40,
respectively. The corresponding spacing is only 0.46, 1.60 and 2.58 for T/d = ∞.
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Figure 4. Phase-averaged vorticity contours ω̃∗. (a–c) T/d = ∞: (a) x/d = 10, contour interval =
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Their longitudinal spacing or vortex wavelength is also greater at T/d = 1.5 than at
T/d = ∞.

The phase-averaged sectional streamlines at x/d = 10 (figure 5d ), in particular,
those above the flow centreline, appear rather peculiar compared with others. Zhang
& Zhou (2001) recently measured the flow (up to x/d = 10) behind three side-by-side
cylinders (T/d = 1.5) using both hot-wire and laser-illuminated flow visualization
techniques. They observed a wide wake behind the central cylinder and two narrow
wakes on each side of the wide wake. It was found that the vortical structures in the
narrow wakes were shed from the cylinder and vanished at x/d ≈ 5. On the other
hand, the vortical structures in the wide wake started to roll up at x/d ≈ 5(Re > 450).
They were very weak initially but grew in strength with increasing x/d, resembling
those in a screen wake, which were ascribed to the shear layer instability (Zhou &
Antonia 1994b). This instability differs from that responsible for vortices shed from a
cylinder, which decay as x/d increases. The two-cylinder case may bear a resemblance
to that of three cylinders. The vortices seen in figures 4 and 5 are formed in the wide



The turbulent wake of two cylinders 313

(a)

(c)

(e)(b)

(d )

( f )( f )( f )

0

2

2 1 0

y
d

2 0
φ (π)

01–1 –1–1

(i )

(h)(h)(h)

(g)
4

–2

–4

6

4

2

0

–2

–4

–6

6

4

2

0

–2

–4

–6

–2 1 –2 –2

y
d

y
d

φ (π) φ (π)

Flow

2

Figure 5. Phase-averaged sectional streamlines: (a) T/d = ∞, x/d = 10; (b) ∞, 20; (c) ∞, 40;
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wake, due to the shear layer instability, whereas those in the narrow wake probably
disappear before x/d = 10. Another scenario of the vortex evolution is the possible
coalescence of vortices in the narrow wake with one row of vortices in the wide wake.
This was proposed by Williamson (1985) based on the flow visualization behind two
side-by-side cylinders at T/d = 1.5. Whichever is the case, the vortex regeneration
or evolution may not be completed yet at x/d = 10. This may contribute to the
observation that one row of vortices is relatively weak and also account for the rather
peculiar flow pattern at x/d = 10. Such a peculiar flow pattern is not seen at x/d > 20
where the vortex regeneration is probably completed.

The gap flow deflection and the formation of wide and narrow wakes behind a row
of bluff bodies for T/d = 1.2–2.0 have been reported by a number of previous studies
(e.g. Ishigai et al. 1972; Moretti 1993; Williamson 1985). Some researchers, e.g. Ishigai
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et al. and Moretti, attributed the phenomenon to the Coanda effect (Englar 1975).
However, Bearman & Wadcock (1973) and Williamson (1985) observed deflected gap
flow between two parallel flat plates as well as circular cylinders. This observation
suggested that the Coanda effect might not be responsible for the deflection. It is
suspected that, since the straight flow in abrupt two-dimensional bluff bodies tends to
be unstable, the initial deflection of the gap flow between the cylinders at T/d = 1.5
may occur, for example, due to a non-symmetric vortex shedding from the two
cylinders. Once the gap flow is deflected, the two streets interact and reach stability
in the form of a narrow and a wide wake. The narrow wake is annihilated quickly
because of interactions with the wide wake. As a result of the asymmetrical flow
condition, the two rows of vortices, generated in the wide wake, are characterized by
different vorticity strengths and different distances from y/d = 0. The asymmetry of
the wake structure should persist at least as long as these vortices survive. Presumably,
the interaction between adjacent vortical structures is at least partly responsible for
the breakup of vortices. For an isolated cylinder, vortices do not completely vanish
until x/d ≈ 40 or even farther (Hussain & Hayakawa 1987; Zhou & Antonia 1993).
For two cylinders spaced at T/d = 1.5, the vortices may interact weakly due to
relatively large spacing (figures 4 and 5) compared with the T/d = 3.0 and ∞
cases, and hence may have a longer lifespan. Indeed, conditional vorticity contours
at x/d = 40 (figure 4c, f, i ) unequivocally point to the longer survival of vortices at
T/d = 1.5 than the other cases.

5.2.2. T/d = 3.0

For relatively large spacing (T/d > 2) between two cylinders, two distinct vor-
tex streets of identical dominant frequency occur (e.g. Bearman & Wadcock 1973).
For convenience, the Uc associated with the outer vortex is used to construct sec-
tional streamlines in figure 5. That is, identical convection velocities for both inner
and outer vortices have been assumed. Tests were conducted to construct sectional
streamlines using the convection velocity of the inner vortex; no appreciable change
in the flow structure was observed. The two streets are coupled and have a definite
phase relationship (Kim & Durbin 1988). This is consistent with our intuition that
interactions between two quasi-periodical motions are likely to lead to a coupling be-
tween the motions. Indeed, the conditional vorticity contours (figure 4) and sectional
streamlines (figure 5) display two vortex streets, symmetrical about y/d = 0, up to
x∗ = 20 for T/d = 3.0. Previous flow visualization data at low Re suggested that
the two streets were predominantly in antiphase immediately behind the cylinders.
Ishigai et al. (1972) observed a remarkably symmetric vortex formation and shedding
for T/d = 2.5 and 3.0 Bearman & Wadcock (1973) made a similar observation.
Williamson (1985) showed at Re = 100–200 that the two streets may occur in phase
or in antiphase. The two modes of vortex streets were also evident in Zhou et al.’s
(2001) flow visualization data (T/d = 3.0, Re = 150–450). Zhou et al.’s simultaneous
measurements, using two optical fibre Bragg grating sensors, of vortex-excited vi-
brations on the two cylinders further pointed to a predominance of the in-antiphase
mode vortex shedding for Re = 800–10 000. The present observation suggests that the
in-antiphase mode streets persist up to at least x/d = 20.

One question naturally arises. Can any in-phase mode streets survive or emerge,
due to the rearrangement of vortices, downstream say at x/d = 10? To address this
issue, we attempted to detect two outer rows of vortices and investigate the relative
probability of the phase shift between the detections of the two rows. A window
average gradient (WAG) method was used for detection. This method is described in
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Antonia & Fulachier (1989) and interested readers may refer there for details. Briefly,
this scheme examines the u- or v-signal and identifies a change (either an increase
or decrease) in average signal level over a specified time interval. The change is
associated with the occurrence of vortices. This technique proves to be quite adequate
for the detection of vortical structures (e.g. Bisset, Antonia & Britz 1990; Zhou &
Antonia 1992 and Zhang, Zhou & Antonia 2000). The lower and upper outer-row
vortices (figures 4g and 5g) were detected based on the vR-signal (y/d = −5.5) and
the simultaneously obtained v-signal (y/d = 5.5), respectively. A total of about 600
events, which represent about one half of all vortices, were detected. For the purposes
of comparison, the WAG technique is also applied to T/d = ∞ and 1.5 to detect
the two rows of vortices. The relative probability of the phase shift between the two
sets of detections is presented in figure 6. The probability has been normalized so
that the maximum probability is 1. For T/d = 3.0, one prominent peak occurs near
φ = 0, indicating predominance by the symmetrical arrangement of vortices. The
probability is non-zero near φ = ±π, apparently due to the occurrence of the in-
phase vortex streets. If we define − 1

2
π < φ < 1

2
π as the in-antiphase mode streets and

−π < φ < − 1
2
π or 1

2
π < φ < π as the in-phase mode streets, then the former accounts

for about 91% and the latter about 9%. The result is internally consistent with both
the spectral phase shift at fs between the vR- and v-signals and the vortex pattern
shown in figures 4(g) and 5(g). On the other hand, the probability (figure 6a, b) shows
peaks near φ = ±π and is virtually zero at φ = 0 for T/d = ∞ and 1.5, suggesting a
predominantly staggered vortex street. The antisymmetrical and symmetrical spatial
arrangements of vortices account for 95% and 5%, respectively, for T/d = 1.5, and
98% and 2% for T/d = ∞. The results conform to figures 4 and 5.

The inner vortices (figure 4g, h) are weak in terms of |ω̃∗max| and small in size
compared with the outer vortices. This may be largely due to a faster decay in the
inner vortices in the base region. Kolář et al. (1997) studied the near-wake of two
side-by-side square cylinders (x∗ < 10, T/d = 3.0, where d is the height of the square
cylinders) and noted a fast decay in inner vortices. They employed effective turbulent
vorticity flux density vector J = {Jx, Jy}, where

Jx =
∂

∂y

[〈v2
r 〉 − 〈u2

r 〉
2

]
+

∂

∂x
〈urvr〉, (1)

Jy =
∂

∂x

[〈v2
r 〉 − 〈u2

r 〉
2

]
− ∂

∂y
〈urvr〉. (2)
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As discussed in detail by Hussain (1986) and Kolář et al. the vector may indicate the
transport of vorticity. Based on phase-averaged J , they inferred in the base region
that, while an outer vortex interacted primarily with the upstream inner vortex, an
inner vortex interacted most vigorously with cross-stream inner vortices, as well as
with outer vortices. They suggested that the interaction between the inner vortices
shed from the different cylinders was mainly responsible for the fast decay in inner
vortices.

The fast decay in inner vortices is also evident in the present data. In fact, the two
streets are less stable than the single street at T/d = ∞ or 1.5. At x∗ = 10, the ratio
of |ω̃∗max| of the inner vortex to that of the outer vortex is about 0.83. It drops to 0.50
at x/d = 20. By x/d = 40, the vorticity contours (figure 4i ) show a blank zone in the
central region; one street only is identifiable (figure 5i ).

As shown in figure 6, the vortex streets in both the inphase and antiphase modes
exist at x/d beyond 10. The present phase-averaging technique makes no attempt
to exclude either mode. Averaging over different modes could result in vorticity
cancellation and hence a reduced maximum phase-averaged vorticity. However, this
is unlikely to be responsible for the vorticity decay and disappearance of inner vortices
in view of the observation that the inphase mode street is only a very small fraction
of the antiphase mode street (see figure 6).

Using flow visualization, Williamson (1985) observed in a laminar flow that two
in-phase laminar streets formed behind two side-by-side cylinders (T/d = 4.0) and
then developed into one large-scale single street further downstream. He proposed
that like-signed vortices in the two streets paired up and formed binary vortices, which
coalesced to form the single street. Such a development was not however observed
in Sumner et al.’s (1999) PIV data (Re = 500–3000). The ω̃∗ contours (figure 4) and
sectional streamlines (figure 5) also do not suggest the coalescence of binary vortices
to be a major mechanism behind the present observation in the turbulent wake.

The inner vortices appear squashed, each surrounded by three oppositely signed
vortices. One may surmise that the faster decay in vorticity level results from inter-
action between the oppositely signed vortices. This is indeed supported by effective
turbulent vorticity flux density vectors J (figure 7). Jx and Jy were calculated based
on (1) and (2):

Jx ≈ 1

2

∆〈v2
r 〉 − ∆〈u2

r 〉
∆y

+
∆〈urvr〉

∆x
, (3)
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Jy ≈ 1

2

∆〈v2
r 〉 − ∆〈u2

r 〉
∆x

− ∆〈urvr〉
∆y

. (4)

In the above equations, ∆y(= 3 mm) is the spacing between two neighbouring lateral
data points. The vector length in figure 7 is proportional to the magnitude of J ,
thus representing the strength of vorticity flux or exchange. The outermost vorticity
contour in figure 4, which is the lowest level displaying a clear vortex pattern, is also
plotted in figure 7 to indicate approximately the vortex boundary. For T/d = ∞,
the vorticity flux appears to be moving from one vortex, such as the one at φ = 0,
towards the adjacent ones of the opposite sign. The vectors of generally intermediate
length cross the vorticity contour both upstream and downstream of the vortices,
indicating an exchange in vorticity between counter-rotating vortices. This is not so
evident for T/d = 1.5, suggesting a relatively weak interaction between oppositely
signed vortices, probably because of a large spacing both longitudinally and laterally.
The observation is in fact reconcilable with the persistence of vortices for T/d = 1.5.
The present result at T/d = 3.0 is however not quite the same as that inferred by
Kolář and his co-workers. At this T/d, relatively long vectors (figure 7c) cross the
contour of the inner vortex, e.g. at φ = 0 and y/d < 0. Part of them meets with
those of the opposite direction from the upstream adjacent outer vortex and part of
them crosses the flow centreline to interact with others from the cross-stream inner
vortex. This observation suggests that the inner vortex exchanges vorticity with both
outer vortices shed from the same cylinder and cross-stream inner vortices shed from
the different cylinder. However, judging from the vectors crossing the flow centreline
(most of which, though not all, appear to originate from the inner vortices), the latter
exchange appears comparatively weak, probably due to a relatively large spacing
between the inner vortices shed from different cylinders (figure 7c). Albeit weak, this
exchange would cause additional cancellation in vorticity associated with the inner
vortex. On the other hand, the outer vortices appear to interact only with the inner
vortices shed from the same cylinder.

Thus a scenario is proposed for the evolution of two streets into a single one. In
the base region, the lateral spacing between cross-stream inner vortices is small; the
inner vortex interacts vigorously with the cross-stream inner vortices shed from the
different cylinder, as well as with the outer vortices shed from the same cylinder.
The vorticity exchange between the inner vortices could dominate. In contrast, the
outer vortex may largely interact only with the inner vortex shed from the same
cylinder. Consequently, the inner vortices decay faster. As x/d increases, the lateral
spacing between cross-stream inner vortices becomes larger. On the other hand, the
wavelength of quasi-periodic vortices changes little. While the inner vortices still
interact with both cross-stream inner vortices and outer vortices, the interaction
between the inner and outer vortices shed from the same cylinder now appears to
outweigh that between the cross-stream inner vortices shed from different cylinders.
The ensuing vorticity cancellation results in the early disappearance of the inner
vortices and hence the formation of a single street.

5.3. The temperature field

There is a close similarity between the Θ̄ + θ̃ (figure 8) and ω̃ contours at x∗ = 10,
suggesting an association of heat with the large-scale vorticity concentration. The
similarity disappears at x∗ = 20 for T/d = 3.0 and at x∗ = 40 for T/d = ∞. Evidently,
the higher the maximum vorticity level of a vortex, the better the coincidence between
the vortex and the higher isotherms. This is illustrated by comparing the Θ̄ + θ̃
contours (figure 8d–f ) associated with the two rows of vortices for T/d = 1.5. The
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Figure 8. Phase-averaged temperature contours Θ̄∗ + θ̃∗. (a–c) T/d = ∞: x/d = 10,
contour interval = 0.2; 20, 0.1; 40, 0.1. (d–f ) T/d = 1.5: 10, 0.136; 20, 0.1; 40, 0.1. (g–i ) T/d = 3.0:
10, 0.1; 20, 0.1; 40, 0.1. The thicker solid line denotes the outermost vorticity contours in figure 4.

row of vortices of larger |ω̃∗max| coincides better with higher isotherms than that of
smaller |ω̃∗max|. This observation suggests that a higher concentration of large-scale
vorticity, which implies a strong organized motion, retains heat longer. As given in
table 2, |ω̃∗max| at x∗ = 40 is 0.263 for T/d = 1.5, considerably larger than 0.151 for
T/d = ∞; it is smallest at all stations for T/d = 3.0. This explains the observation

that the similarity between the Θ̄ + θ̃ and ω̃ contours disappears rather early for
T/d = 3.0, while higher isotherms still coincide reasonably well with the vortices of
relatively large |ω̃∗max| (the lower row) at x∗ = 40 for T/d = 1.5. Note that the lower
isotherm is drawn in, towards the flow centreline, quite evenly from both sides of
the flow for T/d = ∞ and 3.0, indicating the entrainment of cold fluid from the free
stream to the region between the consecutive vortices. For T/d = 1.5, however, the
lower isotherm is drawn in largely from one side only by the vortex of relatively large
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Figure 9. Phase-averaged velocity and temperature fluctuations at x/d = 10. ũ∗: (a) T/d = ∞,
contour interval = 0.023; (d ) 1.5, 0.023; (g) 3.0, 0.023. ṽ∗: (b) T/d = ∞, contour interval = 0.04;

(e) 1.5, 0.04; (h) 3.0: 10, 0.04. θ̃∗: (c) T/d = ∞, contour interval = 0.08; (f ) 1.5, 0.08; (i ) 3.0, 0.06.
The thicker solid line denotes the outermost vorticity contours in figure 4.

|ω̃∗max|, for example, from the lower side at x∗ = 10 (figure 8d ) and from the upper
side at x∗ = 20 (figure 8e).

5.4. The velocity and temperature fluctuations

The phase-averaged velocity and temperature fluctuations ũ∗, ṽ∗ and θ̃∗ at x∗ = 10
are given in figure 9. While the ṽ∗ contours display antisymmetry about φ = 0, the
ũ∗ contours show approximate up–down antisymmetry about the vortex centre for
T/d = ∞ and 3, consistent with the interpretation that Uc is close to local Ū. For
T/d = 1.5, however, the up–down antisymmetry of the ũ∗ contours is absent for
the upper row of relatively weak vortices. This observation corroborates our earlier
suggestion that the formation of vortical structures, originating from the shear layer
instability in the wide wake, may not be completed at x∗ = 10. Consequently, the
vortical motion is weak. On the other hand, the ũ∗ contours display the up–down
antisymmetry about the centre of the lower row vortex at x/d = 10, implying the
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completion of the vortical structure formation. The most likely position y∗c of the
upper row vortex is 1.18, nearer to the flow centreline than that, −1.67, of the
lower row vortex (table 2), suggesting that the upper row vortex could be initially
neighboured by the narrow wake. The observation is consistent with the proposition
(§ 5.2.1) that the interaction between the narrow and wide wakes could lead to the
early disappearance of the narrow wake and meanwhile contribute to the relatively
slow formation of the upper row vortex. For x∗ > 20, the negative ũ (not shown) is
present for both rows of vortices and the difference in ω̃max reduces.

The appearance of the θ̃∗ contours for T/d = ∞ (figure 9c) is similar to that
reported by Matsumura & Antonia (1993) and need not be discussed further. For the
two-cylinder case, the region near the vortex centre coincides with the positive large-θ̃∗
contours (figure 9f, i ), apparently resulting from the association of heat with vortices.
At T/d = 3.0, outer vortices are flanked downstream by the negative contours because
of the arrival of cold fluid from the free stream. This is not the case for the upper
row vortices at T/d = 1.5. The positive-θ̃∗ contours associated with the upper row
vortices are connected with those of the lower row. As discussed earlier, the upper
row vortex is rather weak in strength and may not contribute significantly to the
entrainment of cold fluid from the free stream. Cold fluid is largely brought in by
the lower row vortices. Thus, the lower row vortex is flanked downstream by negative
contours.

5.5. Coherent momentum and heat fluxes

The ũ∗ṽ∗contours (figure 10a, d, g) display a clover-leaf pattern about the vortex centre
for T/d = ∞ and 3.0, which is a result of the coherent velocity field associated with
the vortical motion in a reference frame translating at Uc. The near antisymmetry
about φ = 0 implies a small net contribution to uv, due to the cancellation of positive
and negative ũ∗ṽ∗. The ũ∗ṽ∗ contours exhibit a quite different structure for T/d = 1.5.
Those associated with the lower row vortex are quite antisymmetric with respect to
φ = 0, again implying a small coherent contribution to uv. The contours of the upper
row vortex are highly asymmetrical about φ = 0; the positive contours are barely
identifiable, apparently linked to the weak vortical motion (figure 4d ). The asymmetry
is expected to lead to a large coherent contribution to uv from the upper row vortex,
as confirmed by a pronounced negative uv above y∗ = 0 (§ 6).

The positive ũ∗θ̃∗ contours (figure 10b, e, h) are dominant in all cases. This is
expected since the positive ũ∗ overwhelms the negative (figure 9a, d, g) and hot fluid
(θ̃ > 0) is mostly associated with vortices in the near wake (figure 9c, f, i ).

For T/d = 3.0 and ∞, the negative-ṽ∗θ̃∗ contours (figure 10c, i ) dominate for y∗ < 0

because the positive and negative ṽ are associated with cold (θ̃ < 0) and warm (θ̃ > 0)
fluids, respectively. For y∗ > 0, the positive and negative ṽ are associated with hot and
cold fluids, respectively. The positive contours subsequently overwhelm the negative.
Note that at T/d = 3.0 the positive and negative contours associated with the inner
vortices occur in pairs on either side of a vortex and are comparable in magnitude,
which is relatively small. Therefore, the net contribution from the inner vortices to vθ
is expected to be negligible, as verified in § 6. It may be concluded that, while neither
inner nor outer vortices at T/d = 3.0 contribute significantly to the momentum
transport, the outer vortices may contribute considerably more to the lateral heat
transport than the inner vortices. For T/d = 1.5, the upper row vortex is weak and
the lower one is strong. Thus, the negative contours associated with the lower vortices
overwhelm the positive ones associated with the upper ones. As x∗ increases, the
difference in vorticity strength between the two rows diminishes (figure 4d–f ).
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Figure 10. Phase-averaged coherent shear stress and heat fluxes (x/d = 10). ũ∗ṽ∗: (a) T/d = ∞,

contour interval = 0.004; (d ) 1.5, 0.005; (g) 3.0, 0.0025. ũ∗θ̃∗: (b) T/d = ∞, contour interval = 0.01;

(e) 1.5, 0.01; (h) 3.0, 0.005. ṽ∗θ̃∗: (c) T/d = ∞, contour interval = 0.023; (f) 1.5, 0.023; (i ) 3.0, 0.01.
The thicker solid line denotes the outermost vorticity contours in figure 4.

5.6. Incoherent momentum and heat fluxes

In general, the 〈urvr〉 contours (figure 11a, d, g) are stretched in the direction of
the diverging separatrix and the extremum is near the saddle point where strain
is generated because of vortex stretching (e.g. Hussain & Hayakawa 1987). One
extremum tends to occur near the vortex centre for T/d = ∞ but not for the other
cases. Interestingly, although the upper row vortices at T/d = 1.5 are weak in strength,
the maximum magnitude of the 〈urvr〉 contours between the consecutive upper row
vortices is larger than that between the lower row vortices. Given a certain amount of
turbulent energy extracted from the mean flow by the large-scale organized structures,
a weak vortical motion (i.e. a small ũṽ) is likely to correspond to a strong incoherent
motion (i.e. a large 〈urvr〉). The interpretation is further supported by the observation
at T/d = 3.0. The inner vortex is relatively weak in strength, its maximum vorticity
being about 80% that of the outer vortices (figure 4g). This leads to the weak ũṽ
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Figure 11. Phase-averaged incoherent shear stress and heat fluxes (x/d = 10). 〈u∗r v∗r 〉:
(a) T/d = ∞, contour interval = 0.0025; (d ) 1.5, 0.005; (g) 3.0, 0.0025. 〈u∗r θ∗r 〉: (b) T/d = ∞,
contour interval = 0.006; (e) 1.5, 0.008; (h) 3.0, 0.005. 〈v∗r θ∗r 〉: (c) T/d = ∞, contour interval = 0.005;
(f) 1.5, 0.01; (i ) 3.0, 0.005. The thicker solid line denotes the outermost vorticity contours in figure 4.

(figure 10g). However, 〈urvr〉 (figure 11g) is quite comparable to that associated with
the outer vortex.

The maximum level of the 〈u∗r θ∗r 〉 (figure 11b, e, h) or 〈v∗r θ∗r 〉 (figure 11c, f, i ) contours
is considerably smaller than that of their coherent counterparts in figure 10. In
addition, negative and positive contours associated with vortices occur in pairs, thus
cancelling each other at least partially in the calculation of uθ or vθ. It may be
inferred that the incoherent heat flux is a minor contributor to uθ or vθ, as confirmed
in § 6 for up to x∗ = 20, where vortical structures still retain a significant portion of
their original strength (figure 4).

6. Coherent contribution to Reynolds stresses and heat fluxes
Time-averaged Reynolds stresses, temperature variance and heat fluxes at x∗ = 10

and 40 are given in figures 12 and 13. Their experimental uncertainties are estimated
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to be 4%, 6% and 5%, respectively. If re-normalized by U1 instead of U∞, the
single-cylinder data (not shown here) agree both qualitatively and quantitatively with
those of Matsumura & Antonia (1993), thus providing a validation of the present
measurement. A number of observations can be made. First, the profiles are either
quite symmetrical or antisymmetrical about y∗ = 0 for T/d = ∞ and 3.0, but
asymmetrical for T/d = 1.5. Second, the variances at T/d = 1.5 have a larger lateral
spread, though only slightly, than those at T/d = 3.0, in spite of the fact that the
corresponding Lu and Lθ (table 1) are generally smaller. This observation is consistent
with a larger scale of vortices at T/d = 1.5 (§ 5). Third, the maximum magnitude of
the Reynolds stresses and heat fluxes decays appreciably slower at T/d = 1.5.

Figure 12 includes the coherent and incoherent contributions to Reynolds stresses,
temperature variance and heat fluxes at x∗ = 10. A few comments can be made:

(i) The coherent contribution to u2, v2 and θ
2

is generally quite significant because

of the relatively strong coherent motion in the near wake. vidently, ṽ2/v2 is consid-

erably larger than ũ2/u2 and θ̃2/θ2, irrespective of T/d. This observation, previously
reported by Kiya & Matsumura (1985) and Antonia (1991) for the single-cylinder
case, is largely ascribed to the enhancement of ṽ due to the primarily antisymmetrical
arrangement of the counter-rotating vortices in a vortex street (figures 4 and 5).
Furthermore, the present detection of organized motion is based on the v-signal only

and thus ũ2 and θ̃2 may be underestimated, relative to ṽ2.

(ii) At T/d = 3.0, ũ∗2 displays four peaks and ṽ∗2 and θ̃∗2 exhibit two peaks,
doubling their counterpart for T/d = 1.5 and ∞ because of the occurrence of two
vortex streets at T/d = 3.0 (figures 4 and 5). The coherent contribution to the
Reynolds stresses and heat fluxes is generally smaller at T/d = 3.0 than that at
T/d = ∞ or 1.5. This may be attributed to the interaction between the two streets at
T/d = 3.0, which accelerates the decay of vortices. It is pertinent to comment that

θ̃∗2 is substantially smaller when |y∗| < 1.5 than when 1.5 < |y∗| < 3.0 (figure 12o).
The former and latter regions correspond to the occurrence of the inner and outer
vortices, respectively. Presumably, the inner and outer vortices, when separated from
the cylinder, carry the same amount of heat with them. This observation suggests a
faster loss of heat from the inner vortex than the outer one.

(iii) At T/d = 1.5, the coherent contribution to u2, v2, θ2, uθ and vθ is considerably
smaller for y∗ > 0 than for y∗ < 0. This is reversed for uv. The observation is in
conformity with the observation (§ 5) that the upper row vortices are considerably
weaker than the lower ones.

(iv) The coherent contribution to uθ and vθ is generally larger than that to uv. The
positive and negative ũṽ contours (figure 10a, d, g) are longitudinally antisymmetrical
about the vortex centre, thus cancelling each other out in the calculation of uv, which
mostly resides in the saddle region (Zhou & Antonia 1995). On the other hand,
the ũθ̃ contours (figure 10b, e, h) are predominantly positive and the ṽθ̃ contours
(figure 10c, f, i ) are either positive or negative. The ensuing cancellation is minimal.
In addition, due to the close association between heat and vortical structures in
the near wake, the coherent contribution accounts for most of uθ and vθ. It may be
inferred that the vortical structures transport heat more efficiently than momentum, as
observed by Matsumura & Antonia (1993) for the single-cylinder case. One exception

is the coherent contribution to uθ at T/d = 3.0; ũ∗θ̃∗ (figure 12q) is of opposite

sign to that of uθ, except near the centreline of the flow. For T/d = 1.5 and ∞,
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Figure 12. Coherent and incoherent contributions to time-averaged Reynolds stresses,
temperature variance and heat fluxes at x/d = 10: (a–f ) T/d = ∞; (g–l ) 1.5; (m–r) 3.0.
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the maximum magnitude of the positive ũ∗θ̃∗ (figure 10b, e), which is associated with
vortices, is considerably larger than that of the negative 〈u∗r θ∗r 〉 (figure 11 b, e). But for

T/d = 3.0, the positive ũ∗θ̃∗ (figure 10h) and negative 〈u∗r θ∗r 〉 (figure 11h) are quite
comparable in terms of the maximum magnitude. Further, the latter has a much
larger spread both longitudinally and laterally. It is likely that interference between
the two vortex streets could greatly hasten the transport of heat out of the vortices.
This is supported by the relatively small maximum ũ∗θ̃∗ (figure 10h) at T/d = 3.0

compared with those at T/d = 1.5 and ∞ (figure 10b, e). As a result, 〈u∗r θ∗r 〉 exceeds

ũ∗θ̃∗, leading to the observation that ũ∗θ̃∗ and uθ are opposite in sign. One can expect
that the hastened transport of heat from the vortices may also affect the lateral heat

transport, but to a lesser degree. The incoherent contribution 〈v∗r θ∗r 〉 (figure 12r) does

account for more of vθ at T/d = 3.0 than at T/d = 1.5 and ∞ (figure 12f, l ). Note

that the ṽ∗θ̃∗ distribution at T/d = 3.0 (figure 12r) is antisymmetrical about y∗ = 0,
displaying two peaks on either side of y∗ = 0. The peak near y∗ = 0, linked to the
inner vortex, is substantially smaller than the other, attributed to the outer vortex,
corroborating our earlier suggestion that the coherent contribution from the inner
vortex is negligibly small.

At x∗ = 40, there is practically no contribution from the vortical structures to
Reynolds stresses and heat fluxes (figure 13), except at T/d = 1.5 where the coherent
contribution is still appreciable. The streamwise variation of the coherent contribution

can be quantified by the dependence of the ratio β̃γ̃/βγ on x∗. Since this ratio also

varies with y∗, we define an averaged contribution (β̃γ̃/βγ)m, across the flow, from
the vortical structures:

(β̃γ̃/βγ)m =

∫ ∞
−∞
|β̃γ̃| dy∗

/∫ ∞
−∞
|βγ| dy∗.

The values of (β̃γ̃/βγ)m are given in table 3. Generally, the coherent contribution

is greater to v2 than to u2. The difference is largest at T/d = 3.0. The difference
practically vanishes by x∗ = 40 because of the breaking up or disappearance of the
shed vortices. The coherent contribution is smallest to θ2, down to 15–30% at x∗ = 10.
Arguably, heat is initially mostly associated with vortices. The small percentage of the
coherent contribution suggests a significant loss of the heat from vortices by x∗ = 10.
The coherent contribution to θ2 drops fastest at T/d = 3.0. As x∗ increases from

10 to 20, (θ̃2/θ2)m decreases by a factor more than 3 but less than 2 for T/d = ∞
or 1.5 (also refer to figure 12c, i, o). The interaction between the two streets may
have accelerated the loss of heat. In spite of the substantial heat loss, the coherent
contribution to uθ and vθ is greater than to uv. This reinforces the earlier remark that
vortices transport heat more efficiently than they transport momentum, irrespective
of the presence of a neighbouring cylinder.

The (β̃γ̃/βγ)m value decreases much slower at T/d = 1.5 than at T/d = ∞ or

3.0. For example, (ṽ2/v2)m at x∗ = 40 for T/d = 1.5 drops only 52%, compared
with that at x∗ = 10, but 91% for T/d = ∞ and 98% for T/d = 3.0. As noted
earlier, the vortices at T/d = 1.5 (figures 4 and 5) are characterized by relatively large
spacing and hence weak interaction between them, thus surviving longer. In contrast,
the interaction between the vortex streets is vigorous at T/d = 3.0, resulting in a
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shorter vortex lifespan even than that at T/d = ∞, and a fast decay in the coherent
contribution.

It is worth pointing out that there is no fundamental difference in momentum and
scalar transport between the T/d = ∞ and T/d = 3.0 cases. However, there is a
qualitative difference between the T/d = ∞ and T/d = 1.5 cases. While the transport
at T/d = ∞ is characterized by symmetry or antisymmetry with respect to y∗ = 0,
the transport at T/d = 1.5 behaves very differently from one side of the wake to

the other. See u∗v∗ (figure 12d, j, p) and v∗θ∗ (figure 12 f, l, r) for example. Zhou et al.
(2000) measured the turbulent Prandtl number in a three side-by-side cylinder wake.
The number was generally about 1 for T/d = 3.0, resembling the case of T/d = ∞
(Antonia, Zhou & Matsumara 1993), but varied more wildly for T/d = 1.5, ranging
from near 0 to more than 1. A similar observation was made for the two-cylinder
case. It may be concluded that knowledge of flow field changes due to the presence
of a neighbouring cylinder is sufficient to predict scalar transport for relatively large
T/d, but not for T/d smaller than 2 where gap flow deflection occurs.



328 Y. Zhou, H. J. Zhang and M. W. Yiu

T/d ∞ 1.5 3.0

x∗ 10 20 40 10 20 40 10 20 40

(ũ2/u2)m (%) 61.2 14.9 2.4 42.9 27.3 8.0 36.1 4.2 2.9

(ṽ2/v2)m (%) 64.9 33.6 5.9 53.5 40.4 25.4 57.9 23.2 1.3

(θ̃2/θ2)m (%) 19.6 11.4 2.4 31.7 28.3 14.1 14.8 3.9 0.9

(ũṽ/uv)m (%) 47.7 27.4 4.8 36.9 37.9 17.4 28.1 6.6 2.8

(ũθ̃/uθ)m (%) 147.5 47.3 4.4 83.4 77.2 32.5 76.5 7.2 3.0

(ṽθ̃/vθ)m (%) 83.9 36.5 3.4 56.2 39.4 19.2 50.3 15.2 1.0

Table 3. Averaged contributions from the coherent motion to Reynolds stresses, heat fluxes and
temperature variance.

7. Further discussion
More insight can be gained into the momentum and heat transport characteristics

of the flow by examining the coherent heat flux vector q̃∗ = (ũ∗θ̃∗, ṽ∗θ̃∗) (figures
14b, e, h) and the incoherent heat flux vector q̃∗r = (〈u∗r θ∗r 〉, 〈v∗r θ∗r 〉) (figure 14e, f, i ),

along with the velocity vector Ṽ
∗

= (Ū∗ + ũ∗ −U∗c , ṽ∗) (figure 14 a, d, g). The velocity
vectors are viewed in a reference frame translating at Uc.

At T/d = ∞, the coherent heat flux vectors within vortices are generally aligned
with the velocity vectors, suggesting that the coherent motion does not contribute to
the net transport of heat out of vortices. On the other hand, the incoherent heat flux
vectors point upstream, responsible mostly for the net heat transport out of vortices.

The two-cylinder case is not quite the same. When T/d is small, such as 1.5, one
staggered vortex street is formed. One row of vortices is substantially weaker in
strength than the other. They differ in terms of the maximum vorticity by a factor
of about 2 at x∗ = 10 (table 2). There is also a considerable difference in their sizes
(figure 4 d ). Correspondingly, the cross-stream distributions of Reynolds stresses are
asymmetrical (figures 12 and 13). The coherent heat flux vectors associated with the
lower row vortex of a strong coherent motion exhibit a behaviour similar to their
counterpart at T/d = ∞, but those associated with the upper row vortex are directed
towards the downstream vortex of the opposite sign. This observation is reasonable.
Under the effect of the vortical motion, albeit weak, warm fluid (θ > 0) downstream
of the upper row vortex centre moves downward (v < 0), resulting in the negative ṽθ̃
(figure 10 f ). Meanwhile, as earlier noted, the negative-ũ component associated with
this vortex is not seen, presumably due to incomplete vortex formation. The warm
fluid is therefore associated with the positive ũ, giving rise to the positive ũθ̃, whose
contours are stretched towards the cross-stream vortex downstream (figure 10 e). The
incoherent heat flux vector q̃r , at T/d = 1.5 (figure 14 f ) is generally directed upstream
of the vortex centre, indicating a transfer of heat out of vortices.

A summary sketch is presented in figure 15(a) of the vortex pattern and heat
transfer characteristics at T/d = 1.5. The lower row vortices of a strong coherent
motion play a dominant role in the engulfment of fluid from the free stream. Fluid
is drawn into the wake largely, though not exclusively, along the downstream side of
these vortices from free stream 2. This differs from the single-cylinder case where fluid
is engulfed quite evenly from either side of the wake. The coherent contribution to the
Reynolds shear stress from the lower row vortices is negligibly small (figure 12j ) but



The turbulent wake of two cylinders 329

(a)

(b)

Free stream 1, Cold fluid

Deflected gap flow effect

Flow

Vortex A

III IV

II
I
Hot

III
IV

II I
Hot

Free stream 2, Cold fluid

q∼

q∼

Flow

Vortex A

III IV

II I
Hot

III IV

II I
Hot

Cold fluid

q∼

q∼

Vortex B

Vortex B Vortex C

Cold fluid

Vortex C

Hot

III IV

II I

Hot

qr
∼ q + qr

∼ ∼

Figure 15. Summary sketch of the vortex pattern and transport: (a) T/d = 1.5; (b) 3.0.

accountable for most of the heat fluxes (figure 12k, l ). The lower row vortices do not
seem to contribute to any net transport of heat out of the vortices, which is mostly
attributed to the incoherent motion. In contrast, the coherent contribution from the
upper row vortices could be minor compared to the engulfment of fluid from the free
stream and negligibly small compared to the lateral heat flux (figure 12l ) because of
their weak strength. The upper row vortices, however, contribute significantly to the
Reynolds shear stress and to the net transport of heat out of vortices.

At T/d = 3.0, the vortex pattern is totally different; two predominantly antiphase
vortex streets occur. Vortices in each street are again spatially in the staggered
arrangement. The outer vortices have a strong coherent motion, relative to the inner
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vortices. Since the two streets are arranged symmetrically about the flow centreline, it
is sufficient to examine one street only to study the flow.We will focus on the one above
the centreline. The coherent heat flux appears to circulate within the outer vortex,
implying a small net transport of heat out of the vortex. But q̃ associated with the
inner vortices is seen crossing the vorticity contour, pointing partly towards the free
stream and partly towards the downstream outer vortex shed from the same cylinder.
It has been observed in figure 9(i ) that the vortical motion coincides with warm
fluid (θ > 0), except for the flank of the outer vortices (mostly downstream). Thus,
the upward movement (figure 9h) of both inner vortices (downstream of the centre)
and outer vortices (upstream of the centre) generally corresponds to the positive ṽθ̃
(figure 10i ), the positive ũ (figure 9g) of both inner vortices (below the vortex centre)
and outer vortices (above the centre) corresponding to the positive ũθ̃ (figure 10f ).
Therefore, the coherent heat flux (figure 15b) is seen flowing largely out of Quadrant
IV of the inner vortex B towards the free stream and Quadrant II of the downstream
outer vortex C. This is internally consistent with the earlier suggestion that the inner
vortices lose heat faster than the outer vortices.

The incoherent flux vector, q̃r , at T/d = 3.0 points upstream within the vortex, as
does the T/d = 1.5 or ∞ cases. However, upstream of the inner vortex, in particular
outside the vorticity contour, q̃r is directed towards the free stream. Figure 11(i )
indicates that above y∗ = 0, the positive 〈vrθr〉 dominates downstream of the outer
vortex and upstream of the inner vortex. This is consistent with the arrival of the
cold fluid engulfed from the free stream by the upstream outer vortex. Cantwell &
Coles (1983) and Hussain & Hayakawa (1987) noted in a single-cylinder case that
potential fluid drawn from the free stream by a vortex might be partly assimilated
into the vortex on the other side of the wake. The most likely place is Quadrant III
of vortex B (figure 15b), as suggested by the relatively long length of q̃r out of this
quadrant (figure 14i ). Similarly, because the relatively cold fluid is brought from the
centreline by the inner vortex, q̃r (figure 14i ) upstream of the outer vortex centre is
partly directed towards the centreline, though with a weak strength.

8. Conclusions
The turbulent wake behind two side-by-side circular cylinders has been investigated

using a phase-averaging technique. It has been found that the flow structure, heat
and momentum transport depend on the cylinder-to-cylinder centre spacing.

At T/d = 1.5, a single vortex street is seen throughout the range of x∗ = 10–40.
This vortex street is most stable among the three T/d values investigated. The
vortices decay relatively slow. It is noted that the Strouhal number at T/d = 1.5,
the same across the wake, is about 0.11, half of that for T/d = ∞ or 3.0. That
is, the longitudinal spacing between vortices is larger at T/d = 1.5. Furthermore,
the lateral spacing is also considerably greater. The large spacing implies a weak
interaction between vortical motions, which is probably responsible for the relatively
long lifespan of the vortices and hence the stability of the vortex street. The two
rows of vortices behave quite differently. Their convection velocities are not the same
at x∗ = 10 as a result of an asymmetrical spatial arrangement about y∗ = 0. One
row of vortices is significantly weaker in strength than the other. This observation
conforms to the asymmetrical distributions of velocity and temperature fluctuations.
Speculatively, the vortices occurring at x/d = 10 originate from the shear layer
instability in the wide wake. The interactions between the narrow and the wide wake
are likely to lead to the early vanishing of the narrow wake and, meanwhile, prolong



The turbulent wake of two cylinders 331

the formation process of the vortex row that neighbours the narrow wake. On the
other hand, the formation of the other row is completed earlier. As a consequence,
there is a significant difference in the vortex strengths between the two rows.

As T/d increases to 3.0, the phase-averaged velocity field displays two anti-phase
vortex streets of the same vortex frequency. The two streets interact vigorously and
are unstable, relative to the cases of T/d = ∞ and 1.5. The vortices decay fast,
especially the inner ones. By x∗ = 40, the inner vortex has completely disappears and
one street only is discernible. This observation resembles that made by Williamson
(1985) in a laminar case, who attributed the development of two streets into one
to the coalescence of like-signed vortices. A different interpretation is proposed for
the present observation of a turbulent flow. Effective vorticity flux density indicates
that, while an outer vortex largely interacts only with adjacent oppositely signed
inner vortices, an inner vortex interacts with the cross-stream inner vortices as well
as with adjacent outer vortices. As a result, vorticity associated with the inner vortex
is annihilated quickly, leading to the early disappearance of inner vortices and the
formation of a single street.

The coherent contribution from the vortices to the Reynolds stresses, temperature
variance and heat fluxes has been investigated. It has been found that, irrespective
of the spacing between cylinders, the vortices transport heat more efficiently than
momentum, as reported by Matsumura & Antonia (1993) for the single-cylinder case.
However, the spacing between cylinders does have a significant effect on the heat and
momentum transport characteristics. Due to the fast decay of vortices at T/d = 3.0,
the coherent contribution to Reynolds normal stresses and heat fluxes is generally
smaller than that for T/d = 1.5 or ∞ and drops fast, its level at x∗ = 20 being
comparable with that at x∗ = 40 of the two other spacing ratios. It is further found
that the interaction between the vortex streets at T/d = 3.0 hastens, to a great extent,
the transport of heat out of the vortices. The inner vortex loses heat even faster than
the outer, contributing negligibly to the lateral heat transport. This hastened heat
transport leads to the negative coherent contribution to uθ. At T/d = 1.5, the row
of vortices of greater strength makes a large contribution to the Reynolds normal
stresses and heat transport, which decays substantially slower because of the relatively
stable vortex street, than that at T/d = 3.0 or ∞.
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