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Flow structure, momentum and heat transport in the wake of two tandem circular
cylinders have been experimentally investigated. Measurements were conducted at
x/d =10, 20 and 30 (d is the cylinder diameter) at a Reynolds number of 7000
using a three-wire (one cross-wire plus a cold wire) probe, in conjunction with a
cross-wire. The upstream cylinder was slightly heated. The flow behind two tandem
cylinders is conventionally divided into three regimes based on whether the shear
layers separated from the upstream cylinder overshoot or reattach on the downstream
cylinder before forming a vortex street, or form vortices between the cylinders.
The present investigation uncovers two remarkably different flow structures in the
reattachment regime, depending on whether the shear layers from the upstream
cylinder reattach on the downstream or upstream side of the downstream cylinder. As
such, four cylinder centre-to-centre spacing ratios, i.e. L/d = 1.3, 2.5, 4.0 and 6.0, were
examined, each representing one distinct flow structure. The phase-averaged sectional
streamlines and vorticity contours display a single vortex street, irrespective of different
regimes. However, the detailed flow structure, in particular, the vortex strength, and
its downstream development depend upon L/d . The cross-stream distributions of the
Reynolds stresses and heat fluxes at a given x/d vary from one to another. Such
variation is also evident in the coherent contributions to the Reynolds stresses and
heat fluxes. The results are connected to different initial conditions for the four flow
structures. The momentum and heat transport characteristics are summarized for
each flow structure.

1. Introduction
Multiple structures immersed in a crossflow are frequently seen in engineering. One
example is a cluster of high-rise skyscrapers, which characterize modern cities such as
Hong Kong. These tall buildings have a significant influence on the flow and dispersion
of gaseous pollutants that are discharged from a vast number of internal combustion
vehicles and other fume pollutant sources. It is thus of practical importance to
understand the flow and pollutant transport characteristics around multiple slender
structures. Pollutant transport and dispersion is related to mass transfer and its
investigation remains a challenge. Fortunately, the mechanisms of mass transfer
mimic those of heat transfer (Lewis 1922) given that both mass and heat are passive
scalars (Shraiman & Siggia 2000). The importance and relevance of the passive
scalar to turbulent mixing, pollution and many other engineering settings has been
elucidated in reviews by Warhaft (2000), Shraiman & Siggia (2000) and Antonia &
Orlandi (2003). As such, it is a natural choice to use passive heat transport to simulate
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pollutant transport, for heat transfer experiments are much easier to implement in
laboratories.

The simplest configuration of multiple slender structures is two cylinders in
tandem, side-by-side or staggered arrangements. Aerodynamic interference between
two cylinders may give rise to flow separation, reattachment, vortex impingement,
recirculation and quasi-periodic vortices, involving most of the generic flow features
associated with multiple structures. Thus, flow around two cylinders provides a good
model for gaining insight into flow physics and passive scalar transport around more
structures.

Matsumura and Antonia (1993) investigated momentum and passive heat transport
in the turbulent intermediate wake of a single circular cylinder at a Reynolds number
Re (≡U∞d/ν, where U∞, d and ν are the free-stream velocity, cylinder diameter
and kinematic viscosity of fluid, respectively) of 5830. There are few investigations,
similar to Matsumura and Antonia (1993), behind two cylinders. Zhou, Zhang & Yiu
(2002) studied momentum and heat transport in the wake of the two side-by-side
cylinders, which had a transverse spacing T/d = 1.5 to 3.0 (Re = 5800). They found
that the turbulent flow structures, heat and momentum transport depended on T/d

and furthermore showed a remarkable difference from its counterpart in an isolated
cylinder wake.

We may surmise that the manner in which momentum and heat are transferred
behind two tandem cylinders must be different from that behind an isolated cylinder
or two side-by-side cylinders. There have been numerous investigations on the flow
behind two tandem circular cylinders, most of which focus on the Strouhal numbers,
Re effects and forces on the cylinders (e.g. Zdravkovich 1977, 1987; Igarashi 1981;
Arie et al. 1983; Ohya, Okajima & Hayashi 1989; Mahir & Rockwell 1996). This
flow depends on the longitudinal spacing ratio L/d between the cylinder axes as
well as Re, initial conditions and pressure gradient, etc. Zdravkovich (1987) classified
the flow into three regimes based on L/d: (i) the extended-body regime, where L/d

ranged from 1 to 1.2–1.8 and the two cylinders were so close to each other that
the free shear layers separated from the upstream cylinder overshot the downstream
one; (ii) the reattachment regime, where L/d was between 1.2–1.8 and 3.4–3.8, and
the shear layers reattached on the downstream cylinder; (iii) the co-shedding regime,
where L/d exceeded 3.8 and the shear layers rolled up alternately, forming a vortex
street in the gap between, as well as behind, the cylinders. Igarashi (1981) suggested a
similar classification. Xu & Zhou (2004) noted that the reattachment regime may be
extended from L/d ≈ 2 to 5, and that the relationship between the Strouhal number,
St (≡fsd/U∞, where fs is the dominant vortex frequency), and Re at L/d =2 to 3
was markedly different from that at L/d =3 to 5. The different St–Re relationship
was found to arise from different transition processes: with increasing Re a transition
occurred from the extended-body regime to the reattachment regime for L/d = 2
to 3, but from the reattachment regime to the co-shedding regime for L/d =3 to
5. Therefore, they proposed a new classification of the flow, i.e. four different flow
categories, as illustrated in figure 1.

Previous investigations have greatly improved our understanding of this flow.
However, many issues remain unresolved. For example, how is the detailed flow
structure behind the cylinders dependent upon the flow regime? Is the flow structure
at L/d = 2 to 3 different from that at L/d = 3 to 5? Furthermore, the associated
temperature (or passive scalar) field has yet to be better understood. Therefore, one
objective of this work is to study the effect of L/d on the flow structure in terms
of the velocity and temperature fields. There has been a lack of information on the
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Figure 2. Experimental arrangement.

momentum and heat transport of this flow in the literature. The second objective is
to investigate how the presence of a downstream cylinder affects the momentum and
heat transport in a circular cylinder wake and how the transport differs between the
flow regimes.

Experimental details are provided in § 2. Section 3 presents the time-averaged
flow and temperature fields, followed by the phase-averaged results (§ 4). Section 5
documents the contribution from the coherent structures to the Reynolds stresses and
heat fluxes. The momentum and heat transport characteristics are summarized in § 6
and the work is concluded in § 7.

2. Experimental arrangement
Experiments were conducted in a closed-circuit wind tunnel with a square cross-

section (0.6 m × 0.6 m) of 2.4 m long. The wake was generated by two brass circular
cylinders of the same diameter d = 0.015 m in the tandem arrangement (figure 2).
Four different L/d ratios, i.e. 1.3, 2.5, 4.0 and 6.0, were investigated, representing the
four flow categories (figure 1). The cylinders were placed horizontally in the mid-plane
and spanned the full width of the working section, resulting in a maximum blockage
of about 2.5 % and an aspect ratio of 40. The upstream cylinder was placed 0.2 m
downstream of the exit plane of the contraction and was electrically slightly heated.
The surface temperature of this cylinder was measured using both thermocouple
and optic-fibre Bragg grating sensor (Wang et al. 2003) and was about 36 ◦C at
U∞ =7ms−1. The ambient temperature was maintained at 24 ◦C. The maximum
mean temperature of the heated wake at x/d =10 (see figure 2 for the definition of
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U
∗

Θ
∗

u∗
rms v∗

rms uv∗ θ ∗
rms St y∗

c U ∗
c ω̃∗

± 2 ± 3 ± 5 ± 6 ± 6 ± 5 ± 1 ± 3 ± 3 ± 6

Table 1. Percentage experimental uncertainties (x/d = 10 for y∗
c , U ∗

c and ω̃∗).

the coordinate system) did not exceed 1◦C above ambient. The experimental data of
a single cylinder wake obtained under similar experimental conditions by Zhou et al.
(2002) were compared with those obtained by Zhou et al. (2003) without the cylinder
being heated. The Reynolds normal stresses (not shown here) at x/d = 10 displayed a
good collapse; the corresponding phase-averaged vorticity contours (not shown) also
agreed reasonably well. The comparison provides convincing evidence for a negligible
buoyancy effect, that is, heat could be considered as a passive scalar. Measurements
were carried out at U∞ =7ms−1, corresponding to Re =7000. In the free stream, the
longitudinal turbulence intensity was measured to be no more than 0.4 %.

A three-wire probe consisting of a cross-wire probe and a cold wire were used
to measure simultaneously the longitudinal velocity (u), transverse velocity (v) and
temperature (θ) fluctuations. The cold wire was orthogonally orientated to the plane
of the cross-wire and placed about 0.8 mm upstream of the cross-wire intersection.
Thus, u, v and θ may be considered to be obtained at nominally the same point.
Another cross-wire, placed at y = –(4d to 5d), depending on the measurement station
x/d (=10 to 30), was used in conjunction with the three-wire probe in order to
provide a phase reference for the measured velocity signals from the three-wire probe.
The sensing elements of the cross-wires were made of 5 µm Wollaston wire (Pt-10 %
Rh) of approximately 1 mm in length, operated on constant temperature circuits at
an overheat ratio of 1.5. The sensing element of the cold wire was made of 1.27 µm
Wollaston wire (Pt-10 % Rh), which was about 1.2 mm in length. The cold wire was
operated in a constant current (0.1 mA) circuit with an output proportional to θ .
The temperature coefficient of the cold wire was estimated to be 1.69 × 10−3 K−1.
Velocity and temperature signals from the anemometers were passed through buck
and gain circuits, low-pass filtered and digitized on a personal computer using a 12 bit
A/D converter at a sampling frequency fsampling = 3500 Hz per channel. The sampling
duration was 30 s.

Experimental uncertainties in U, Θ, urms or vrms, and θrms are given in table 1,
where U is the instantaneous streamwise velocity, Θ is the instantaneous temperature,
overbar and subscript rms represent the time-averaged quantity and root mean square
value, respectively. The uncertainties in U , urms or vrms, were inferred from errors in
the hot-wire calibration data, and those in Θ and θrms were largely due to errors
in the cold-wire’s drifting during measurements and a slow change in surrounding
conditions.

3. Time-averaged flow and temperature fields

The cross-stream distributions of U
∗

and Θ
∗

are shown in figure 3. The asterisk
indicates hereinafter normalization by U∞, d and the maximum mean temperature

excess, Θ1, in the wake. The U
∗

profiles display one single peak and reasonable
symmetry about y∗ = 0, irrespective of the L∗ value, suggesting the occurrence of a
single vortex street. However, there is a considerable variation in their peak values,
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Figure 3. Time-averaged streamwise velocity U
∗

and temperature Θ
∗
.

L∗ 1.3 2.5 4.0 6.0

x∗ 10 20 30 10 20 30 10 20 30 10 20 30

U ∗
1 0.143 0.142 0.139 0.116 0.095 0.080 0.180 0.176 0.165 0.331 0.258 0.235

Θ1 1.06 0.46 0.44 0.87 0.45 0.42 0.69 0.69 0.47 0.6 0.46 0.19

L∗
u 1.50 2.20 2.41 1.64 1.76 2.34 1.67 1.83 2.11 2.39 3.18 3.88

L∗
θ 1.72 4.04 4.84 2.75 3.02 4.78 3.67 3.75 3.99 4.58 5.23 7.16

Table 2. Maximum velocity defect, temperature excess and half-widths.

that is, their maximum mean velocity deficits, U1, differ from one case to another.

Similarly to U
∗
, values of Θ

∗
exhibit one single peak.

Table 2 summarizes the major characteristic properties of the mean flow and
temperature fields. As x∗ increases from 10 to 30, U1 and Θ1 diminish, which is
expected, and the mean velocity half-width Lu grows by 60 %, 43 %, 26 % and 62 %
for L∗ = 1.3, 2.5, 4.0 and 6.0, respectively. Evidently, the wake growth is slow at
L∗ = 2.5 and 4.0 of the reattachment regime, but is faster in other regimes, i.e. at
L∗ = 1.3 and 6.0. Correspondingly, the mean temperature half-width Lθ grows by
180 %, 74 %, 9 % and 56 % for L∗ = 1.3, 2.5, 4.0 and 6.0, respectively. The growth in
Lu and Lθ will be linked in § § 4 and 5 to the distinct behaviours of coherent structures
and subsequently heat and momentum transport among the four flow structures.

4. Phase-averaged flow and temperature fields
4.1. Phase-averaging technique

The flow behind two tandem cylinders is characterized by quasi-periodic large-scale
structures, irrespective of flow regimes, as evidenced in the power spectral density
functions, Eu, Ev and Eθ (figure 4), of u, v and θ measured at x∗ = 10 and y∗ = 1,
which display a pronounced peak at St = 0.194, 0.186, 0.144 and 0.190 for L∗ = 1.3,
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Figure 4. Power spectra of u, v and θ at y∗ = 1 for x∗ = 10.
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Figure 5. Power spectra of u, v and θ at y∗ = 1 for x∗ =30.

2.5, 4.0 and 6.0, respectively. The second harmonic is also discernible in Eu and Ev for
L∗ = 1.3, 2.5 and 4.0. Note that at L∗ = 6.0 the peak at St = 0.190 is considerably less
pronounced in Ev or Eθ and almost invisible in Eu, suggesting relatively weak vortical
structures. The St value at L∗ = 1.3 is approximately the same as at L∗ = 6.0. This
should be coincidental. Xu & Zhou (2004) conducted a rather exhaustive measurement
of St in the wake of two tandem cylinders over Re = 800 to 42000 and L∗ = 1 to 15
using hot wires and reported that St varies with L∗ as well as Re. The St values in
figure 4 show reasonable agreement with Xu & Zhou’s measurement for the same L∗

and Re. As x∗ increases to 30, the pronounced peak remains evident in the spectra for
L∗ = 1.3, 2.5 and 4.0 (figure 5a–c) but faintly discernible in Ev for L∗ = 6.0 (figure 5d),
suggesting a rapid annihilation of vortical structures in the co-shedding regime.

Figure 6 shows the v-signal from the three-wire probe for L∗ = 1.3, 2.5, 4.0
and 6.0, respectively, along with the simultaneously obtained reference vR-signals
measured from the fixed cross-wire probe at y∗ =4. There is a clear phase relationship
between the large events of v and vR . Therefore, the experimental data are phase-
averaged, based on the identification of the quasi-periodic large-scale events. The
phase-averaging method is similar to that used by Antonia et al. (1993) and Zhou
et al. (2002). Briefly, the v-signals from the movable three-wire probe and the fixed
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Figure 6. Signal v from the movable probe and vR from the fixed probe. The dashed line
represents the filtered signal vf (x∗ = 10, y∗ = 1): (a, b) L∗ = 1.3; (c, d) L∗ = 2.5; (e, f ) L∗ =4.0;
(g, h) L∗ = 6.0.

reference probe were both digitally band-pass filtered with the centre frequency set
at fs using a fourth-order Butterworth filter. The low- and high-pass frequencies
were chosen to be the same as fs , that is, a zero band-pass width was chosen in
order to focus on the large-scale vortical structures. It was tested to allow the low-
and high-pass frequencies to be slightly higher and lower, respectively, than fs . The
flow structure thus obtained was essentially unchanged. The phase shift caused by a
fourth-order Butterworth filtering is very small, about 0.5 % of the vortex-shedding
period, and almost identical for all signals since the shift depends largely on the
filtering frequency set at fs (Zhou et al. 2002).

The filtered signal vf is given by the dashed line in figure 6. Two phases of particular
interest are identified on vf , namely,

phase A:
dvf

dt
> 0, vf = 0,

phase B:
dvf

dt
< 0, vf = 0.
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The two phases correspond to time tA,i and tB,i , respectively, which are measured
from an arbitrary time origin. The filtered signal was used to determine the phase of
the u-, v- and θ-signals from the three-wire probe, namely,

φ = π
t − tA,i

tB,i − tA,i

, tA,i � t � tB,i ,

φ = π
t − tB,i

tA,i+1 − tB,i

+ π, tB,i � t � tA,i+1.

The interval between phases A and B was made equal to 0.5Ts = 0.5/fs by compressing
or stretching and was further divided into 30 equal intervals. The measured (i.e. the
original unfiltered) u-, v- and θ-signals from the three-wire probe were then phase-
averaged at each y-location. The difference between the local phase of v at each
y-location of the three-wire probe and the reference phase of vR at the fixed cross-
wire probe was used to determine the phase shift between the signals, which is essential
to produce the phase-averaged or coherent data in the (φ, y)-plane.

The phase average of an instantaneous quantity Q is calculated by

〈Q〉k =
1

N

N∑
i=1

Qk,i,

where k represents phase. For convenience, the subscript k will be omitted hereinafter.
N is the total number of detections, about 2700, 2600, 2000 and 2500 for L∗ =1.3, 2.5,
4.0 and 6.0, respectively. Q can be viewed as the sum of the time mean component Q

and the fluctuating component q . The latter is further decomposed into the coherent
fluctuation q̃ ≡ 〈q〉 and a remainder (incoherent fluctuation) qr , namely,

q = q̃ + qr .

Also,

〈qs〉 = q̃ s̃ + 〈qrsr〉,
where q and s stand for either u, v or θ .

4.2. Phase-averaged vorticity and sectional streamlines

The phase-averaged vorticity is calculated by

ω̃ =
∂(V + ṽ)

∂x
− ∂(U + ũ)

∂y
≈ �ṽ

�x
− �(U + ũ)

�y
,

where V (≈ 0) is the time-averaged velocity in the lateral direction, �x = −Uc�t =
−Uc/fsampling and Uc is the average convection velocity at the vortex centre, which
is identified with the location of the maximum phase-averaged vorticity ω̃max .
Figures 7 and 8 present the iso-contours of the phase-averaged vorticity, ω̃∗, and
the corresponding sectional streamlines. The streamlines are viewed at a reference
frame moving at Uc. The phase φ, ranging from −2π to +2π, can be explicated
in terms of a longitudinal distance, φ = 2π corresponding to the average vortex
wavelength. To avoid any distortion of the physical space, the same scales are used in
the φ- and y∗-directions in figures 7 and 8 and others that follow. The positions of foci
and saddle points (e.g. Zhou & Antonia 1994) associated with vortices are determined
from sectional streamlines (figure 8) and denoted by ‘+’ and ‘×’, respectively. In
general, the foci correspond well to the maximum vorticity, in particular, at x∗ = 10.
The ω̃∗ contours (figure 7) and sectional streamlines (figure 8) display a single vortex
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L∗ 1.3 2.5 4.0 6.0

x∗ 10 20 30 10 20 30 10 20 30 10 20 30

y∗
c 0.18 0.36 0.62 0.5 0.41 0.58 0.63 0.82 0.93 0.92 1.18 1.67

U ∗
c 0.87 0.91 0.92 0.92 0.93 0.96 0.91 0.92 0.93 0.79 0.85 0.86

ω̃∗
max −1.18 −0.30 −0.19 −0.37 −0.37 −0.16 −0.83 −0.75 −0.36 −0.24 −0.12 −0.07

Table 3. The vortex path, convection velocity and maximum vorticity.

street, regardless of the flow regimes, similar to that behind an isolated cylinder, i.e.

L∗ = 0, as suggested earlier by the cross-stream distributions of U
∗

and Θ
∗
.

Table 3 summarizes the most likely vortex location, y∗
c , U ∗

c and ω̃∗
max . Since the

phase-averaged flow structure is reasonably anti-symmetrical about y∗ = 0, only those
associated with the upper-row vortices are given. The experimental errors in y∗

c , U ∗
c

and ω̃∗
max at x∗ =10 are given in table 1. The errors are expected to be greater for
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Figure 8. Phase-averaged sectional streamlines. The U ∗
c values in table 2 are used in
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larger x∗ owing to an increased unceratinty in determining the vortex centre. The y∗
c

value increases from x∗ = 10 to 30 by 240 %, 16 %, 48 % and 82 % for L∗ = 1.3, 2.5,
4.0 and 6.0, respectively. The U ∗

c values in the reattachment regime, i.e. at L∗ = 2.5
and 4.0, are rather close to each other and are larger than that at L∗ =1.3. U ∗

c at
L∗ = 6.0 is the smallest, which is consistent with the most pronounced velocity deficit
(figure 3g). For all L∗, Uc increases with x∗, as observed behind an isolated cylinder
wake (Zhou & Antonia 1994).

The magnitude |ω̃∗
max | of ω̃∗

max at L∗ =1.3 is largest of all regimes at x∗ = 10, which is
internally consistent with the most pronounced peak in the power spectra (figure 4).
This magnitude is about 1.18 at x∗ = 10 and 0.30 at x∗ = 20, a drop of 75 %. Its
counterpart at L∗ =0 is 1.19 at x∗ = 10 and 0.52 at x∗ = 20 (measured in the same
facility by Zhou et al. 2002), decreasing by 56 %. The comparison suggests that
the vortices behind two tandem cylinders decay more rapidly than that behind an
isolated cylinder, though their initial strengths are comparable. At x∗ = 10, the |ω̃∗

max |
value is 0.83 at L∗ = 4.0, exceeding twice that (0.37) at L∗ =2.5. Nonetheless, their
decay rates are similar, |ω̃∗

max | dropping by 0 % and 12 % from x∗ = 10 to 20 for
L∗ = 2.5 and 4.0, respectively. Note that the drop in |ω̃∗

max | from x∗ = 10 to 30 is the
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same, by 57 %, for the two cases. This may be ascribed to the fact that the shear
layer reattachment on the downstream cylinder occurs in both cases. The decay rate
of |ω̃∗

max | in the reattachment regime is significantly smaller than at L∗ =1.3, with
|ω̃∗

max | sliding by 84 % from the value at x∗ =10 to 30. The |ω̃∗
max | value at L∗ = 6.0

is smallest of all and decay rapidly. In fact, the vortex street is barely discernible
at x∗ = 30 (figures 7 and 8). For L∗ =2.5, |ω̃∗

max | at x∗ = 20 is 0.37, the same as at
x∗ =10. |ω̃∗

max | associated with the lower row increases from 0.25 at x∗ = 10 to 0.35 at
x∗ =20 (figure 7d–e). At L∗ = 4.0, |ω̃∗

max | experiences a merely marginal decline from
x∗ =10 to 20. Furthermore, the ω̃∗ contours and sectional streamlines both display
a discernible growth in the vortex size from x∗ = 10 to 20 (figures 7d, e and 8d, e),
suggesting that the vortex formation at L∗ = 2.5 may not be completed until x∗ =20
or so. More discussion on the streamwise variation of vortices at L∗ = 2.5 and 4.0
will be given later. Apparently, the vortices for these cases behave quite differently in
terms of their lateral location, convection velocity, strength and decay rate, reflecting
a difference between the flow structures in the four flow categories, even though they
all display a single alternately arranged vortex street.

It can be pertinent to comment on some analogy between a two-tandem cylinder
wake and that of a single cylinder with a splitter plate attached downstream. For
L∗ < 2, the downstream cylinder does not obstruct the vortex formation from the
upstream cylinder. Similarly, a splitter plate of length l ≈ d does not inhibit the
vortex formation, but causes 20 % or so reduction in St and 35 % increase in the base
pressure when compared with the case of a plain cylinder (Roshko 1953, 1954, 1961).
However, a splitter plate longer than 2d progressively modifies the base pressure and
vortex shedding until l reaches 5d , at or beyond which the flow separated from the
cylinder reattaches on the splitter plate and vortex shedding is eliminated, although
a quasi-periodical vortex street is formed far away from the cylinder (Apelt & West
1973, 1975). Grove et al. (1964) found that, at Re =25 ∼ 300, the splitter-plate effect
in terms of stabilizing a steady wake was maximum when l was about 2d to 3d .
In the reattachment regime of a two tandem cylinder wake, vortex shedding, albeit
not inhibited, is impaired, particularly at small L∗ (≈2–3). In the co-shedding regime
(L∗ � 5), vortex shedding from the upstream cylinder resumes. Likewise, Hasan &
Budair (1994) observed in a square cylinder wake that, irrespective of the l/d value
(d is the cylinder height), St varied with the gap, g/d, between the trailing edge of
the cylinder and the leading edge of the splitter plate and, at g/d ≈ 6.0, approached
the value in the absence of the splitter plate.

4.3. Phase-averaged temperature field

Figure 9 presents the contours of the phase-averaged temperature, Θ∗ + θ̃∗. The
outermost ω̃∗ contour in figure 7 is included in the figure (and also those that follow)
to mark approximately the vortex border. The higher isotherms of Θ∗ + θ̃∗, except at
L ∗ = 6.0, in general, exhibit a close similarity to the ω̃∗ contours (figure 7), indicating
the association of heat with vortices. However, this similarity fades at x∗ =20 for
L∗ = 1.3, suggesting a quick transport of heat out of vortical structures. The Θ∗ + θ̃∗

contours atL∗ = 2.5 maintain strong concentrations at x∗ = 20 (figure 9d, e) and do
not lose the similarity to the ω̃∗ contours until x∗ = 30. The result is in line with the
earlier observation that, unlike the other cases, the vortex at L∗ = 2.5 (figures 7d, e

and 8d, e) maintains its growth from x∗ = 10 to 20 and starts to decay from x∗ =20
to 30. Since the vortex at L∗ = 4.0 decays as slowly as at L∗ = 2.5 (figures 7g, i and
8g, i) and further retains a significant strength at x∗ = 30 (figure 8i), Θ∗ + θ̃∗ shows a
high concentration even at x∗ =30 and coincides well with the ω̃∗ concentration. The
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Figure 9. Phase-averaged temperature contours Θ
∗

+ θ̃∗. (a–c) Contour interval= 0.2; 0.2;
0.2. (d–f ) 0.2; 0.2; 0.2. (g–i) 0.2; 0.2; 0.2. (j–l) 0.2; 0.2; 0.2. The thicker solid line denotes the
outermost vorticity contours in figure 7; the broken line indicates the diverging separatrix.

lower isotherms except at L∗ = 6.0 are drawn in towards the centreline downstream of
each vortex, reflecting the arrival of cold fluid (from the free stream) in the alleyway
between two opposite-signed vortices. The diverging separatrix through the saddle
point is given as a broken line in figure 9. The separatrix intersects the isotherms at
L∗ = 1.3, similarly to the near wake of an isolated cylinder (Matsumura & Antonia
1993), but corresponds approximately to the temperature front, normal to which the
temperature gradient is quite large, for other L∗ values as observed for a cylinder
far-wake (Antonia et al. 1987; Ferré and Giralt 1989).

The different behaviours of ω̃∗ and Θ
∗
+ θ̃ ∗ between the three flow regimes may

be traced back to the nature of flow interference between two tandem cylinders. At
L∗ = 1.3, shear layers separating from the upstream cylinder roll over behind the
downstream cylinder to form a vortex street and the vortices show a fast decay
(figure 7a–c). As L∗ exceeds 5, vortices generated by the upstream cylinder impinge
upon the downstream cylinder. Apparently, the incoming flow of the downstream
cylinder is turbulent, which may postpone flow separation from the cylinder, resulting
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in weak vortices (figures 7j, l and 8j, l). Since the coherent structures tend to retain
heat (e.g. Matsumura & Antonia 1993; Zhou et al. 2002), the weak vortex will surely
lead to a quick loss of heat associated with vortices, as evident in figure 9(a–c,
j–l). At L∗ = 2.5 and 4.0, the free shear layers from the upstream cylinder reattach
on the downstream cylinder. The vortices of the two cases do differ significantly in
strength. As a consequence, the heat concentration at x∗ = 30 is strong and closely
associated with the vortex for L∗ = 4.0; but the same cannot be said for L∗ = 2.5. The
reattachment seems to have considerably prolonged the vortex formation process, and
the vortical structures maintain their strength further downstream than the other two
regimes. Correspondingly, the vortex-associated heat is diffused slowly.

It is worth commenting on the downstream evolution of vortices at L∗ = 2.5.
Since the vortex grows in both maximum vorticity and spatial extent (figure 8) from
x/d =10 to 20, the growth cannot be attributed to diffusion. Presumably, the observed
vortices are largely, at least initially, attributed to the shedding of vorticity from the
downstream cylinder, which is supported by Xu & Zhou’s (2004) flow visualization
(their figure 4). Vigorous interactions between vorticity separated from the upstream
cylinder and that shed from the downstream cylinder could lead to a significant portion
of vorticity scattered in the wake rather than mostly confined within the vortices,
as with an isolated cylinder case and that at L∗ = 1.3. Naturally, as the vortices are
advected downstream, the roll-up of vorticity continues and the vortices keep growing
until x∗ ≈ 20. The same may explain the slow decay of vortices at L∗ = 4.0. The
explanation appears to be supported by the observation that, at L∗ = 4.0, both ω̃∗ and
Θ∗ + θ̃∗ contours towards the free-stream display a tail pointing upstream (figures 7g

and 9g) at x∗ = 10, conforming to the roll-up motion of vorticity. In contrast with the
case at L∗ = 2.5 or 4.0 where vorticity separated from the upstream cylinder reattaches
on the downstream cylinder, at L∗ = 6, vortices are formed between the gap of the two
cylinders and impinge upon the downstream cylinder. Subsequently, vortices observed
behind the downstream cylinder do not appear strongly coherent, when compared
with the case at L∗ =2.5 (see figure 6 in Xu & Zhou 2004), and accordingly the roll-up
of vorticity is simply too weak to be persistent.

4.4. Vorticity transport

It has been seen in § 4.2 that, as x∗ increases from 10 to 30, the vortices at L∗ = 1.3
and 6.0 lose their strength more rapidly than those in the reattachment regime, i.e. at
L∗ = 2.5 and 4.0. In order to understand the interaction between two vortex streets and
the streamwise decay in vorticity in the turbulent wake of two side-by-side cylinders,
Kolář, Lyn & Rodi (1997) and Zhou et al. (2002) employed the effective turbulent
vorticity flux density vector, J̃ = {J x, J y}, defined by

J x =
∂

∂y

[〈
v2

r

〉
−

〈
u2

r

〉
2

]
+

∂

∂x
〈urvr〉, (1)

J y =
∂

∂x

[〈
v2

r

〉
−

〈
u2

r

〉
2

]
− ∂

∂y
〈urvr〉. (2)

The vector provides a measure for the transport of vorticity. Figure 10 shows the
effective vorticity flux density vectors J̃ ∗ at x∗ = 10 and 20. J̃ ∗ is directed from higher
to lower coherent vorticity concentration and its length indicates the strength of
vorticity flux density. The vector and number above the left-hand upper corner in
figure 10 provides correspondence between the vector length and magnitude.
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At x∗ = 10, the maximum magnitude of the vector at L∗ = 1.3 (figure 10a) exceeds
twice that at L∗ = 4.0 (figure 10e) and even more than at L∗ = 2.5 (figure 10c) and
6.0 (figure 10g), internally consistent with the relatively large vorticity concentration
at x∗ = 10 for L∗ = 1.3 (table 3 and figure 7). Furthermore, relatively long vectors
associated with a vortex such as the one at φ = 0, cross the vortex border and point
towards the neighbouring vortex at φ =1 of opposite sign. On the other hand, long
vectors associated with the vortex at φ = 1 cross the vortex border and point at
the vortex at φ = 0. The observation indicates a vigorous exchange in vorticity or
vorticity cancellation between adjoining opposite-signed vortices, which is probably
responsible for the rapid vorticity decay at L∗ = 1.3, dropping by 75 % from x∗ = 10
to 20. At L∗ = 2.5, relatively long vectors originating from the vortex at φ ≈ 1 tend
to occur along the diverging separatrix through the saddle point, but do not interact
strongly with those from the neighbouring vortex at φ ≈ 0, pointing to a weak
vorticity exchange between oppositely signed vortices and hence a small vorticity
cancellation. The maximum vector length at L∗ = 4.0 is substantially longer than
at L∗ = 2.5. However, the vectors from opposite-signed vortices do not appear to
be interacting vigorously, accounting for the slowly decaying vorticity concentration
(figure 7g–i). At L∗ = 6.0, relatively long vectors again occur along the diverging
separatrix through the saddle point (φ ≈ 1), similarly to the L∗ =2.5 case. However,
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because of a considerably larger vortex size, the vectors associated with the opposite-
signed vortices interact with each other near the vortex border, implying a vorticity
exchange and thus a faster vorticity decay than at L∗ = 2.5 or 4.0.

At x∗ =20, the maximum vector length at L∗ =1.3 (figure 10b) reduces greatly
compared with that at x∗ =10. Although the relatively long vectors still cross the
border of the adjoining vortex, the vorticity concentration decays less rapidly than at
x∗ =10 (figure 7b, c). In contrast, the vector length in the reattachment regime is longer
at x∗ = 20 (figure 10d, f ) than at x∗ = 10, in particular at L∗ = 2.5. Accordingly, the
vorticity decay is accelerated (figure 7e–f , h–i). At L∗ = 6.0, the vectors (figure 10h)
are very weak and show practically no interactions between oppositely signed vortices.
In fact, the maximum coherent vorticity (figure 7k) approaches the background level
and the vorticity decay is probably caused mainly by the viscous dissipation.

4.5. Transport of momentum and heat

4.5.1. Coherent fluctuating velocities and temperature

Figure 11 presents the phase-averaged velocity and temperature fluctuations ũ∗, ṽ∗

and θ̃∗ at x∗ = 10. At L∗ = 1.3, the ũ∗, ṽ∗ and θ̃∗ contours (figure 11a–c) resemble those
previously reported behind an isolated cylinder (Matsumura & Antonia 1993; Zhou
et al. 2002). The positive and negative ũ∗ contours display approximate up–down
anti-symmetry about the vortex centre, while the ṽ∗ contours are anti-symmetrical
about φ =0. The positive θ̃∗ concentration coincides well with the vortex, indicating a
close association between the vortex and warm fluid. Note that the vortex is flanked
downstream by the negative θ̃∗ contours or cold fluid, resulting from the entrainment
of cold fluid from the free stream by vortices.

At L∗ = 2.5, the ũ∗, ṽ∗ and θ̃∗ contours (figure 11d–f ) show patterns similar to those
at L∗ = 1.3. The detailed structures are, however, rather different. First, the ũ∗ contours
display up–down anti-symmetry about the vortex centre at φ = 0, but not so evident at
φ ≈ ± 1, probably because of the significantly weaker strength of vortices (figure 7d)
than at L∗ =1.3 (figure 7a). Secondly, part of the positive isotherms overlaps with
the vorticity concentration, while the other part, of relatively low level near the free
stream, extends beyond the vortex border and points upstream, indicating the roll-
up motion of warm shear layers separating from the heated upstream cylinder. In
contrast, the positive isotherms at L∗ = 1.3 are completely enclosed within the vortex,
with the major axis of the contours approximately normal to the flow direction. As
x∗ increases to 20, the positive isotherms (not shown) coincide well with the vortex,
similarly to the case of L∗ = 1.3 (figure 11c). The observation points again to that
at L∗ =2.5 the vortex formation is not completed until x∗ ≈ 20. Once again, the
vortical structure is flanked downstream by the negative θ̃∗ contours because of the
arrival of cold fluid from the free stream. The ũ∗, ṽ∗ and θ̃∗ behaviours at L∗ = 4.0
mimic those at L∗ = 2.5 since both cases are in the reattachment regime. Nonetheless,
unlike the case of L∗ =2.5, the ũ∗ contours exhibit up–down anti-symmetry about the
vortex centre even at φ ≈ ±1, both ũ∗and ṽ∗ contours are smooth, and the maximum
θ̃∗ coincides well with the vortex centre at φ ≈ ±1 as well as at φ = 0, indicating
a stronger vortex strength and quasi-periodicity, as evidenced in figure 4(b, c) and
7(d, g).

At L∗ = 6.0, the ũ∗ contours (figure 11j ) no longer show up–down anti-symmetry
about the vortex centre, even at φ =0, and the ṽ∗ contours (figure 11k) are least
smooth, apparently caused by the weak vortex strength (figures 4d and 7j ). The
deviation between the maximum positive isotherms and the vortex centre is very
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Figure 11. Phase-averaged velocity and temperature fluctuations at x∗ = 10. (a–c) Contour
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significant, that is, the warm fluid and the vortical structure tend to be dissociated
since the vortex of weak strength is unable to retain heat.

4.5.2. Coherent momentum and heat fluxes

At L∗ = 1.3, the contours of ũ∗ṽ∗, ũ∗θ̃∗ and ṽ∗θ̃∗ (figure 12a–c) display patterns,
which are qualitatively the same as those at L∗ = 0 reported by Matsumura & Antonia
(1993). The clover-leaf pattern about the vortex centre of the ũ∗ṽ∗ contours arises from
the coherent velocity field associated with the vortical motion in a reference frame
translating at Uc. On the other hand, the ũ∗θ̃∗ contours are positive above the upper
row vortex centre at φ = 0 and, though rather weak, negative below, reflecting a
connection between the positive ũ and the warm fluid. The ṽ∗θ̃∗ contours appear
anti-symmetrical about the vortex centre, owing to the association of both positive
and negative ṽ (figure 11b) with the warm fluid. There is a small departure from
the anti-symmetry. For instance, the negative concentration of ṽ∗θ̃∗ is weaker above
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Figure 12. Phased-averaged coherent shear stress and heat fluxes (x∗ = 10). (a–c) Contour
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the centreline than the positive because the negative ṽ∗θ̃∗ region at y∗ > 0 has more
difficulty surviving where ∂Θ/∂T < 0. There is a strong concentration between two
cross-stream vortices. For example, one positive concentration occurs between the
upper-row vortex at φ =0 and the downstream lower-row vortex, resulting from
the entrained cold fluid from the free stream (θ̃ < 0 and ṽ < 0), which is evident in
figures 11(b) and 11(c), respectively.

At L∗ = 2.5, the ũ∗ṽ∗ contours (figure 12d) associated with the vortex at φ = 0 show
a pattern similar to their counterpart at L∗ =1.3. However, the maximum magnitudes
of ũ∗ṽ∗, ũ∗θ̃∗ and ṽ∗θ̃∗ are at least one order of magnitude smaller than at L∗ = 1.3.
The positive and negative contours are also less anti-symmetrical about the vortex
centre. The increased departure from anti-symmetry may not necessarily give rise to
a greater net contribution to u∗v∗ because of the small maximum ũ∗ṽ∗. The contours
associated with vortices at φ ≈ ± 1 display two lobes, instead of a clover-leaf pattern,
apparently owing to weak vortex strength. Weak vortex strength also contributes
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Figure 13. Phased-averaged incoherent shear stress and heat fluxes (x∗ = 10). (a–c) Contour
interval= 0.001; 0.004; 0.005. (d–f ) 0.001; 0.004; 0.005. (g–i) 0.001; 0.004; 0.005. (j–l) 0.001;
0.004; 0.005. The thicker solid line denotes the outermost vorticity contours in figure 7; the
broken line indicates the diverging separatrix.

to the absence of the positive ṽ∗θ̃∗ within the vortices at φ ≈ ± 1 (figure 12f ). At
L∗ = 4.0, however, the ũ∗ṽ∗, ũ∗θ̃∗ and ṽ∗θ̃∗ patterns (figures 12g–i) are largely similar
to those at L∗ = 1.3, with comparable maximum magnitudes. The ũ∗ṽ∗ contours
display a conspicuous departure from anti-symmetry about the vortex centre. This
departure, coupled with the large maximum ũ∗ṽ∗, implies a large contribution from
vortices to uv, as confirmed in § 5. The vortex strength at L∗ = 6.0 is the weakest of all
(see figure 7a, d , g, i). Consequently, the ũ∗ṽ∗, ũ∗θ̃∗ and ṽ∗θ̃∗ contours (figure 12j–l)
appear very different from other cases, with the smallest maximum magnitude.

4.5.3. Incoherent momentum and heat flux

The 〈u∗
r v

∗
r 〉, 〈u∗

r θ
∗
r 〉 and 〈v∗

r θ
∗
r 〉 contours at L∗ = 1.3 (figure 13a–c) again qualitatively

resemble those at L∗ = 0 (cf. figure 7a, d , g in Matsumura & Antonia 1993). For
example, 〈u∗

r v
∗
r 〉 (figure 13a) tends to be concentrated around the vortex as well as

the saddle point on the other side of the centreline. The 〈u∗
r θ

∗
r 〉 contours (figure 13b)
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exhibit the alternate occurrence of the positive and negative concentrations near
the centreline, with the negative overwhelming, whereas the 〈v∗

r θ
∗
r 〉 contours show

concentrations around the vortex centre. The contours at L∗ = 2.5 in figure 13(d–f )
show some similarity to those at L∗ = 4.0 in figure 13(g–i); their concentrations
around the oppositely signed vortices are connected by contours aligned with the
diverging separatrix (e.g. Hussain & Hayakawa 1987), showing a zigzag pattern, in
conformity to the roll-up motion of shear layers. Yet, there is a discernible difference
between the two cases. For instance, the 〈u∗

r v
∗
r 〉 pattern at L∗ = 4.0 appears similar to

that at L∗ = 1.3, the opposite-signed contours occurring alternately in the streamwise
direction. At L∗ = 2.5, the 〈u∗

r v
∗
r 〉 concentrations, though occurring alternately in

sign, do not appear to cross the centreline, with the negative and positive dominating
above and below the centreline, respectively. The positive 〈u∗

r θ
∗
r 〉 concentrations fail

to show up. The 〈u∗
r v

∗
r 〉, 〈u∗

r θ
∗
r 〉 and 〈v∗

r θ
∗
r 〉 contours at L∗ =6.0 are distinct from the

others, apparently because of the very weak vortex strength.
It is pertinent to point out that for all regimes there is a tendency for the negative

〈u∗
r v

∗
r 〉 to overwhelm the positive at y∗ > 0, since the positive 〈u∗

r v
∗
r 〉 has difficulty

surviving in a region where ∂U
∗
/∂y∗ > 0; by the same token, the positive 〈u∗

r v
∗
r 〉

overwhelms the negative at y∗ < 0, owing to ∂U
∗
/∂y∗ < 0. For 〈v∗

r θ
∗
r 〉, the positive

contours generally dominate at y∗ > 0, since the negative 〈v∗
r θ

∗
r 〉 is suppressed in a

region where ∂Θ∗/∂y∗ < 0; at y∗ < 0 where ∂Θ∗/∂y∗ > 0, the negative dominates.

5. Reynolds stresses and heat fluxes
5.1. Structural average

The coherent contribution to the conventional or time-averaged Reynolds stresses,
temperature variance and heat fluxes can be estimated based on the structural average.
Assuming the phase-averaged structure beginning at the m1 sample (corresponding
to φ = −π) before φ = 0 and ending at the m2 sample (corresponding to φ = π) after
φ = 0, the structural average, denoted by a double overbar, is defined by

q̃ s̃ =
1

m1 + m2 + 1

m2∑
−m1

q̃ s̃,

The value of m1(= m2) is 30 so that the duration (m1 + m2 + 1) corresponds

approximately to the vortex shedding period. The ratio of q̃ s̃ to qs provides a
measure for the transport characteristics of vortical structures.

5.2. Fluctuating velocity and temperature variances

Figure 14 presents the time-averaged, coherent and incoherent Reynolds stresses,
temperature variance and heat fluxes at x∗ = 10. The cross-stream distributions of u∗2

(figure 14a–d), v∗2 (figure 14e–h) and θ∗2 (figure 14i–l) are, in general, reasonably
symmetrical about y∗ = 0, similarly to the case of L∗ = 0. However, there is a significant
difference in the maximum magnitude between the two- and single-cylinder wakes;
the maximum u∗2 (figure 14a) and v∗2 (figure 14e) at L∗ =1.3 are about 0.038 and
0.16, respectively, considerably exceeding their counterparts, 0.027 and 0.07 (Zhou
et al. 2002), respectively, at L∗ = 0. While v∗2 and θ∗2 show a single peak at y∗ = 0, u∗2

displays twin peaks (except at L∗ =2.5), mostly attributed to the two rows of vortices

(figures 7 and 8), which is supported by the twin-peak distribution of ũ∗2 in all cases.
As noted earlier in figure 7(a, d , g, j ), the vortices at L∗ = 1.3 and 4.0 are significantly
stronger than two other cases, thus accounting for larger coherent contribution,
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Figure 14. Time-averaged, coherent and incoherent Reynolds stresses, temperature variance
and heat fluxes at x∗ =10.

i.e. ũ∗2/u∗2, ṽ∗2/v∗2 and θ̃∗2/θ∗2, than at L∗ = 2.5 and 6.0. In all cases, ṽ∗2/v∗2 is

greater than ũ∗2/u∗2 or θ̃∗2/θ∗2, like the case of a single-cylinder wake (Kiya &
Matsumura 1985). There are two causes of this. First, ṽ overwhelms ũ in the near
wake owing to the primarily anti-symmetrical arrangement of the counter-rotating
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vortices. Secondly, the vortical structures are presently detected based on the v-signal,
and the coherent contributions to u2 and θ2 are thus likely to be underestimated.

5.3. Reynolds shear stress and heat fluxes

The cross-flow distributions of u∗v∗ (figure 14m–p) and v∗θ∗ (figure 14u–x are
reasonably anti-symmetrical about y∗ = 0, whereas u∗θ∗ (figure 14q–t) is symmetrical
about y∗ = 0. At L∗ = 1.3, the maximum u∗v∗ (figure 14m), u∗θ∗ (figure 14q) and v∗θ∗

(figure 14u) are 0.003, 0.02 and 0.02, respectively, comparable to those at L∗ =0
(Zhou et al. 2002). It is noteworthy that the coherent contribution at L∗ = 1.3
accounts almost entirely for u∗v∗ for y∗ < 0.5 and remains significant for y∗ > 0.5; in
contrast, this contribution at L∗ = 0 is very small. The result probably arises from
longitudinally less anti-symmetrical ũ∗ṽ∗ contours about the vortex centre at L∗ = 1.3
(figure 13a) than at L∗ = 0. The time-averaged heat fluxes may be ascribed largely

to the coherent component, i.e. ũ∗θ̃∗ or ṽ∗θ̃∗, which may be inferred from the contours
of ũ∗θ̃∗, 〈u∗

r θ
∗
r 〉, ṽ∗θ̃∗ and 〈v∗

r θ
∗
r 〉. The positive ũ∗θ̃∗ (figure 12b) overwhelms the

negative and its maximum is one order of magnitude larger than that of 〈u∗
r θ

∗
r 〉

(figure 13b). The maximum ṽ∗θ̃∗ (figure 12c) also greatly exceeds that of 〈v∗
r θ

∗
r 〉

(figure 13c). Owing to the cancellation of the positive and negative ṽ∗θ̃∗ contours
within the vortex, the ṽ∗θ̃∗ concentration downstream of a vortex (figure 12c), which

is positive above y∗ = 0 and negative below y∗ = 0, accounts for most of ṽ∗θ̃∗. It
may be concluded that, while transporting heat efficiently in both cases, the vortices
transport momentum more effectively at L∗ = 1.3 than at L∗ =0.

The maximum u∗v∗ at L∗ = 2.5 is about the same as at L∗ = 1.3, though the

maximum u∗θ∗ and v∗θ∗ are slightly larger. However, ũ∗ṽ∗/u∗v∗, ũ∗θ̃∗/u∗θ∗ and

ṽ∗θ̃∗/v∗θ∗ at L∗ = 2.5 are considerably less than at L∗ = 1.3, which is expected because
of the weak vortex strength at this L∗. At L∗ = 4.0, u∗v∗, u∗θ∗ and v∗θ∗, along with
their coherent contributions, show more similarity to the case of L∗ =1.3 than to
that of L∗ = 2.5, perhaps because of a vortex strength approaching that at L∗ = 1.3.
Note that the maximum u∗θ∗ and v∗θ∗ are largest of all. Since the vortex strength at
L∗ = 6.0 is weakest, their coherent contribution to u∗v∗, u∗θ∗ and v∗θ∗ is essentially
negligible.

It is worth pointing out that the contours of 〈u∗
r θ

∗
r 〉 and 〈v∗

r θ
∗
r 〉 at L∗ = 4.0 display a

pattern in consistence with the shear-layer roll-up in the near wake. A similar pattern
is evident at L∗ = 2.5, but absent at L∗ =1.3 and 6.0. The observation corroborates
our earlier proposition that, unlike the cases of L∗ = 1.3 and 6.0, the vortex formation
is incomplete at x∗ = 10 for L∗ =1.3 and 2.5.

5.4. Streamwise evolution

In view of the fact that q̃ s̃/qs depends on y∗ as well as x∗, an averaged contribution
at a fixed x∗ from the coherent structure is defined, namely,

(q̃ s̃/qs)m =

∫ Y ∗

−Y ∗
|q̃ s̃| dy∗

/ ∫ Y ∗

−Y ∗
|qs| dy∗,

where Y ∗ = 5 denotes the position where |qs| is considered to be zero. The calculated
(q̃ s̃/qs)m for x∗ =10, 20 and 30 is given in table 4. A number of observations can be
made based on the data.

First, (q̃ s̃/qs)m is internally consistent with the observations from qs, q̃s̃ and 〈qrsr〉
in figure 14. For instance, (ṽ2/v2)m is larger than (ũ2/u2)m or (θ̃2/θ2)m. Secondly,
(q̃ s̃/qs)m at L∗ =1.3 is comparable at x∗ = 10 to that at L∗ = 4.0. However, (q̃ s̃/qs)m
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L∗ 1.3 2.5 4.0 6.0

x∗ 10 20 30 10 20 30 10 20 30 10 20 30

(ũ2/u2)m(%) 50 14 9 25 30 18 60 50 37 5 5 6

(ṽ2/v2)m(%) 71 31 19 27 48 29 74 72 64 13 5 1

(θ̃ 2/θ 2)m(%) 25 5 3 9 8 4 38 34 26 3 3 2

(ũṽ/uv)m(%) 60 21 6 34 45 23 71 68 66 4 2 1

(ũθ̃/uθ )m(%) 137 43 15 23 118 13 115 130 146 3 11 10

(ṽθ̃/vθ )m(%) 74 31 15 33 38 23 83 78 64 14 5 1

Table 4. Averaged contributions from the coherent structure to Reynolds stresses,
temperature variance and heat fluxes.

decays rapidly at L∗ =1.3, but very slowly at L∗ = 4.0. For example, (ṽ2/v2)m drops by

73 % from x∗ = 10 to 30 at L∗ = 1.3, but only 13 % at L∗ = 4.0. The quantity (ũθ̃/uθ )m
at L∗ = 4.0 grows all the way through up to x∗ = 30. The disparity is not unexpected in
view of their distinct vortex decay rates (figure 7a–c, g–i). Thirdly, (q̃ s̃/qs)m at L∗ = 2.5

is well below that at L∗ =4.0 for all stations; for instance, its (ṽθ̃/vθ )m is not more than
half of that at L∗ = 4.0. Furthermore, (q̃ s̃/qs)m increases considerably from x∗ = 10

to 20 at L∗ =2.5, but varies little at L∗ =4.0. The different behaviours of (q̃ s̃/qs)m
point to a difference in the initial conditions of the vortex formation between L∗ = 2.5
and 4.0. Note that as a result of the slow decay, (q̃ s̃/qs)m at either L∗ = 2.5 or 4.0
becomes larger at x∗ = 30 than at L∗ =1.3. It is noteworthy that (ũṽ/uv)m at L∗ = 2.5

or 4.0 as well as at L∗ = 1.3 is comparable in magnitude to (ṽθ̃/vθ )m, in contrast with

the L∗ =0 case where (ũṽ/uv)m is substantially smaller than (ṽθ̃/vθ )m (Zhou et al.
2002). This implies that the vortices in a two-tandem-cylinder wake can transport
momentum as effectively as heat. The implication is supported by the estimate of the
turbulent Prandtl number Prt ≡ (uv/∂U/∂y)/(vθ/∂Θ/∂y), which is 2.2, 1.0, 1.1 and
0.5 at x∗ =10 for L∗ = 1.3, 2.5, 4.0 and 6.0, respectively. The corresponding |ω̃∗

max | is
1.18, 0.37, 0.83 and 0.24, respectively. The turbulent Prandtl number seems correlated
to the vortex strength, the larger vortex strength corresponding to a higher Prandtl
number. The vortex strength at L∗ = 6.0 is comparable with that at x∗ =40 in a
single-cylinder wake (Antonia, Zhou & Matsumura 1993). The corresponding Prandtl
numbers are almost the same. The observation is reasonable since the vortex tends
to retain heat, implying small heat transport (that is, the strong vortex is more likely
to lead to a higher Prandtl number); heat transport out of the vortex is largely

owing to the incoherent motion. Finally, (q̃ s̃/qs)m at L∗ = 6.0 is very small, not
exceeding 15 %, even at x∗ =10 and becomes essentially negligible for x∗ � 20 owing
to almost vanished vortical structures (figure 7k, l). In the co-shedding regime, the
turbulent wake, including vortices, generated by the upstream cylinder impinges upon
the downstream cylinder. As a result, the boundary layer around the downstream
cylinder is probably turbulent, which may postpone the flow separation from the
cylinder and subsequently result in relatively weak vortices. Therefore, the coherent
contribution to qs is small. The observations essentially echo the streamwise evolution
of vorticity contours (figure 7), reconfirm quantitatively the distinct evolution of the
coherent structures and illustrate an important difference between the cases.



Flow structure, momentum and heat transport 39

6. Different initial conditions and their effects on heat transport
6.1. Difference in reattachment between L∗ = 2.5 and 4.0

It is the very different behaviours of the shear layers separating from the upstream
cylinder that divide a two-tandem-cylinder wake into three distinct regimes. The
results in figures 7–15 and table 4 demonstrate a marked difference between the flow
structures at L∗ = 2.5 and 4.0, each representing one of the two categories of the
reattachment regime. The observation, along with the distinct St–Re relationships
in the two flow categories reported by Xu & Zhou (2004) point to an important
difference in the initial conditions of the vortex formation between the categories. In
order to clarify this difference, the laser-induced fluorescence (LIF) flow visualization
was conducted at Re = 7000 for L∗ = 2.5 and 4.0, respectively, to capture the shear-
layer reattachment on the downstream cylinder. A pin-hole of 0.5 mm diameter was
drilled at about 45◦ from the leading stagnation point at the mid-span of the upstream
cylinder tube. Smoke, generated from paraffin oil, of a particle size of about 1 µm
in diameter was released from the pin-hole, thus providing seeding for flow above
the centreline. Assuming approximate symmetry of shear layers about the centerline,
no attempt was made to seed the flow on the other side of the centreline. A Dantec
standard PIV2100 system was used to capture the flow images. More details of the
LIF measurements were given in Cheng, Zhou & Zhang (2003). About 500 images
were obtained for each L∗.

Figure 15 shows that reattachment of the shear layer from the upstream cylinder
causes disturbance to the boundary layer around the downstream cylinder, which
appears turbulent. An analysis of the images shows a difference in reattachment
between the two cases. The shear layer separating from the upstream cylinder
is more likely to reattach on the downstream side of the downstream cylinder
at L∗ = 2.5 (figure 15a), but on the upstream side at L∗ = 4.0 (figure 15b). The
different initial conditions are also reflected in the resultant drag coefficient of the
two cylinders, estimated based on the cross-flow distributions of U, u2 and v2 (Antonia
& Rajagopalan 1990) at x∗ =10, which is 0.50 at L∗ =2.5 and 0.80 at L∗ = 4.0 (0.83 at
L∗ = 1.3 and 1.34 at L∗ = 6.0). Note that the fluid between the cylinders in this regime
is relatively stagnant. At small L∗ (say 2 to 3), the reattachment on the downstream
side of the cylinder implies little room for the boundary layer to grow. Consequently,
vortices formed behind the downstream cylinder are so weak that they continue to
grow downstream under the effect of mean shear, as observed in figure 7(d, e). At
large L∗ (say 3 to 5), the reattachment on the upstream side of the cylinder allows
the boundary layer around the cylinder to develop before separation. Naturally, the
vortices (e.g. figure 7g) formed behind the downstream cylinder are stronger than
at small L∗ (e.g. figure 7d). Nevertheless, these vortices are still considerably weaker
than at L∗ = 0 (cf. figure 4a in Zhou et al. 2002) and thus continue to gain strength
downstream under the effect of mean shear, but their relatively large initial strength
should allow them to reach the maximum strength at a smaller x∗ than at L∗ = 2.5.
The difference in the shear-layer reattachment location could also have an effect on
the flow-separation location from the downstream cylinder, which subsequently affects
the Strouhal number, the vortex strength and drag coefficient. It should be cautioned
that more experimental or numerical data are needed to verify the above discussion.

6.2. Heat transport

The characteristics of heat transport can be examined by means of the coherent
heat flux vector q̃∗ =(ũ∗θ̃∗, ṽ∗θ̃∗) (figure 16b) and the incoherent heat flux vector
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(a)

(b)

Figure 15. LIF flow visualization. (a) L∗ = 2.5; (b) L∗ = 4.0.
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Figure 16(a). For caption see page 43.

q̃∗
r = (〈u∗

r θ
∗
r 〉, 〈v∗

r θ
∗
r 〉) (figure 16c) along with the coherent velocity vector Ṽ

∗
= (U

∗
+

ũ∗ − U ∗
c , ṽ∗) (figure 16a), where Ṽ

∗
is viewed in a reference frame translating at Uc.

The arrow and number near the upper left-hand corner in figure 16 indicate the
correspondence between the length and magnitude of the reference vector.

For all L∗ values, q̃∗ within vortices is largely aligned with Ṽ
∗
, and barely discernible

near the saddle points, suggesting that the coherent motion contributes little to net
heat transport out of vortices. The behaviours of q̃∗ at L∗ = 1.3 and 4.0 are similar
to each other, but appear distinct from those at L∗ = 2.5 and 6.0. The difference is
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Figure 16(b). For caption see facing page.

apparently linked to the fact that the former are characterized by a vortex strength
significantly higher than the latter. As evident in the vector plot, the maximum
magnitude of q̃∗ at L∗ = 1.3 or 4.0 exceeds 3 times that at L∗ = 2.5, and more when
compared with the case of L∗ = 6.0. The disparity is approximately commensurate
with that between the vortex strengths (table 3) or that between the lengths of the
effective vorticity flux density vectors (figure 10). Note that at L∗ = 1.3 and 4.0, q̃∗

in the alleyway between vortices is in a direction opposite to Ṽ
∗

and points towards
the free stream, apparently arising from the entrainment of cold fluid from the free
stream into the wake by vortices, as inferred from the �∗ + θ̃∗ or θ̃∗ contours in § 4.
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Figure 16. (a) Phase-averaged coherent velocity vectors Ṽ
∗

in a reference frame moving at
Uc . (b) Phase-averaged coherent heat flux vectors q̃∗. (c) Phase-averaged incoherent heat flux
vectors q̃∗

r at x∗ = 10. The broken line indicates the diverging separatrix.

The incoherent heat flux vectors, q̃∗
r (figure 16c), are totally different from q̃∗. At

L∗ = 1.3, those relatively long within vortices generally point upstream across the
vortex border; the corresponding 〈u∗

r θ
∗
r 〉 component is negative, that is, ur > 0 tends

to correspond to θr < 0, ur < 0 corresponding to θr > 0. Furthermore, the vectors of
appreciable length along the flow direction cross the vortex border downstream, which
is probably ascribed to the partial assimilation of the cold fluid, drawn from the free
stream by the vortex, into the vortex, i.e. θr < 0 and ur < 0. It may be inferred from
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the observation that the incoherent motion is mainly responsible for the net heat
transport out of vortices, closely resembling that at L∗ = 0 (Matsumura & Antonia
1993).

The vectors at L∗ = 4.0 (figure 16c) behave differently. Other than those crossing
the vortex border and pointing upstream (or downstream) as at L∗ = 1.3, long vectors
pointing upstream are seen crossing the vortex border towards the free stream. For
example, at φ = 0 ∼ 1 above the centreline, the 〈v∗

r θ
∗
r 〉 component of those upward-

pointing vectors is positive, that is, vr > 0 tends to correspond to θr > 0 and vr < 0 to
θr < 0. This means that the incoherent motion either acts to transport heat out of the
vortex or brings cold fluid from the free stream into the vortex. The latter scenario is
more likely in view of the shear-layer roll-up motion at this L∗, which is evident in
the contours of 〈v∗

r θ
∗
r 〉 (figure 13i). In comparison, this phenomenon is neither evident

at L∗ = 1.3 nor at L∗ =0, where the vortices have been completely formed at x∗ = 10
and the shear-layer roll-up motion is unlikely to be vigorous.

The q̃∗
r pattern at L∗ = 2.5 exhibits more similarity to that at L∗ = 4.0 than at

L∗ = 1.3, which is not unexpected because of the same reattachment regime involved
for L∗ = 4.0 and 2.5. However, there is appreciable difference; the long vectors crossing
the vortex boundary and pointing upstream at L∗ = 4.0 (or 1.3) are not evident at
L∗ = 2.5. Furthermore, the vectors downstream of a vortex are directed towards the
free stream at L∗ = 2.5. The results suggest that the net heat loss out of vortices is
predominantly attributed to 〈u∗

r θ
∗
r 〉 at L∗ = 4.0, but to 〈v∗

r θ
∗
r 〉 at L∗ = 2.5.

At L∗ = 6.0, the vectors, q̃∗
r , tend to point upstream and towards the free stream all

over the place, showing little correlation with vortices, conforming to the very weak
vortices in the co-shedding regime.

The vortex pattern and heat transport characteristics at x/d = 10 are summarized
in figure 17 based on the plots of Ṽ

∗
, q̃∗ and q̃∗

r for the four flow categories. In
all cases, the wake is characterized by a single vortex street. For convenience, the
discussion is mainly focused on vortex A in figure 17. At L∗ = 1.3 (figure 17a), cold
fluid is drawn into the wake from free stream 1 under the combined coherent motions
of vortices A and C via the alleyway downstream of vortex A. Part of the cold fluid
is assimilated into the quadrants between I and IV owing to the incoherent motion.
The coherent motion contributes little to the net heat transport out of the vortex.
Most of heat is lost from quadrants II and III of vortex A owing to the incoherent
motion. The overall picture is largely similar to a single-cylinder case (Matsumura &
Antonia 1993).

Heat transport at L∗ =4.0 (figure 17c) mimics that at L∗ = 1.3, except that there
is considerable incoherent heat flux in quadrant II directed upstream and towards
the free stream, which is linked to cold fluid entrainment into the vortex under the
shear-layer roll-up motion.

Heat transport at L∗ = 2.5 (figure 17b) is significantly different from that at L∗ = 1.3
or 4.0. With a less coherent vortex, there is relatively weak engulfment of cold fluid
from the free stream into the wake, resulting in the weak coherent heat flux in the
alleyway downstream of vortex A. Again, the incoherent heat flux plays a dominant
role in the net heat transport out of vortices. However, the incoherent heat flux
out of quadrants II and III of vortex A appears to predominate because of the
considerably less cold fluid assimilated into quadrants I and IV under the incoherent
motion.

As L∗ increases to 6.0, the coherent heat flux (figure 17d) is very weak and heat
transport, owing to the incoherent heat flux, out of vortex A from quadrants I, II and
III, displays similarity to the case at L∗ = 2.5.
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Figure 17. Summary sketch of the vortex pattern and transport. (a) ‘Extended body’ regime:
L∗ =1.3; (b) shear layer reattachment on the after-body of the downstream cylinder: L∗ = 2.5;
(c) shear layer reattachment on the front-body of the downstream cylinder: L∗ =4.0;
(d) co-shedding regime: L∗ = 6.0.

7. Conclusions
The heat and momentum transport behind two tandem cylinders, with the upstream

one slightly heated, have been measured using a three-wire probe in conjunction with
a cross-wire for four different L∗ ratios, i.e. 1.3, 2.5, 4.0 and 6.0, each representing
one typical flow structure of this flow. The phase-averaged sectional streamlines and
vorticity contours display one single vortex street, irrespective of the different flow
regimes. However, there is a marked difference in the detailed flow structure, its
downstream development, momentum and heat transport between the four cases,
which is linked to distinct initial conditions in the vortex formation.

At L∗ = 1.3, the free shear layers separated from the upstream cylinder overshoot
the downstream cylinder and roll up to form a single vortex street. The effect of the
downstream cylinder is likely to resemble that of a short splitter plate, which does
not inhibit the vortex formation from the upstream cylinder. The vortex strength at
x∗ =10 is about the same as its counterpart behind an isolated cylinder. However,
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the presence of the downstream cylinder appears to accelerate the streamwise decay
of vortices. The effective vorticity flux density vectors indicate vigorous interactions
between adjacent oppositely signed vortices, resulting in a 75 % drop in the maximum
vorticity ω̃∗

max from x∗ = 10 to 20, appreciably higher than its counterpart (58 %) at
L∗ = 0.

In the reattachment regime, it is found that at L∗ = 2.5 the shear layer from the
upstream cylinder is more likely to reattach on the downstream side of the downstream
cylinder, leaving little room for the boundary-layer growth. Subsequently, vortices after
separation from the cylinder should initially be very weak. This is supported by the
small vortex size and ω̃∗

max at x∗ = 10, which is only 30 % of that at L∗ = 1.3. The
weak vortical structures correspond to weak interactions between vortices and hence
a slow decay rate, which is confirmed by less vigorous interactions, compared with
L∗ = 1.3, between the effective vorticity flux density vectors of adjacent oppositely
signed vortices. As a matter of fact, the vortical motion continues to grow, with its
ω̃∗

max increasing from x∗ = 10 to 20, probably under the roll-up effect of the shear
layer in the wake. At x∗ = 30, ω̃∗

max at L∗ = 2.5 is almost the same as at L∗ = 1.3.
As L∗ is increased to 4.0, the shear layer is observed to reattach on the upstream

side of the downstream cylinder. As such, there is room for the boundary layer to
develop before separation from the cylinder. Naturally, the vortex strength at L∗ = 4.0
is expected to be enhanced, compared with that at L∗ =2.5, but should not attain
the level at L∗ = 1.3; ω̃∗

max at x∗ = 10 exceeds twice that at L∗ = 2.5, but reaches only
70 % of that at L∗ =1.3. The vortex decay rate atL∗ = 4.0 is as slow as at L∗ = 2.5,
giving rise to its ω̃∗

max at x∗ = 30, doubling its counterpart at L∗ = 1.3.
In the co-shedding regime, i.e. L∗ = 6.0, vortices are characterized by a large size

but small strength, its ω̃∗
max at x∗ = 10 being only 20 % of that at L∗ =1.3. In this

regime, the vortices generated by the upstream cylinder impinge upon and interact
with those separated from the downstream cylinder. Such an interaction is likely to
accelerate the decay of the vortex street, which virtually vanishes by x∗ = 30.

The coherent contribution from vortices to the fluctuating velocity and temperature
variances, the Reynolds shear stress and heat fluxes are examined. This contribution
strongly depends on L∗ or the flow structure and is to some extent commensurate
with the vortex strength. At L∗ = 1.3, the averaged coherent contribution at x∗ = 10
is very significant, e.g. up to 50 %, 70 % and 25 % for u2, v2 and θ2, respectively.
The contribution drops rapidly with decaying vortex strength when x∗ increases. This
contribution at L∗ = 2.5 is less significant than at L∗ = 1.3, accounting for 25 %, 27 %
and 9 % of u2, v2 and θ2, respectively. However, the contribution to u2, v2 increases
to 30 % and 48 %, respectively, from x∗ = 10 to 20, internally consistent with the
slightly increased vortex strength (figure 7d, e). As L∗is increased to 4.0, the coherent
contribution is greatly enhanced, reaching 60 %, 74 % and 38 % at x∗ = 10 to u2, v2

and θ2, respectively, comparable with its counterpart at L∗ = 1.3. Yet, unlike the case
of L∗ = 1.3, the contribution decays slowly downstream, as does the corresponding
vortex strength. At L∗ = 6.0, the contribution is negligibly small because of the very
weak vortex strength. It has been reported in an isolated cylinder (Matsumura &
Antonia 1993) that the vortices transport heat more efficiently than momentum. This
difference diminishes at L∗ = 1.3 where the averaged contribution to uv and vθ is
60 % and 74 %, respectively, at x∗ = 10, as versus 48 % and 84 % at L∗ = 0 (Zhou
et al. 2002). In the reattachment regime, however, the vortices appear transporting
momentum almost as efficiently as heat. The averaged coherent contribution to uv

and vθ at x∗ = 10 is 34 % and 33 % at L∗ =2.5 and 71 % and 83 % at L∗ = 2.5,
respectively. In this regime, the contours of ũṽ (figure 12d, g) are longitudinally less
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antisymmetrical about the vortex centre, probably under the effect of the shear-layer
roll-up motion, thus contributing more to uv.
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