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Fourier-Based Shape Servoing: A New Feedback

Method to Actively Deform Soft Objects into

Desired 2D Image Contours
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Abstract—This paper addresses the design of a vision-based
method to automatically deform soft objects into desired 2D
shapes with robot manipulators. The method presents an in-
novative feedback representation of the object’s shape (based on
truncated Fourier series) and effectively exploits it to guide the
soft object manipulation task. A new model calibration scheme
that iteratively approximates a local deformation model from
vision and motion sensory feedback is derived; this estimation
method allows to manipulate objects with unknown deformation
properties. Pseudocode algorithms are presented to facilitate the
implementation of the controller. Numerical simulations and a
experiments are reported to validate this new approach.

Index Terms—Shape control, soft objects, robots manipulators,
adaptive control, visual servoing.

I. INTRODUCTION

THE feedback control of soft object deformations has

many promising applications in growing fields such as

medical robotics (e.g. manipulating soft tissues [1], [2]),

automated food processing (shaping compliant food materials

[3], [4]), 3C industry (positioning cables [5], [6]), garment

industry (folding fabrics [7]), to name a few cases. To servo-

control deformations, a robotic system must continuously

measure the object’s configuration, typically with a vision

sensor, and use its feedback data to compute a trajectory

that deforms the object into a desired shape. We refer to this

type of manipulation task as shape servoing, an approach that

contrasts with standard (fixed-camera) visual servoing [8] in

that the servo-loop is formulated in terms of the object’s shape

and not in terms of the robot’s pose.

Recently, in [9]–[11] we proposed methods to automati-

cally position deformable point features of objects towards

desired targets (this positioning problem was first addressed

in [12] and later extended in [13]–[15]). These approaches

can control deformations in a model-free manner, however,

they can only be used with structured objects that have a

well-defined texture. Furthermore, when the objective is to

deform the body into a desired image contour, these methods

may not perform well as they are designed but to control

displacements of individual point features. The design of

explicit shape servo-controllers present many challenges, such

as the characterisation of the object’s shape as a feedback
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signal, the limited number of manipulation points to enforce a

desired shape, and the estimation of the deformation properties

to coordinate the robot’s motion with the shape measurements.

Our aim in this paper is to develop a new method to cope with

the above-mentioned issues.

There are some works that have previously addressed shape

control. For example, the development of a forming machine

for food dough is presented in [16]; this image-guided system

can predict deformations of rheological materials while con-

trolling its shape. A method to estimate and control contours

of soft objects with a multiple robotic fingers is proposed

in [17]; however, this work requires objects to have a well-

structured (gridded) surface. An approach to control the profile

of an elastic body by several manipulators is reported in [18];

this work only conducted simulations. In [19], a method to

position fabrics into image profiles is presented; the same

group developed in [20] a planning algorithm for robotic

laundry. A method to manipulate extensible fabrics and ropes

is presented in [21]; this model-based method approximates

the deformation properties with a diminishing rigidity model.

There are some relevant visual servoing works that also use

2D contours. An early example is given in [22], where polar

coordinates are used for representing the observed shape and

to compute the controller. Other methods are given e.g. in [23]

(where a controller based on a correspondence/collineation

algorithm is proposed), in [24] (where the controller is com-

puted with image moments of contours), or in [25] (where

the object’s boundaries are approximated with polynomials).

Note, however, that these visual servoing methods do not

address shape control of deformable objects. Its objective is

(generally) to match the target and observed object’s contours

by performing rigid motions on a robotic camera.

This paper presents a new feedback method to automatically

deform soft objects into desired 2D image contours. The ob-

ject’s shape is characterised with a compact vector of Fourier

coefficients, a useful approach that enables the specification of

the deformation tasks with frequency terms and not only with

displacements (as with traditional methods [12]). To deal with

the input-output coordination problem, a model calibration

scheme that iteratively estimates the deformation model from

sensor feedback is derived; this algorithm allows to manipulate

objects without having to compute its full deformation model

beforehand1. We provide several algorithms to facilitate the

1Note that most previous works (e.g. [12]–[21]) are model-based, i.e. the
deformation model must be computed prior the active control task
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Fig. 1. Conceptual representation of the object’s deformations.

implementation of the controller. Numerical simulations and

experiments are presented to validate the method.

Compared with our previous works [9]–[11], this paper

has the following original contributions: (1) it introduces

a novel feedback characterisation of deformable shapes—

based on truncated Fourier series—and effectively utilises it to

perform closed-loop manipulation of soft objects (to the best

of our knowledge, this innovative shape vector has never been

used for controlling deformable shapes); and (2) it presents

a new estimation–recalibration algorithm that continuously

approximates the model with multiple sensory data points (col-

lected along the trajectory) and not just with an instantaneous

measurement as in our previous work (this new algorithm is

more robust to the noisy image measurements that are common

in most visual servo applications).

In the rest of this paper, Section II introduces the problem’s

preliminaries, Section III describes the new method, Section

IV presents the results, and Section V gives final conclusions.

II. PRELIMINARIES

A. Continuum Deformation Model

Let us introduce m to model the rest position of a point,

given in material coordinates over the object domain Π. When

an external force φ is applied, the point m is displaced to a

different position p(m); the relative deformation is represented

by the displacement vector field x(m) = p(m) − m. The

object’s potential energy satisfies the energy balance [26]

W =
1

2

∫

Π

E(m) : Σ(m) dm−

∫

Π

φ · x(m) dm (1)

where E and Σ represent the elastic strain and stress tensors,

respectively, and (:) denotes the double tensor contraction.

The left-hand side term in (1) represents the stored energy;

the right-hand side term represents the externally applied

work. For deformable objects, the shape is determined by the

following static equilibrium equation: (see Fig. 1)

∂W/∂x = 0 (2)

B. Problem Formulation

Consider a robotic system manipulating a soft object. Along

this work, we denote by r ∈ R
M the vector of M manipulation

coordinates which have a measurable influence in the object’s

deformation. Typically, r may contain the robot’s plane mo-

tions that are parallel to the camera plane. Depending on the

camera/grasping setup, the “depth” motion and/or a gripper

rotation may additionally be considered. To derive our new

method, the following set-up assumption must be made:2

Assumptions. Consider the following task assumptions:

a) The robot manipulator is kinematically controlled, i.e.

its servo-controller renders stiff behaviours and precisely

sets r(t) at any time instant t.
b) The soft object is rigidly grasped by the manipulator

without any loose contact during the whole task.

c) The object is manipulated with quasi-static robot mo-

tions such that its shape is determined by the potential

energy terms only3.

A static camera system is used to continuously observe

the object’s shape, here represented with the parametric curve

c(ρ) = [u(ρ), v(ρ)]
⊺

, for u, v as the image coordinates, and ρ
as the parametric domain. The curve c(ρ) is computed relative

to a visible origin point y that can physically represent e.g.

the manipulator’s grasping point or a static fixture. Note that

the analytical expression of c(ρ) is not known, this curve only

represents the captured 2D image contour, see Fig. 2.

Problem statement. Given a desired contour cd(ρ), design

a model-free method (i.e. without any knowledge of the

equilibrium model (2)) to automatically deform the object such

that the feedback shape c(ρ) approximates cd(ρ).

III. METHODS

A. Feedback Shape Parameters

Since no information is available about the object’s model,

we set the range of the contour’s parameter to ρ = [0, 2π), and

approximate c(ρ) with the following truncated Fourier series:

c(ρ) =

N∑

j=1

[
aj bj
cj dj

] [
cos(jρ)
sin(jρ)

]
+

[
e
f

]
(3)

for N > 0 as the number of harmonics taken into account,

and aj , bj , cj , dj , e, f as the Fourier coefficients. Note that (3)

can be linearly parametrised as

c(ρ) =

N∑

j=1

[
cos(jρ) sin(jρ) 0 0

0 0 cos(jρ) sin(jρ)

]

︸ ︷︷ ︸
Fj

zj +

[
e
f

]

= G(ρ)s (4)

where the vector s = [z⊺1 , . . . , z
⊺
N , e, f ]

⊺
∈ R

P , for P = 4N+
2 and z

⊺
j = [aj , bj , cj , dj ], groups the shape parameters of

the contour, and G(ρ) = [F1, . . . ,FN , I] ∈ R
2×P represents

a regression-like matrix. Using L sample data points of the

parameter ρ and its corresponding image points on the contour

c(ρ), we construct the following “long” structures:

~c =
[
c(ρ1)

⊺ · · · c(ρL)
⊺
]⊺
∈ R

2L (5)

~G =
[
G(ρ1)

⊺ · · · G(ρL)
⊺
]⊺
∈ R

2L×P (6)

2If these are violated: a) the object may be wrongly deformed, b) our new
algorithm may be unstable, c) the deformation model may not be estimated.

3Note that for slow motions, the object’s inertial, rheological and viscous
effects are minimal, therefore, these can be safely neglected for our model.
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Fig. 2. Conceptual representation of the soft object manipulation set-up.

The vector of shape parameters s is computed from sensor

feedback at every iteration as follows:

s =
(
~G⊺ ~G

)
−1

~G⊺~c (7)

To invert the matrix ~G⊺ ~G, a sufficient number of data points

ρ1, . . . , ρL must be used such that 2L > P , see e.g. [27].

B. Approximation of the Local Deformation Model

The shape parameters s computed with the Fourier approx-

imation (3) can be used to reconstruct the object’s contour c

with the parameter ρ = [0, 2π). However, this static relation

only satisfies for the specific position r of the robot where the

vector s is computed. By keeping the number of harmonics

constant during the manipulation task, it is reasonable to

expect that a small change in the robot’s position produces a

small change in the shape parameters. From this observation,

the position–shape relation is locally approximated (around

the current operating point, assumed to be regular and with

no singular configurations) with the following model:

δs = Qδr (8)

where Q ∈ R
P×M represents a constant matrix modelling the

relative deformation of the object during manipulation, and the

vectors δs = s− s and δr = r− r denote the relative change

of the shape parameters and the robot position, respectively,

with respect to the initial configurations s and r.

To deform the object into a target shape, our method

does not estimate the full deformation model. Instead, it

continuously computes local approximations of (8), that are

updated as the object’s configuration evolves from one shape

into another. To this end, let us first denote by δsi the ith scalar

element of the vector δs, and by q
⊺
i ∈ R

M ith row-vector of

the matrix Q, such that

δsi = δr⊺qi (9)

To estimate the object’s model, we collect T > M sampling

data points of δsi and δr around the operating point and group

them into the following terms:

σi =



δsi(t1)

...

δsi(tT )


∈ R

T , R =



δr(t1)

⊺

...

δr(tT )
⊺


∈ R

T×M (10)

The ith energy function is computed at the time instant t as

Ji(t) =
(
‖δr(t)⊺q̂i − δsi(t)‖

2
+ ‖Rq̂i − σi‖

2
)
/2 (11)

where q̂i ∈ R
M denotes an estimation of qi. The left term on

(11) represents the model error for the current (time changing)

measurement and the right term represents the error for the

old (static) data points. The purpose of the functional Ji is

to quantify the accuracy of the estimated model (9); the error

for all the parameters can be computed as J =
∑P

i=1 Ji. The

estimated vector q̂i is updated according to the rule

˙̂qi = −γ
∂Ji
∂q̂i

⊺

= −γH⊺

[
Rq̂i − σi

δr⊺q̂i − δsi

]
(12)

for γ > 0 as a tuning gain, and the matrix H ∈ R
(T+1)×M

constructed as follows:

H =
[
δr(t1) · · · δr(tT ) δr

]⊺
=

[
R⊺ δr

]⊺
(13)

The implementation of the update rule is described in Algo-

rithm 1, where ε represents a scalar to control the algorithm’s

accuracy, and q̂i is initialised with a null vector since the

model is unknown.

Proposition. Consider that locally, the model (8) closely

approximates the object’s relative deformations. For a number

M of linearly independent displacement vectors δr(tk) such

that the matrix H⊺ has full row-rank, the update rule (12)

asymptotically minimises the error ∆qi = q̂i − qi.

Proof: Consider the quadratic energy function

Vi = ∆q
⊺
i ∆qi/(2γ) (14)

Using the expressions σi = Rq and (9), the time-derivative

of Vi along trajectories of (12) satisfies

V̇i = ∆q
⊺
i
˙̂qi/γ = −∆q

⊺
i H

⊺

[
Rq̂i −Rqi

δr⊺q̂i − δr⊺qi

]

= −∆q
⊺
i H

⊺
[
R⊺ δr

]⊺
∆qi = −∆q

⊺
i H

⊺H∆qi

≤ 0 (15)

and since H⊺ has full row-rank, thus H⊺H is positive-definite.

This proves the asymptotic stability of the error ∆qi [28].

Algorithm 1 UpdateRule(ε)

1: if estimator is uninitialised then

2: Initialise r̄← r, s̄i ← si, q̂i ← 0M

3: end if

4: Compute relative vectors δr← r− r̄, δsi ← si − s̄i
5: Compute energy functional Ji ←(11)

6: if Ji > ε then

7: Update deformation model d
dt q̂i ←(12)

8: end if

9: return q̂i

C. Iterative Model Recalibration

Accurate deformation models are hard to compute due to

its high dimension, nonlinear behaviour, and configuration-

dependent properties. The full characterisation of a soft body

typically requires to evaluate the deformation response around

the desired operating range (see e.g. [29]), which may be
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Fig. 3. Representation of the local regions computed with the T data points.

impractical to do in applications where (a-priori) testing defor-

mations cannot be performed as they may damage the object,

e.g. when manipulating tissues.

As a solution to this problem, the proposed method com-

putes a local deformation model and recalibrates it at different

local regions. It first computes an initial approximation of (8)

around the starting configuration Oj , then, as the robot moves

into a new configuration Oj+1, the model is recalibrated based

on new data. The advantages of using this approach are: (1)

its computational burden is considerably smaller (and thus

suitable for real-time applications) compared to the full model

identification since only a simple linear model needs to be

computed, and (2) it robustifies the estimation since the model

is updated with new feedback data collected around the new

configuration.

The proposed recalibration scheme is given in pseudocode

in Algorithm 2, and is depicted in Fig. 3. In this imple-

mentation, the arbitrary scalar α determines the separation

between each sampling points; this separation is evaluated by

computing the magnitude ‖d‖ between the positions δr(t1)
and δr(t2). The point o represents the midpoint of the T
collected data points δr(tk), and is used to define the centre of

a ball with radius Ω where the model is assumed to be valid

(in our study, we determined these values experimentally).

Algorithm 2 ModelRecalibration(T, α)

1: Initialise δrold ← δr(tk−1), pts← 0
2: while pts < T do

3: Compute distance d← δr(tk)− δrold

4: if ‖d‖ > α then

5: Stack data R← δr(tk), σi ← δsi(tk)
6: Update δrold ← δr(tk), pts← pts+ 1
7: end if

8: end while

9: Compute midpoint o← 1
T

∑T

k=1 δr(tk)
10: return R,σi

D. Shape Servo-Controller

Let us first represent the desired parametric contour cd(ρ)
as a “long” vector of L sample points

~cd =
[
cd(ρ1)

⊺ · · · cd(ρL)
⊺
]⊺
∈ R

2L (16)

Then, by considering the same number N of harmonics as in

(4), the desired shape vector is computed as

sd =
(
~G⊺ ~G

)
−1

~G⊺~cd (17)

The shape error ∆s = s−sd represents the difference between

the Fourier coefficients of the feedback and target shapes.

This P -dimensional error is directly used to drive the motion

of the manipulator such that sd is approximated by the ob-

served object at the steady-state. This Fourier-based controller

contrasts with previous methods, e.g. [9]–[12], in that the

latter can only perform manipulation tasks represented with

point displacements, whereas this new frequency-motivated

approach provides more flexibility in the task specification.

The control law is designed using a Jacobian-based ap-

proach [30]. The matrix Q represents the Jacobian matrix,

which is constructed with the P adaptive vectors

Q̂ =
[
q̂1 · · · q̂P

]⊺
∈ R

P×M (18)

The velocity control input of the robot is computed as follows:

ṙ = −λ
(
Q̂⊺Q̂

)
−1

Q̂⊺ sat(∆s) (19)

for λ as a feedback gain, and sat(·) : RP 7→ R
P as a vectorial

saturation function. It is well-known that the overdetermined

controller (19) (with more error outputs than controllable

inputs) cannot guarantee global asymptotic stability of ‖∆s‖;
this vector will typically converge to a steady state error whose

magnitude depends on the feasibility of the target. For more

information about overdetermined visual servoing, we refer

the reader to [31] for a classical stability analysis or to [32]

for an experimental performance evaluation.

The objective of sat(·) is to guide the system towards the

target through incremental errors that can be locally achieved

without converging to an intermediate local minimum. A

simple test to determine the feasibility of a local target is

to evaluate ‖(Q̂⊺Q̂)−1Q̂⊺ sat(∆s)‖ ≤ ζ (values smaller than

the arbitrary scalar ζ can tell if the robot is approaching to a

local minimum). Note that this model-free test method cannot,

in general, be used to determine the feasibility of a final shape

from the starting configuration.

A schematic representation of the controller is depicted

in Fig. 4, and its implementation is given in Algorithm 3.

The variables Ω and η are used to determine the size of the

local region and to specify the error acceptability, respectively.

At the beginning of the method, small testing deformations

are conducted to obtain a rough initial estimation of Q. The

function Asyn() is used to represent an asynchronous call of

the ModelRecalibration() routine, which in our method runs

in a parallel and slower thread than the main servo-loop; this

function is only called when the robot leaves the local region,

thus the model needs to be recalibrated.

IV. RESULTS

A. Numerical Simulation

A circular deformable object is computed using a discrete

mesh with 200 points (note that this numerical object is used

as a “black box”). The soft body is rigidly attached to a
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Algorithm 3 ServoController(~cd, ε, T, α,Ω, η)

1: Conduct small testing deformations around the starting

configuration, and compute an initial model Q

2: repeat

3: Measure position r and contour c(ρ)
4: Compute feedback shape parameters s←(7)

5: Compute deformation model q̂i ← UpdateRule(ε)
6: Compute controller ṙ←(19)

7: if Outside local region ‖r− o‖ > Ω then

8: R,σi ← Async(ModelRecalibration(T, α))
9: end if

10: until ‖∆s‖ < η

Servo�ontroller Plant
c

ModelRecalibration

c�
_r

���

Fig. 4. Schematic representation of the shape servo-controller.

fixed surface, while a 3-DOF planar robot rigidly grasps a

point on its surface. The algorithm is written in C++, and the

object/robot are visualised with OpenCV.

We first evaluate the performance of the model recalibration

scheme. For that, the object’s contour is approximated with

N = 5 harmonics, which gives total of P = 22 feedback

Fourier coefficients. The algorithm is implemented considering

T = 5 sampling points, with a local region of Ω = 40 pixels,

and a learning gain of γ = 5× 10−6. Fig. 5 shows the results

of estimating the object’s shape around different configura-

tions. The black profile represents the observed contour c(ρ),
whereas the green profile represents the contour estimated as:

ĉ = G(ρ)(Q̂δr+ s) (20)

From these figures, we can see that as the robot moves away

from Oj (i.e. t2, t3), the estimated shape deviates from the

real one. The computed model is corrected as new data is

collected around Oj+1. Fig. 6 depicts the minimisation process

for the energy function J . During the estimator’s initialisation

at t = t0, only the T = 5 data points are available and

no knowledge of the model is assumed (i.e. q̂i = 0M ). As

J starts to increase, the algorithm recalibrates the model to

improve the accuracy. The controller (19) is implemented with

saturation bounds of | sat(∆si)| ≤ 3 and gain λ = 0.1. Two

tasks are considered: the first is a feasible object compression

task, the second is a task with an infeasible target shape. Fig. 7

depicts the initial and final object’s configurations, where the

red curves represent the target profiles cd(ρ). Fig. 8 depicts

the evolution of the magnitude ‖∆s‖ for both tasks. These

curves show that for the former task the error is asymptotically

minimised, whereas for the latter one the error converges to a

large local minimum.

t1

t3 t4

t2

Oj Oj

Oj

Oj+1

ĉ

ĉ

c

c

y

Fig. 5. Shape estimation for different configurations from t = t1 to t = t4.
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Fig. 6. Minimisation process of the energy function J .

B. Experiments

The performance of the proposed method is evaluated by

conducting a series of experiments using a 2-DOF (i.e. M = 2)

motorised linear stage that manipulates soft silicon phantom

models. Fig. 9 shows the experimental robot, whose joints

are controlled using a position-stepping mode. The object is

manipulated by one controllable gripper, while a second pas-

sive gripper is used as a supporting point. A Logitechr C920

camera captures images of the object; these are processed with

a Linux-based PC at 30 frame per second. The same software

and tuning parameters of the previous numerical simulation

are used in this manipulation experiments.

The contour is computed from a binary image of the object,

where the reference point y represents the grasping point of

the passive gripper. Fig. 10 shows the segmented image and

the parametric contour c(ρ) (blue curve). Note that since only

N = 5 harmonics are used, the contour c(ρ) does not exactly

match the profile of the object. Using a “small” number N is

useful for the method since it allows to: (i) reduce the compu-

tational complexity of the shape parametrisation (7) (making it

suitable for real-time applications), and (ii) only feed the most

shape-significant errors ∆si into the motion controller (19)

(this is particularly important as a high-dimensional vector

∆s characterising many contour details might be difficult to

minimise with a limited number of controllable grippers). For

clarity’s sake, this blue (feedback) contour is not displayed in

the following experiments, only the target contour is shown.

The performance of the controller is evaluated with multiple

experiments using different sizes of objects. At the beginning

of each task, the controller only has access to the T = 5 local

sampling points that are collected with small testing motions,

as described in Algorithm 3. Fig. 11 depicts the initial and final
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Fig. 7. Initial and final configurations of the shape control simulation.
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Fig. 8. Evolution of the error ‖∆s‖ for the tasks shown in Fig. 7(a)–(b).

configurations for these experiments. The red curve represents

the constant target shape cd, which is transformed into a

desired vector sd using (17). In this experimental study, the

shape servoing tasks are conducted without the identification

of the object’s deformation model. The minimisation of the

magnitude error ‖∆s‖ for each experiment is shown in Fig.

12. These results corroborate that the new Fourier-based task

specification can be used to actively deform soft objects into

desired 2D shapes; note that this is achieved without using

any special texture/fiducials on the object.

To obtain a good contour match (e.g. the results depicted

in Fig. 11), the desired shape must be physically reachable

with the set-up being used, namely the object being shaped

and the robotic manipulator. Similarly to the result in Fig. 7-

(b), Fig. 13 now presents two examples of target shapes that

cannot be accurately enforced onto that particular object and

with a single manipulation point (these targets may require

e.g. stretching/shaping of the object from multiple points).

Note, however, that for this situation the controller can still

be used to manipulate the object into coarsely approximated

target; the desired contour is not exactly enforced, instead, the

object arrives at a configuration that numerically represents

a large local minimum. This scenario can be clearly seen in

Fig. 14, which shows that the evolution of the magnitude error

‖∆s‖ during these experiments converges to a steady state

error comparatively larger than those in Fig. 12.

By using a small number of harmonics (5 in this study), the

object’s feedback contour c(ρ) is coarsely approximated since

high frequency components (i.e. small details) are filtered

out. This simplification of the feedback contour can be used

by the proposed Fourier-based method to manipulate objects

with complex profiles. Fig. 15 depicts two manipulation ex-

Robot

Soft object

Fig. 9. The experimental setup.

y

c

Robot

Passive

gripper

Binary image

Fig. 10. The feedback contour c(ρ) computed with the captured image.

periments using a complete phantom uterus model that has

considerably more details than the simpler partial objects used

in Fig. 11. These experiments are performed with one active

gripper and two passive supporting grippers. For these types of

manipulation tasks, the local target contour cd approximately

represents the boundary where the object is to be positioned by

the robot. Fig. 16 shows the time evolution of the shape error

‖∆s‖ for these manipulation experiments. Note that since the

object shape does not exactly match the target contour, similar

steady state errors arise as with the previous experiment.

V. CONCLUSIONS

In this paper, we present a new vision-based control method

to automatically manipulate deformable objects. First, a com-

pact feedback characterisation of deformable object shapes is

developed. Next, an adaptive update rule that estimates the

object’s model is derived. Then, the shape servoing controller

and its implementation algorithm are presented. Finally, nu-

merical and experimental results are reported to validate the

approach.

Our method introduces a new paradigm to specify closed-

loop deformation tasks based on truncated Fourier series of

2D image contours, an approach that contrast with previous

methods that typically use the displacements of feature points

to define the task. The core idea behind the controller de-

sign is to establish an explicit shape servo-loop by feeding

back a vector of Fourier coefficients. This design provides

more flexibility for describing the feedback shape and its

target configuration (e.g. cd(ρ) can be roughly sketched on

a screen), and allows to manipulate soft objects with un-

structured surfaces (i.e. without special fiducials markers or

texture). To avoid the full parametric identification of the

object’s model, an on-line algorithm that approximates the
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Fig. 11. Initial (left) and final (right) configurations for various experiments.
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Fig. 12. Minimisation of ‖∆s‖ for the experiments shown in Fig. 11(a)–(d).

deformation properties is proposed. The key idea behind the

algorithm is to iteratively recalibrate an approximated linear

model computed from multiple data points collected along the

local trajectory. The estimated coarse linear model is used

within an overdetermined kinematic control law to steer the

object towards the desired target shape. In our experimental

study, we found out that the use of the saturation function

helps to avoid large steady state errors, as no specific error

coordinate dominates the whole trajectory.

cd

(a)

cd

(b)

Fig. 13. Experiments with infeasible target shapes that result in local minima.
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Fig. 14. Evolution of ‖∆s‖ for the experiments shown in Fig. 13(a)–(b).

The proposed method has many limitations. For example,

the segmentation of the manipulated object may be compli-

cated to perform for scenes with poor illumination, similar

background/object colours, blurred edges, etcetera (in our

experiments, we simplified this situation by using high contrast

between the object and the background). A clear disadvantage

of the proposed model-free method is its inability to determine

whether a final target shape is physically reachable or not

before the task is performed (note that the current control

formulation assumes that the object can be deformed into

cd, and along a connected motion trajectory). Although the

method does not require to use fiducial markers, it does need

to observe one clearly distinguishable feature point (i.e. y) to

define the origin of the feedback contour (in our experiments,

we used the position of the static gripper). The objective of

the iterative model estimator is to compute a local approx-

imation of the relation between the robot’s motion and the

shape parameters. However, it must be remarked that since

the estimator computes a linearised model that is valid only

locally, a single approximation cannot, in general, be used to

model the whole properties of the object. Finally, the design of

the robot motion controller is not restricted to plane motions,

however, note that the proposed method can only control 2D

image projections of the observed shapes.

For future work, we would like to perform shape control ex-

periments but now using multiple active manipulators; this new

set-up will allow us to deform the object into more complex

shapes as compared with a single manipulation point. Also, we

would like to test the performance of our controller but using

other model estimators, e.g. velocity-based algorithms such as

the Broyden update rule [32]. An interesting research direction
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Fig. 15. Manipulation experiments of soft objects with complex shapes.
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Fig. 16. Minimisation of the shape error ‖∆s‖ for the manipulation
experiments with complex objects shown in Fig. 15(a)–(b).

is to use the feedback shape data to compute a deformation

model using the finite element method; the estimated physical

model could be used to more accurately predict the feasibility

of a given target cd(ρ). The natural extension of this paper is

to work on the development of a new manipulation approach

but to deform objects into desired 3D shapes/surfaces. For that,

coarse physical models and active 3D vision systems might be

needed. We encourage readers to work into this direction.
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