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Abstract  

A flame-sheet theory for circulation-controlled firewhirls with differential diffusion is presented to 

investigate the effects of non-unity and unequal Lewis numbers on the flame shape and height of the 

firewhirls. Variable physical properties and a piecewise generalized power-law vortex model are 

implemented in the theory. For the fuel and oxidizer Lewis numbers being unequal but close to unity, 

the perturbation solutions of the Burke-Schumann-like transport equation for the 

Lewis-number-weighted coupling functions were obtained by using the Green’s function method. 

The derived flame height expression not only confirms the previous discoveries, such as the Peclet 

number effect found by Chuah et al. (2011), the strong vortex effect by Klimenko and William 

(2013), and the variable density and mass diffusivity effects by Yu and Zhang (2017), but also 

demonstrates that the mass-diffusivity-ratio model correction newly proposed by Yu and Zhang 

(2017) is attributable to the leading-order non-unity Lewis number effect. The validity of the 

differential diffusion effects on the flame height was extended to arbitrary Lewis numbers and 

verified by means of the approximate far-field similarity solutions of the mixture fraction.      
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1. Introduction  

Firewhirls are destructive natural phenomena that can be characterized as open diffusion flames 

intensified by strong vortices formed under suitable terrain and meteorological conditions [1-5]. 

Numerous theoretical and laboratory investigations have been carried out in the past for 

understanding the occurrence, mechanisms and behaviors of firewhirls [1-20]. Although buoyancy 

effects are considered generally indispensable to firewhirls, circulation-controlled firewhirls were 

found in nature [2, 21, 22] and reproduced in laboratory by Chuah et al. [3], who observed a 

sufficiently strong, inclined vortical flow generated a correspondingly oriented firewhirl over a liquid 

fuel containing pan, thus testifying the dominance of circulation over buoyance. To explain the 

experimental observation, they established a steady-state, axisymmetric, diffusion flame-sheet theory 

with the following major approximations:  

1. the firewhirl has a large Peclet number so that it is significantly elongated along the axial 

direction where convection dominates over diffusion;  

2. the vortical flow surrounding the firewhirl is modelled by a Burgers vortex, whose stream 

function is a quadratic function of the radial coordinate;   

3. the flow has constant density and mass diffusivity;  

4. the flow has a unity Lewis number.  

By introducing the stream-function coordinates, Chuah et al. obtained a Burke-Schumann-like 

convection-diffusion equation for the mixture fraction,  , as 

  

  
 
 

 

 

  
  

  

  
  

where the streamwise (the  -direction) convection is balanced by the traverse (the  -direction) 

diffusion. The flame height of the firewhirl is defined by the farthest axial location satisfying local 

stoichiometry,      . The flame height in physical coordinates,   , scaled by the diameter of the 

liquid fuel containing pan   , is given by  

  
  

 
  

     
 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

3 
 

which verifies the experimental observation of             because       is near unity for 

common liquid fuels. Although the theory predicts the correct trend of the flame height increasing 

with   , it significantly underestimates the experimental results in the presence of strong vertical 

flows.  

Postulating that the vortical flow surrounding the firewhirl cannot be properly modelled by the 

Burgers vortex, Klimenko and Williams established a theory by retaining the above approximations 1, 

3 and 4 but replacing the approximation 2 with a strong vortex model [18, 23]. The stream function 

of the strong vortex is a power function of the radial coordinate, and the power exponent    is 

smaller than two. The same Burke-Schumann-like transport equation for the mixture fraction was 

derived and a modified flame height expression [18] was given by 

  
  

 
 

  

  

     
 

which explains the experimental data because the multiplicative factor,       , accounts for the 

additional stretching effect of the strong vortex in elongating the firewhirl.  

The approximation 3 was adopted by both theoretical studies above, although its physical 

unreality was already recognized [18]. The temperature variation in the firewhirl flow field causes 

the corresponding variations of density and mass diffusivity, which may have significant influence 

on predictions of flame height. Yu and Zhang [19] established a theory with the approximations 1, 2 

and 4 but discarded the approximation 3 by taking into account of temperature-dependent density 

and diffusivities. Unlike the earlier studies based on the mixture-fraction formulation, they adopted 

the coupling function formulation to obtain temperature solutions. A Howarth-Dorodnitsyn-like 

density-mass-diffusivity-weighted coordinate transformation was introduced to transform the 

coupling function formulation into the same Burke-Schumann-like transport equation. A revised 

flame height expression was accordingly given by 

  
  

  
  
  
 
      

     
 

which also explains the experimental data [3]. Here the mean flame temperature,   , is higher than 
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the liquid pool temperature,   , the exponent,   , characterizing the temperature dependence of 

mass diffusivity, is always smaller than 2. Consequently, the multiplicative factor,              , 

accounts for the physics that the temperature rise inside the firewhirl reduces the density and hence 

the inertia of the fuel vapor, which thereby can be advected to a higher altitude.  

It has been recognized that the effects of variable physical properties and the strong vortex 

model are independent physical mechanisms for explaining the “enhanced” flame height [18, 19]. As 

a result, integrating these two flame “enhancement” mechanisms in a theory must overshot the 

predictions of the flame height, and an additional flame “reduction” mechanism must exist to 

counteract the effects. Based on those considerations, Yu and Zhang [20] recently established a 

theory, in which the approximations 1 and 4 are retained, temperature-dependent physical properties 

and a generalized piece-wise power-law vortex model are adopted, and, in addition, the mass 

diffusivities on the fuel and oxidizer sides of the firewhirl are considered distinctly different (i.e. 

     ). By use of approximate matching solutions to the species-enthalpy coupling functions with 

jumping mass diffusivities across the flame sheet, Yu and Zhang [20] derived an integrated 

expression of the flame height, consisting of four multiplicative factors, as 

  
  

   
 

      
 
  
  
 
      

     
 

where the mass-diffusivity-ratio model correction,           , contributes a significant 

“reduction” mechanism for the flame height and therefore avoid the theoretical overshooting; 

        , an analog of    in Klimenko and William’s theory, is an effective exponent for the 

piece-wise power-law vortex model.  

 In summary, of the four major approximations adopted in Chuah et al.’s theory, the 

experimentally verified large Peclet number approximation is indispensable for deriving the 

analytically solvable Burke-Schumann-like transport equation; the Burgers vortex model and 

constant physical properties have been examined and revised by Klimenko and Williams[18] and Yu 

and Zhang[19]; the unity-Lewis number assumption, which can seldom be exactly satisfied in 

combustion problems [24, 25], has not be examined in all the previous theories. Therefore, the 
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present study aims to theoretically investigate the effects of non-unity Lewis number on the 

circulation-controlled firewhirls. Furthermore, the previous study of Yu and Zhang [20] has revealed 

the “reduction” mechanism for the flame height owing to the mass-diffusivity-ratio model correction, 

which was however based on the approximate matching solutions. Consequently, the present study 

also attempts to give a mathematically rigorous treatment to further validate the model correction by 

addressing unequal Lewis numbers across the flame sheet. In this regard, the present study considers 

the effects of differential diffusion in general because the Lewis numbers are not only non-unity but 

also different across the flame sheet. 

For a flame-sheet problem with non-unity and unequal Lewis numbers, the conventional 

coupling-function or mixture-fraction formulations are inapplicable. If the problem is 

one-dimensional, one can solve the convection-diffusion ODEs (ordinary differential equation) 

separately on the fuel and oxidizer sides and then match the solutions by using proper jumping 

conditions at the location of flame sheet, which is simultaneously determined by the matching. 

Although such a solution procedure has been successfully applied to droplet combustion [26, 27] and 

other one-dimensional problems [24], it is inapplicable for two- or three-dimensional flame-sheet 

problems, in which the convection-diffusion PDEs (partial differential equation) cannot be 

analytically solved with the boundary conditions specified at the undetermined two- or 

three-dimensional flame sheet.  

In the present paper, we shall first mathematically formulate a steady, axisymmetric 

circulation-controlled firewhirl system with non-unity and unequal Lewis numbers, in Section 2. We 

then present a perturbation theory to obtain mathematically rigorous solutions to the formulation by 

assuming the Lewis numbers on the fuel and oxidizer sides are close to unity, in Section 3. The flame 

shape and the flame height will be derived in explicit forms, and the effects of non-unity and unequal 

Lewis numbers will be discussed in detail for their physical implications, in Sections 4 and 5. Finally, 

we shall establish an approximate far-field similarity solution to a mixture-fraction formulation with 

arbitrary Lewis numbers, thus further verifying and extending the perturbation theory, in Section 6.  
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Nomenclature 

Physical quantities  

    constant pressure specific heat  

       diameter (radius) of the fuel liquid pool 

   mass diffusivity  

    heat of combustion per unit mass of fuel 

    latent heat of vaporization per unit mass of fuel 

      cylindrical coordinates 

   temperature  

      velocity components in       directions  

   molecular weight 

   mass fraction 

   mixture fraction 

     stoichiometric mixture fraction 

    ratio of mass diffusivities,          

     exponent in power-law vortex model (inside vortex core) 

     exponent in power-law vortex model (outside vortex core) 

    overall exponent in power-law vortex model 

    parameter characterizing temperature-dependent mass diffusivity 
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    coefficient in the transport equation of mixture fraction 

   thermal conductivity 

   density 

     stoichiometric mass ratio       
      

      

    the vortex core radius in     space.  

Average quantities at     

   
 

  
         
  

 
                 

Non-dimensional and normalized variables  

                    

                  

                  

           

            

Nondimensional number 

             

             

             

Transformed coordinates  
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      stream function coordinates 

      density-mass-diffusivity-weighted coordinates  

Subscripts  

   physical quantities on the oxidizer side of firewhirl 

   physical quantities on the fuel side of firewhirl 

   physical quantities of inert gas and products 

0 physical quantities at     

   physical quantities in the far field  

 

2. Mathematical Formulation 

2.1 Governing Equations  

 The circulation-controlled firewhirl can be modelled as a steady, non-premixed flame sheet in an 

axisymmetric, laminar, vortical flow that is free of buoyance effects. Unlike the previous studies 

assuming unity Lewis number and hence adopting the mathematical formulations of either mixture 

fraction or conventional coupling function, the present study considers the general situation that the 

Lewis numbers on the fuel and oxidizer sides of the flame sheet,     and    , are non-unity and 

unnecessarily equal to each other. By linearly combining the governing equations for the mass 

fractions of fuel and oxidizer, we can eliminate the chemical reaction terms in the equations and have  

    
 

  
   

 

  
     

  
   

  
 

  
    

   
  

 
 

   
   

   
  

 

 
 

 

 

  
     

   
  

 
 

   
    

   
  

    

(1) 

Similarly, linearly combining the governing equations for the mass fraction of fuel and the sensible 
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enthalpy to eliminate the chemical reaction terms yields  

    
 

  
   

 

  
     

   

  
  

 

  
    

   
  

 
 

  

  

  
 

 
 

 

 

  
     

   
  

 
 

  
 
  

  
    

(2) 

It is readily seen that, for the special situation of           and      , Equations (1) and 

(2) can be simplified to the transport equations of the conventional species-species coupling function, 

defined by          , and of the species-enthalpy coupling function, defined by          , 

respectively.  

 The boundary conditions for Equations (1) and (2) are specified as follows: the axisymmetric 

boundary condition at the axis is written by  

BC(1) at    ,                      .  

The natural boundary condition in the far-field radial direction is given by  

BC(2) at    ,                      .  

The ground boundary at     can be divided into the fuel side        and the oxidizer side 

       because the flame-sheet is anchored at the circular rim of the fuel pool       . The 

corresponding boundary conditions are given by  

BC(3a) at     and     ,       ,     ,     , 

BC(3b) at     and     ,                      . 

The flame-sheet approximation, implying an infinitely fast reaction rate, renders no fuel leakage 

across the flame and yields another far-field boundary condition as  

BC(4) at    ,     ,       , and     .  

It is noted that BCs (3a) contains two unspecified quantities,     and   ，whose determination 

is a part of the “closure problem” that has been discussed in detail in the previous papers[19, 20]. For 
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a complete and clear presentation of the present theory, we summarized and further clarified the 

closure problem in Appendix A.  

It is also noted that a divergent flux at the burner rim (i.e., the periphery of the liquid pool, 

    ) exists in all the flame-sheet theories of firewhirls. Chuah et al. [8, 11] pointed out that the 

flame is actually quenched at the burner rim due to the heat loss so that a small quenching distance 

separates the flame from the burner. They also pointed out that, although the flame-sheet theory 

cannot be applied to the location of     , the predicted firewhirl characteristics is not affected. 

This singularity problem could be remedied by establishing a revised theory with finite reaction rate, 

therefore allowing local flame extinction. Such a theory, focusing on the anchoring region of the 

diffusion flame [28], certainly merits future studies but will not considered in the present study.  

  

2.2 Large-Peclet-number Formulation   

 A crucial procedure in formulating the present problem considering variable physical properties 

is to introduce the density-mass-diffusivity-weighted coordinate defined by  

 
  

   
    

         
 

  

 

 
 

  
         

 
  

 

         
  

 

 (3) 

This is an analog of the well-known Howarth-Dorodnitsyn transformation, which was widely used in 

compressible boundary layer problems [29]. The procedure has been adopted and validated by the 

previous studies [19, 20].  

Applying the coordinate transformation (3) and the large Peclet number approximation,     , 

to Equations (1) and (2), we have the following non-dimensional parabolic PDEs in the       

coordinate system:  

 
   

 

  
   

 

  
             

 

 

 

  
  

 

  
 
   
   

      (4) 
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   (5) 

It is noted that, regardless of the coordinate “shrinking” due to the variations of density and mass 

diffusivity, the axial coordinate,  , is scaled by a factor of      to account for that the firewhirl 

with      is significantly stretched along the axial direction. As a result, the convection terms 

and the radial diffusion term are of      in Equations (4) and (5); the axial diffusion term is of 

        and therefore can be neglected.  

The corresponding non-dimensional boundary conditions are given by 

BC(I)   at    ,                          

BC(II)   at    ,                          

BC(III-a) at     and    ,                       

BC(III-b) at     and    ,                       

It is noted that BC(4) is not compatible with the parabolic PDE system and therefore can be removed 

from the present large-Peclet-number formulation. The complex derivations for the above equations 

and boundary conditions are similar to those given in the previous paper [20] except that two distinct 

Lewis numbers remain in the present equations. The details of the derivations are expatiated in 

Appendix B.  

A few remarks should be given to the boundary conditions BC(III-b). Replacing the Neumann 

boundary condition BC(3b) by the Dirichlet boundary condition BC(III-b) implies that the ground 

surface outside the fuel pool is assumed to be isothermal. Although this isothermal assumption is not 

required by the mixture fraction formulations [3, 18], it brings significant mathematical convenience 

to the coupling-function formulations to derive the Burke-Schumann-like transport equation. At the 

cost of mathematical complexities, we can formulate a theory with a ground temperature profile    , 

which however cannot be specified without experimental data. As discussed in the previous study 

[20], the scaled wall temperature     is significantly smaller than the flame temperature     
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therefore considering the difference between     and     is unlikely to have significant influence 

on flame shape of the firewhirl.  

2.3 Burke-Schumann-like Transport Equation in Stream-function Coordinates    

For a convection-diffusion system like Equations (4) and (5), a stream-function coordinate can 

be introduced to the eliminate the streamwise convection term (i.e. the      term) [3, 18-20, 23], as 

long as the stream function is a power-law function of the traverse coordinate (i.e. the   coordinate), 

     , where    is the power exponent. Consequently, we introduced the stream-function 

coordinates,      , defined by  

   
  
 
        (6) 

and Equations (4) and (5) can be rewritten by 

  

  
            

 

 

 

  
  

 

  
 
   
   

      (7) 

  

  
             

 

 

 

  
  

 

  
 
   
   

 
   
   

   (8) 

Accordingly, the boundary conditions in the stream-function coordinates are given by  

BC(i)   at    ,                         , 

BC(ii)  at    ,                         , 

BC(iii-a) at     and    ,                      , 

BC(iii-b) at     and    ,                      . 

Equations (7) and (8) subject to BC(i)-BC(iii) constitute the analytically solvable 

Burke-Schumann-like formulation to be solved in the following sections. 
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3. Perturbation theory for near-unity Lewis numbers 

3.1 Perturbation Formulation  

As we have discussed in Introduction, analytically solving Equations (7) and (8) with arbitrary 

    and     are mathematically impossible. Nevertheless, the equations for the particular case of 

      and       can be analytically solved in the framework of perturbation theory by 

regarding the deviations of the Lewis numbers from unity as small parameters.  

We introduced the Lewis-number-weighted coupling functions as 

 
   

   
   

 
   
   

    
   
   

    (9) 

which are continuous and smooth at the flame location [30] in contrast to the continuous but 

non-smooth conventional coupling functions. This can readily be seen from the jump condition 

               
 
                

 
, where      represents the directional derivative normal 

to the local flame surface, and the superscripts “ ” and “ ” indicate the derivatives being evaluated 

in the fuel and oxidizer sides of the flame. It is noted that the Lewis-number-weighted coupling 

functions are similar to the generalized mixture fractions defined by Liñán et al. [28]. 

In terms of the Lewis-number-weighted coupling functions, Equations (7) and (8) can be 

rewritten by  

    
  

    
 

 

 

  
  
   
  

      
 

   
 
    
  

 (10) 

    
  

    
 

 

 

  
  
   
  

      
 

   
 
    
  

    
 

   
 
    
  

 (11) 

Without losing generality, we assume that     is not equal to but close to unity and introduce a 

small parameter  

     
 

   
 (12) 
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and hence have  

   
 

   
 
   
   

     

     
      (13) 

Here       and        . Consequently, the coupling functions can be expanded in the 

asymptotic series in terms of   up to the first order term as 

      
   

    
   

       (14) 

      
       

          (15) 

Substituting Equations (12)-(15) into Equations (10) and (11) and collecting the terms of the 

same orders, we have the parabolic, inhomogeneous PDEs for the leading-order denoted by the 

superscript (   ) and the first-order (   ) coupling functions as  

        
   
   

   
        

   
   

   
 (16) 

where       is a Burke-Schumann-like partial differential operator in the (   ) coordinates 

 
      

 

  
    

 

 

 

  
  

 

  
  (17) 

and   
   

 and   
   

 are the source terms given by 

 

  
     

                          

 
    

   

  
    

  (18) 

 

  
     

                                                

 
    

   

  
   

    
   

  
    

  (19) 

The leading-order fuel and oxidizer mass fractions,    
   

 and    
   

, can be obtained by the linear 

combinations of the leading-order coupling functions   
   

 and   
   

. Specifically,    
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on the fuel side of the flame, and    
          

   
 on the oxidizer side.  

Correspondingly, the leading-order and the first-order boundary conditions can be rewritten by  

BC(1)  at    ,    
          

        , 

BC(2)  at    ,    
          

        , 

BC(3-a)  at     and    ,   
       

   
,   

       
   

, 

BC(3-b)  at     and    ,   
       

   
,   

       
   

. 

where the Dirichlet boundary conditions are given by  

    
   
  

            
                           

     
   
  

                
                                    

  (20) 

    
     

             
                                  

     
     

       
                 

  (21) 

 

3.2 Perturbation Solutions  

The leading-order coupling functions,   
   

 and   
   

, satisfy the homogeneous transport 

equations with inhomogeneous Dirichlet boundary conditions at    . These leading-order 

equations and boundary conditions are of identical forms to those that have been solved in the 

previous studies [19, 20] for unity Lewis number. Consequently, we can directly write the solutions 

as  

 
  
     

     
   

  
     
   

 
     
   

                      
     

 

 

 (22) 

 
  
         

     
   

                              
     

 

 

 (23) 
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where    denotes the Bessel function of the first kind of order  .  

The first-order coupling functions,   
   

 and   
   

, satisfy inhomogeneous transport equations 

with homogeneous boundary conditions on all sides. The source terms in the first-order equations 

can be determined by using the leading-order solutions (22) and (23). Therefore, the first-order 

solutions can be obtained by means of Green’s function method.  

The Green’s function for the partial differential operator (17), denoted by             , is 

defined by  

           
                       (24) 

where         and         are Dirac’s delta functions, and therefore satisfies the 

normalization relation, 

            
         

 

   (25) 

where          is the differential element of the domain                      . 

Equation (25) indicates that              can be regarded as the inverse operator of      , namely 

       
  , so that the LHS of Equation (25) can be treated as an inner product of two operators in the 

Hilbert space [31]. As a result, the first-order solutions to Equation (10) and (11) can be formally 

given by  

   
         

    
      

         
    

   
 (26) 

Substituting Equations (18) and (19) into Equation (26) and again regarding its RHS as the inner 

product of two operators, we have 

 
  
            

 

 

             
    

   

   
     

 

 

 (27) 
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 (28) 

The Green’s function              can be constructed by means of eigenfunction expansion [31], 

and is given by 

                            
              

             
 

 

 (29) 

where         is Heaviside step function. The mathematically complex procedure for deriving 

Equation (29) will not be presented in the paper, but the validity of Equation (29) can be readily 

verified, as shown in Appendix C.  

 

3.3 Series Solutions of    and    

 To simplify the first-order couple functions,   
   

 and   
   

, from Equations (27) and (28), we 

should first evaluate the derivatives of the leading-order mass fractions,    
   

 and    
   

, with respect 

to   . According to the definition of the leading-order coupling functions,    
         

   
 on the 

fuel side of the flame sheet and    
          

   
 on the oxidizer side. Consequently, we have 

  

   
   
               

  
    
   

 
    
   

          (30) 

and  

  

   
   
                  

    
   

 
    
   

          (31) 

where          is an integral function defined by 

 
                 

                
      

 

 

 (32) 
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Substituting the Green’s function (29) and the derivatives (30) and (31) into Equations (27) and 

(28), and noting that    
   

 and    
   

 vanish on the oxidizer and fuel sides, respectively, we have  

 
  
       

  
    
   

 
    
   

     
   
   

      (33) 

 
  
       

  
    
   

 
    
   

    (34) 

where    and    represents four-fold integrals defined on the fuel and oxidizer domains, 

respectively, as 

 
                                      

  

 

  

 

 (35) 

 

            
 

  

  

 

   
 

 

 

  

                              (36) 

whose simplified forms will be given in the following sections.  

It is noted that the above solution of    cannot be directly applied to the degenerate situation of 

     , which results a singular   . Although       is reasonably accurate only for methane 

and       is often found an acceptable approximation [28], we also considered the degenerate 

situation of       while       to complement our theory. Consequently, we can expand    

by regarding the deviation of     from unity as small parameter, denoted by           , and 

have 

      
        

    
 (37) 

in which the modified first order solution can be written as  

 

  
            

    
   

 
    
   

    (38) 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

19 
 

By comparing Equation (38) with Equation (33), we can see that Equation (38) can be formally 

obtained from Equation (33) by replacing     by    and by setting all the other terms containing   

to be zero. This procedure can be applied in the following sections for obtaining the results 

concerning with the degenerate situation of       and      .  

4. Flame Characteristics of Firewhirls 

4.1 Approximate Solutions of Flame Shape 

 In most previous studies, the flame height of firewhirls was the central focus of research, 

whereas the flame shape was barely investigated. It is of interest in the present study to derive 

approximate analytical solutions of flame shape for illustrating the flame characteristics of firewhirls.  

In the flame-sheet theory, both fuel and oxidizer are completely consumed according to 

stoichiometry, rendering      
       

      on the flame sheet. Consequently, with Equation 

(22) for   
   

 and Equation (33) for   
   

, the flame shape can be determined in an implicit form as 

    
   

                            
      

 

 

     
            

   
   

             

(39) 

where the stoichiometric mixture fraction defined by                      is introduced for 

direct comparison with the previous studies. It is noted that we have ignore the higher-order small 

terms containing      because of       for most common liquid fuels. Several further 

simplifications can be made to the flame shape expression as follows.    

 For the flame close to the fuel pool, namely        , the four-fold integrals    and    tend 

to be of order     , as proved in Appendix D, and hence the second term on the RHS of Equation 

(39) is of       and can be neglected. Mathematically, this means that the flame shape close to the 

fuel pool is determined by leading-order solution of the coupling function. Physically, the flame is 

anchored around the rim of the fuel pool and thus its local shape is modulated by the dimension of 
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the fuel pool rather than physicochemical properties of the flame.  

For the flame being away from the fuel pool, namely        , the integral    is proportional 

to   
    , as proved in (D5) of Appendix D, and can be neglected. Here we have used the result that 

     at the flame location         because the flame sheet is close to the axis in the far field 

[20]. Therefore, the first-order correction owing to    should be considered in determining the 

flame shape, particularly in determining the flame height to be discussed in the following subsection. 

As a result, Equation (39) can be simplified as  

    
   

                            
      

 

 

                                    
      

 

 

 

(40) 

Furthermore, we noted that the integrals for         are mainly determined by the values of 

  close to zero according to the principle of Laplace integration [32]. Consequently, we can 

analytically integrate Equation (40) by using the approximation,          , namely the first term 

of the Taylor expansion of       around    , and have 

    
   

 
 

      
           

   
        

      
      

  
 

      
  (41) 

which expresses the flame shape in an implicit form for the following discussion.  

To derive explicit expressions of the flame shape, we can first neglect all the      terms in 

Equation (41) to obtain a leading-order expression as  

   
     

   
   
   

  
    (42) 

where   
  denotes 

 
  
      

   
   

   (43) 

It is interestingly seen that Equation (42) resembles the well-known “          ” [24, 25] 
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formulas for explaining the premixed flame extinction due to heat loss. This implies that a similar 

turning point (a turning point on the      curve corresponding to       ) exists on the 

  
     curve (i.e. the flame shape) if the RHS of Equation (42) is equal to     , yielding 

             
      because of       for common liquid fuels. Physically, this turning 

point, if emerged, is close to the liquid pool, where is however beyond the validity range of the 

above expression. Consequently, the turning point does not emerge in the real flame shape. 

Substituting Equation (42) into the first-order term in Equation (41), we can have the explicit 

expression as 

 
  
     

    
                     

     
   
   

  
  (44) 

based on which we shall discuss about the influence of non-unity Lewis numbers on the flame shape. 

Applying the inverse transformations of Equations (3) and (6) to Equations (41) and (44), which 

can be regarded as the re-scaling of the radial and axial coordinates according to the vortical flow 

characteristics and the variations of density and mass diffusivity, we can have the flame shape in 

physical coordinates.  

The flame shapes at different Lewis numbers are plotted in Figure 1, where the transformed 

coordinate   is also shown to manifest the influence of the density-mass-diffusivity-weighted 

coordinate transformation on the axial coordinate at large Peclet number. It is seen that the 

approximate, explicit solution of the flame shape, namely Equation (44), agrees well with the exact, 

implicit solution of the flame shape, namely Equation (39), at      (or       ) where the 

flame is sufficiently away from the fuel pool. This good agreement substantiates the above procedure 

for approximate solutions.  

The deviation of the approximate solution from the exact solution noticeably emerges as the 

flame is close to the fuel pool, as indicated by the physically unrealistic turning. The mathematical 

reason is that, at small axial flame locations, the integrals in equation (40) cannot be evaluated 

asymptotically by using the Laplace integration method based on        . As a result, the 
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approximate solutions cannot be extended to the region within        corresponding to the 

physical region of     .  

As seen in Figure 1, compared with the case with          , decreasing the fuel Lewis 

number to         while retaining       substantially stretches the flame shape, particularly 

in the axial direction. This can be explained by that the smaller     means larger fuel mass 

diffusivity, which helps transport the fuel vapor to higher altitude and hence results in an elongated 

flame. On the contrary, decreasing the oxidizer Lewis number to         while retaining 

      substantially compresses the flame shape. This is because the smaller     means larger 

oxidizer mass diffusivity, which helps transport the oxidizer to lower altitude and hence results in a 

stout flame. These effects of the fuel and oxidizer Lewis numbers on the flame height are similar to 

those on the flame stand-off distance in droplet combustion [24, 26, 27]  

It is noted that Equation (43) implies that the flame shape largely depends on the Lewis numbers 

ratio,        , rather than on     and     separately. This can be seen from Figure 2 that the 

calculated flame shapes corresponding to various     and     but a fixed ratio of           

are only slightly different from each other. In addition, the flame shape with larger Lewis numbers 

tend to be slimmer than that with lower Lewis numbers. The physical reason can be interpreted as 

follows. The larger Lewis numbers for both fuel and oxidizer mean lower mass diffusivities so that 

the axial convection tends to dominate over diffusion, resulting in a more stretched flame shape in 

the axial direction. For the same reason, lower Lewis numbers for fuel and oxidizer mean enhanced 

mass diffusion in all the directions, which tends to counteract the axial convection and to make flame 

shape stouter.  

 

4.2 Flame Height  

 Understanding the controlling mechanisms of firewhirl flame height is always of importance 

because the behaviors of firewhirl are usually associated with the change of flame height [2, 4, 11, 

12]. With the derived expressions for the flame shape, the determination of the flame height is 

straightforward by setting      in Equation (44), yielding   
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             (45) 

where all the higher order terms than      have been neglected. Again, Equation (45) indicates the 

dependence of the flame height on the Lewis number ratio. 

The leading-order flame height is given by setting      in Equation (42) or by neglecting all 

the      terms in Equation (45), 

   
    

   
   

 

    
 
  
  

 

    
 

  
    

 (46) 

which reproduces Yu and Zhang’s result on the mass-diffusivity-ratio correction [20] and proves that 

the effect of distinct mass diffusivities is essentially the leading-order approximation of non-unity 

Lewis number effect. It should be noted that Equation (46) was derived in [20] based on an 

approximate matching solution while in the present study based on the mathematically rigorous 

perturbation theory.  

 Applying the inverse transformations of Equations (3) and (6) to Equation (45), we have the 

explicit expression of flame height in physical coordinates as  

   
  

 
   
   

 

  
 
  
   

  
 

    
  

     
             

  
   

  
  (47) 

where   
   

 is the leading-order “average” temperature that has been given in [19, 20] and   
   

 

accounts for the influence of the first-order temperature solution:  

 
  
     

 

  
     

    
  

  

 

 

        

   
      

     
    

      
  
 

     
      

  
 

 (48) 

The last term of Equation (47) reflects the fact that the non-unity Lewis numbers also affect the 

flame temperature [24, 25, 28], which in turn alters the flame height by a factor of order     .  

The exponent    characterizes the temperature-dependence of mass diffusivities through  
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 (49) 

in which    is usually less than 2 and equal to 3/2 in the kinetic theory of gases employing the 

rigid-sphere model. Consequently, the term               accounts for the flame height 

enhancement owing to the effects of variable density and mass diffusivity, which have been 

thoroughly discussed by Yu and Zhang [20].  

The factor      characterizes the influence of the generalized power-law vortical flow[18, 23, 

33] on the flame height, and it is unity for the Burgers vortex model with     . In the strong 

vortex model, the exponent should be replaced by its effective value,   , being smaller than 2 [18, 

23, 33]. Consequently, compared with the Burgers vortex, the strong vortex results in a more rapid 

axial flow, which tends to elongate the flame height. It is noted that    can be determined by 

considering the compensating regime [18, 23] or by considering a piece-wise power-law vortex 

model with physical meaningful exponents for inner and outer vortices. The derivation of   , which 

requires the far-field solution of the firewhirl to be expatiated in the following section, has been 

given by Klimenko and William [18] and Yu and Zhang [20], and therefore will be summarized in 

Appendix E.  

 

5. Far-field Similarity Solution of Mixture Fraction  

 Although the above perturbation theory produces the important results about the influence of 

non-unity and unequal Lewis numbers on the flame characters of the firewhirls, it is rather 

interesting to verify these results for arbitrary Lewis numbers. As we have discussed in Introduction, 

the mathematically rigorous treatment to the formulation (7)-(8) is difficult because general solutions 

to the PDE system on either the fuel side or the oxidizer side are impossible. Consequently, the 

matching solution approach, which has been used to the ODE systems formulated from 

one-dimensional combustion problems, is inapplicable here. We can however establish a similarity 

solution to the formulation with arbitrary Lewis numbers. This solution does not satisfy the boundary 

condition on the fuel pool and therefore is valid only in the region sufficiently far away from the fuel 
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pool. Mathematically, the similarity solution is asymptotically correct in the far field, where the 

effects of the bottom boundary conditions are negligible. Such similarity solution was proposed by 

Klimenko and William [18] to derive the flame height for the circulation-controlled firewhirl with a 

strong vortex model, and therefore to remedy the divergence of axial velocity in the power-law 

vortex model. By following similar approach, Yu and Zhang [20] derived an analytical expression for 

the effective power exponent (i.e.       ) for their piecewise power-law vortex model.  

Considering that the Lewis-number-weighted-species-species coupling function is of no 

mathematical advantages for arbitrary Lewis numbers, we can resort to the mixture fraction 

formulation with distinct transport properties in the fuel and oxidizer regions as  

     
  

   
     

  

   
   

 

  

 

   
      

  

   
    

 

  

 

  

 

   
        

  

   
    (50) 

where  

 
  

            

         
     

                               
             

   (51) 

Here       denotes the fuel region and       the oxidizer region.  

 Applying the coordinate transformation (3) to Equation (51) and applying the large Peclet 

number approximation, we have  

   
  

  
   

  

  
   

 

 

 

  
  

  

  
    (52) 

The similarity solutions to the equation in the fuel and oxidizer regions are given in the piecewise 

form as  

 
   

 

   
          

 

 

     
   
   

 

   
    

   
   

      
 

 

  (53) 

where    formally satisfies Equation (52) in the fuel region and    in the oxidizer region. It has 

been recognized that the constant 
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 (54) 

is actually the effective exponent        to be determined in Appendix E [18, 23].  

 A composite solution of the mixture fraction, which is valid for the whole domain, can be 

formally written as a combination of    and    in the form of  

                    (55) 

where        is equal to unity inside the flame so that     , and to zero far away from the flame 

so that     . The magnitude of        is bounded in the interval of       and the boundedness 

of the functions similar to        has been proved in the previous study [20]. The precise 

determination of        by numerically solving Equation (52) merits future studies but will not 

considered in the present study.  

Equation (55) can be regarded as an approximate similarity solution, being valid far away from 

the fuel pool. The flame height can be determined by setting “radial” coordinate   equal to zero and 

the mixture fraction       , and Equation (55) is reduced to 

    
   
   

 

     
           

   
   

     (56) 

Applying the inverse transformation (3) to (56), we can obtain the flame height in physical 

coordinates as  

   
  

 
   
   

 

 
 
  
  
 
      

     
           

   
   

     (57) 

In spite of that         is not completely determined, we still can deduce some interesting results 

from Equation (57) as follows.  

 If     and     are arbitrary but their ratio is close to unity, namely,          , the second 

term in the bracket of Equation (57) can be neglected and we have the flame height expression given 
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by  

   
  

 
   
   

 

 
 
  
  
 
      

     
 (58) 

which accords with the leading-order solution of the flame height expression (47) except the factor 

  to be discussed below. Equation (58) verifies that the perturbation theory predicts the correct trend 

of the flame height dependence on the Lewis number ratio, and it also extends the validity of 

Equation (47) to the Lewis numbers substantially deviating from unity while their ratios are close to 

unity. Furthermore, we note that,         takes the value of the function        at         

and    , corresponding to the farthest axial location of the flame at              . In the 

present study, the order of magnitude of         cannot be further determined, and hence the 

validity of Equation (58) cannot be extended to a more general situation of both arbitrary Lewis 

numbers and arbitrary Lewis number ratios, which certainly merits future studies with the help of 

numerical simulation.  

 Finally, the accordance of Equation (58) derived from the far-field similarity solution with 

Equation (47) from the perturbation theory implies that the role of   in Equation (58) must be 

equivalent to    in Equation (47). This provides an approach to determine the effective exponent 

   in the strong vortex model [18] and in the generalized power-law vortex model [20]. The details 

of the derivation are given in Appendix E.  

 

6. Concluding remarks  

 A flame-sheet theory about the flame shape and height of circulation-controlled firewhirls has 

been established in the present study, with emphasis on the effects of differential diffusion, 

particularly of the non-unity and unequal Lewis numbers on the fuel and oxidizer sides of the flame 

sheet. By using the perturbation method and regarding the deviations of the fuel and oxidizer Lewis 

numbers from unity as small parameters, we obtained the series solutions of the 

Burke-Schumann-like transport equation for the Lewis-number-weighted coupling functions. 
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Subsequently, we extended the theory to arbitrary Lewis numbers by seeking the far-field similarity 

solutions for the mixture fraction in lieu of the coupling functions, which are of disadvantage under 

the general situation. By means of the mathematically rigorous series solutions, which are however 

limited to near-unity Lewis numbers, and the far-field similarity solutions for arbitrary Lewis 

numbers, which are however mathematically approximate, we fulfilled the objectives that motivated 

the present study as follows.  

 First, the leading-order series solutions yields a unified expression for dimensionless flame 

height, which can degenerate to the results obtained in the previous studies [19, 20]. The expression 

consists of four multiplicative factors accounting for the effects of various independent mechanisms 

as 

  
  

 
   
   

 

  
 
  
   

  
 

    
  

     
 

where the factor          was first identified by Chuah et al. [3] for the Peclet number effect, the 

factor      by Klimenko and William [18] for the strong vortex effect, the factor    
       

    
 

by Yu and Zhang [19] for the effects of variable, temperature-dependent density and mass diffusivity, 

and the factor         for the non-equal Lewis number effect. The Lewis number ratio,        , 

is found to be equal to       and consequently verifies that the mass-diffusivity-ratio model 

correction very recently proposed by Yu and Zhang [20] is the leading-order effect of differential 

diffusion.  

 Second, retaining the first-order series solutions in the perturbation theory yield an accurate 

albeit implicit expression and an approximate albeit explicit expression for the flame shape of the 

firewhirls for different Lewis numbers. The approximate flame shapes agree well with the accurate 

ones at the locations sufficiently away from the fuel pool, where the asymptotic expansion for large 

axial coordinate is valid. Both flame shape expressions indicate that a smaller fuel Lewis number, 

implying a larger fuel mass diffusivity for diffusional transport, tends to “slim” the flame shape in 

the axial direction and hence to enhance the flame height, whereas a smaller oxidizer Lewis numbers 

results in a stouter flame shape because the larger oxidizer mass diffusivity helps the oxidizer 
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transport to lower altitude.  

Third, the flame shape expressions also suggest that, although the flame shape changes with the 

fuel and oxidizer Lewis numbers, the flame height changes slightly if the Lewis number ratio is fixed. 

This can be understood by that, for larger Lewis numbers, the mass diffusivities of fuel and oxidizer 

are both smaller so that the flame shape tends to be controlled by the axial convection because of the 

large Peclet number, and thus to be slimmer. For the same reason, smaller Lewis numbers will result 

in stouter flame shape because of the larger mass diffusion to all the directions.  

Finally, the approximate far-field similarity solutions for the mixture fraction yield an alternative 

expression for flame height but for arbitrary Lewis numbers as  

  
  

 
   
   

 

 
 
  
  
 
      

     
           

   
   

     

where the constant   is physically equivalent to    accounting for the strong vortex effect. Under 

the situation that the Lewis number ratio is close to unity, this expression is identical to that derived 

from the perturbation theory, verifying and extending the validity of the latter to Lewis numbers 

substantially deviating from unity. Further discussion on the effects of Lewis numbers in the most 

general situation requires the precise determination of        , by using numerical simulation, 

which merits future studies.   
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Appendix A. “Closure Problem” of Firewhirls 
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To determine the boundary values    and    , we must analyze the physics of the Stefan flow 

in the evaporation layer on the fuel pool surface. The evaporated fuel is both convectively and 

diffusively transported to feed the flame, where heat is generated and conducted to the evaporation 

layer to drive the Stefan flow. For mathematical simplicity, all the variables in Appendix A,   

             , denote their functions         , since the evaporation layer is located at 

          . 

Because the radial dimension of the evaporation layer is considerably larger than its axial 

dimension, the radial diffusion and convection is negligible compared with the dominant convection 

and diffusion in the axial direction. Consequently, integrating the conservation equation for the fuel 

mass fraction in the axial direction and recognizing that the total mass flux,   , is completely 

attributed to the evaporation of fuel (the inert gas and products are non-condensable), we have 

         
   
  

    (A1) 

According to the flame-sheet approximation, no oxidizer exists on the fuel side and its mass fraction 

vanishes as 

      (A2) 

Similarly, integrating the conservation equation for the enthalpy and recognizing that the net 

enthalpy flux,           , is equal to the heat conduction flux,       , subtracted by the 

amount of heat required by evaporation,     , we have  

             
  

  
       (A3) 

 Solving    and   from Equations (A1) and (A3) requires the determination of the axial 

velocity,  , and the density,  . The velocity and density are related by the body-force-free 

Bernoulli’s equation  

  
  

 

 

 

 
 

 
              (A4) 
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where the radial and angular velocities,   and  , are given for a given vortex model. The equation 

of state gives an additional relation between the density and the pressure of the gas mixture, 

   
 

  
 (A5) 

where the pressure is related to the fuel mass fraction and the temperature by the Clausius-Clapeyron 

relation  

      

               
 
  
 
    

  
  

 
 

    
 
 

 
   (A6) 

where      is the boiling point temperature at   ,    and    are the molecular weight of the 

fuel and the inert gas. Completely solving the above six coupled equations, (A1)-(A6), we can 

determine the six variables              , and therefore the problem is closed. It should be further 

clarified that the Dirichlet boundary conditions BC(3a) are based on the solutions of the closure 

problem, and that they cannot be treated as the mathematical simplification of Equations (A1)-(A6). 

Such a specification of boundary condition on the evaporating fuel layer is similar to that adopted in 

the theory of droplet vaporization and combustion [24]. Consequently, the boundary conditions 

BC(iii) in Yu and Zhang [20] and BC(3a) in Yu and Zhang [20] are mathematically redundant 

because they intermingle the boundary conditions with the closure problem.  

 

Appendix B. Derivations of Equations (4) and (5)  

Applying the coordinate transformation (3) to Equations (1) and (2), we obtained the following 

equations in   and   coordinates,  

 
   

 

  
   

 

  
          

    
     

 
 

  
  

 

  
        

  
 

  
  

 

  
   

   
   

    

     
  

      

 

  
 

 

        

 

  
  

       
    

  

 

  
         

 

  
  

   
   

       

(B1) 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

32 
 

 
   

 

  
   

 

  
           

    
     

 
 

  
  

 

  
        

  
 

  
  

 

  
   

   
   

 
   
   

 

     
  

      

 

  
 

 

        

 

  
  

       
    

  

 

  
         

 

  
  

   
   

 
   
   

 

   

(B2) 

where   and   are given by 

 
         

 

      
 

 

   
          

 
  

 

          
  

       
 

   

   
   

  

 

 (B3) 

to account for the variations of density and mass diffusivity gradients in axial and radial directions.  

The non-dimensional velocity components in Equation (B1) and (B2) are written as  

                     
  

     
   (B4) 

Neglecting all the terms of         and         in the above equations, we can readily 

obtain Equations (4) and (5). Here we have invoked an approximation that  

         

      
  

 

      (B5) 

is independent of the coordinate  . This is a weak version of the Chapman-Rubesin approximation 

[34], which further requires      being a constant.  

As we have discussed in Introduction, the firewhirl with large Peclet number is substantially 

elongated along the axial direction because the strong axial convection is dominant over that in the 

radial direction. In addition, the axial coordinate being scaled by a factor of      through the 

transformation (3) indicates that the nondimensional velocities    and    in the     space should 

be of the same order of magnitude. Consequently, we can conclude from Equation (B4) that 

      ,       ,        , and           , which implies           and      

       . 
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Appendix C. Verification of Green’s Function (29) 

Applying the partial differential operator (17) to the Green’s function (29), we have 

           
        

 

  
             

 

 

 

  
  

 

  
             

               
              

          
 

 

                
              

          
 

 

               
  
 

 

 

  
  

 

  
             

          
 

 

 

(C1) 

Using the known properties of Bessel function, we can calculate the derivative of    with 

respect to   in Equation (C1) as 

  

 

 

  
  

 

  
         

 

 

 

  
              

 

  

 

   
                     (C2) 

Substitution of (C2) in (C1) leads to the cancellation of the second and third term and yields  

           
                      

              
          

 

 

 (C3) 

Apparently, the RHS of (C3) vanishes for     . For     , the RHS of equation (C3) reduces to 

[31]  

        
          

 

 

 
 

  
        (C4) 

to derive which the integral representation of delta function in terms of Bessel functions has been 

used [35]. Since the integral element is         , which cancel out the factor of      in (C4), the 

conventional double integration with respect to         and         is equal to unity. 

Therefore, we verified that the Green’s function (29) satisfies Equation (24).  
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Appendix D. Evaluation of    and    

 Assuming that the four-fold integrations over distinct variables can be interchanged, we can 

rewrite    in the form of  

 
                    

                 
       

  

 

          
 

 

           
 

 

      
       

       
  

 

 

(D1) 

The integration over    from   to    can be explicitly expressed by 

 
                    

                 
       

  

 

          
 

 

  
  

     
                                           

 

 

 

(D2) 

For small   , which physically corresponds to the flame sufficiently away from the fuel pool, we can 

expand the Bessel functions in Taylor series, keep the terms of      , and have  

 
                                 

 

 
     

 

 
    

 

 
    

      (D3) 

Substituting (D3) into (D2), we have  

 
   

 

 
  
            

  

 

                 
           

 

 

                  
      

 

 

 

(D4) 

The integrations over   and   can be explicitly expressed and hence the above equation can be 

written by   

 

   
  
 

     
  

       

         
     

          

            
    

  

 

 (D5) 

which gives the simplified expression of    in the form of single-fold integration and is valid for 

small   .   
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To derive the simplified expression of   , we noted that the sum of    and    gives the 

integration over the whole domain,  

 
               

 

 

 

 

       
                 

          
 

 

         
                

      
 

 

         

(D6) 

This four-fold integral can be evaluated exactly as follows. By means of the interchangeability of the 

integrations over various variables, we can rewrite the integral as 

 
                       

                 
       

 

 

         
 

 

           
 

 

       
       

       
 

 

 

(D7) 

Integrating (D7) over    gives  

 
                       

       
 

 

          
 

 

                 
                

 

 

 

(D8) 

Integrating (D8) over   gives  

                  
 

 

          
            

 

 

 (D9) 

Integrating (D9) over    gives  

                               
     

 

 

 (D10) 

Considering (D10) and (D5) together, we have  

 

                           
     

 

 

 
  
 

     
  

       

         
     

          

            
    

  

 

 

(D11) 
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which gives the simplified expression of    in the form of single-fold integration and is valid only 

for small   .   

For the flame close to the fuel pool, namely          , both integrals    and    are of 

order      as readily deduced from (D2) and (D10).  

 

Appendix E.  Determination of    

 In Chuah et al.’s theory, the vortical flow is modelled by a Burgers vortex [3], whose stream 

function contains a second-order power function of the radial coordinate. To account for the stronger 

vortical flow of firewhirls, Klimenko and Williams proposed a power-law vortex containing a 

Burgers vortex core to eliminate the velocity singularity at the axis [18]. In the present study, the 

piecewise generalized power-law vortex model, which was proposed and discussed in detail by Yu 

and Zhang [20] in their recent theory, was adopted and is written in the form of 

    
                                      
  
                    

  (E1) 

where    is the inner core radius, and      is to be determined by conservation laws and boundary 

conditions. The exponent       characterizes the flow within the vortex core, and       

accounts for the deviation of the vortical flow from the Burgers vortex.  

Differentiating (E1) with respect to   and  , we have the velocity components given by 

 
    

    
                                     

     
                     

  (E2) 

 
    

                                          
   

                       
  (E3) 

By transforming    and    back to the physical coordinates, we can verify that the velocity field 

satisfies the continuity equation [20], indicating that the power-law vortex in the  -  space is 

physically reasonable.  
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Comparing the flame height derived from the far-field similarity solution, Equation (57), to that 

from the perturbation solution, Equation (47), we can conclude that the constant   plays the same 

role as the exponent of the generalized power-law vortex model, and thus we have  

 
     

 

 
             

 

 

    
 

 

 (E4) 

By using the velocity components in (E2) and (E3), we can analytically determine the exponent in 

the form of  

 
                     

  
   

   
  (E5) 

which is identical to that given by Yu and Zhang [20]. Further determination of the precise value of 

   requires experimental data for velocity measurement of firewhirls, which are currently 

unavailable in literature. Klimenko and William suggested              according to their 

constant-density strong vortex model with a compensating regime. 
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Figure 1. Approximate flame shapes at different Lewis numbers. The solid curves represent the 

results from Equation (39), which is the exact, implicit solution of flame shape. The dashed curves 

represent the results from Equation (44), which the approximate, explicit solution of flame shape. 

The dotted curves indicate that the extension of Equation (44) to the region close to liquid pool will 

cause physically unrealistic turning points. 
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Figure 2. Effects of equal but non-unity Lewis numbers on the flame shape. 

 




