The following publication Huang, Y. P., Zhong, J., Chen, J., Yan, C. H., Zheng, Y. P., & Wen, C. Y. (2018). High-frequency ultrasound imaging of tidemark in vitro in advanced knee osteoarthritis. Ultrasound in Medicine & Biology, 44(1), 94-101 is available at https://doi.org/10.1016/ j.ultrasmedbio.2017.08.1884

- 1 Title: High frequency ultrasound imaging of tidemark ex vivo in advanced knee
- 2 osteoarthritis
- 3 Yan-Ping Huang^{a, b}, Jin Zhong^a, Jie Chen^{a, c}, Chun-Hoi Yan^d, Yong-Ping Zheng^a,
- 4 Chun-Yi Wen^{a, *}
- 5 ^a Interdisciplinary Division of Biomedical Engineering, Faculty of Engineering, The
- 6 Hong Kong polytechnic University, Hong Kong
- 7 ^b School of Electronic and Information Engineering, South China University of
- 8 Technology, Guangzhou, China
- 9 ^c Department of Orthopedics, Shanghai Institute of Traumatology and Orthopedics,
- 10 Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- ^d Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The
- 12 University of Hong Kong, Hong Kong
- 13 Emails: <u>hti.huang@connect.polyu.hk</u>, <u>jin.zhong@connect.polyu.hk</u>,
- 14 <u>alexchen01280128@gmail.com</u>, <u>yanchunhoi@gmail.com</u>, <u>ypzheng@ieee.org</u>,
- 15 <u>chunyi.wen@polyu.edu.hk</u>
- 16 * Correspondence: Dr. Chunyi Wen
- 17 Interdisciplinary Division of Biomedical Engineering

18	Faculty of Engineering, Hong Kong Polytechnic university
19	Tel: +852 34008898
20	Email: <u>chunyi.wen@polyu.edu.hk</u>

21 Abstract

High-frequency ultrasound imaging has been widely adopted for assessment of the 22 23 degenerative changes of articular cartilage in osteoarthritis (OA). Yet there were few 24 reports on its capability for evaluating subchondral bone. Here, we employed high 25 frequency ultrasound imaging (25 MHz) to examine the cartilage-bone interface ex vivo using the cylindrical osteochondral disks harvested from advanced human OA 26 27 knees, and compare the ultrasound roughness index (URI) derived from the raw 28 radiofrequency signals with micro-CT examination using the Spearman correlation (ρ). 29 URI of the cartilage-bone interface strongly correlated with the bone volume fraction of subchondral plate ($\rho = -0.73$, p < 0.001) besides bone mineral density ($\rho = -0.40$, p 30 = 0.020). The increased ultrasound roughness of cartilage-bone interface was in a 31 32 good agreement with the disruption of tidemark in OA histologically. In summary, we 33 demonstrated that high-frequency ultrasound is a promising imaging tool to evaluate 34 subchondral bone quality and quantity in OA. Keywords: Osteoarthritis; Articular cartilage; Subchondral bone; High frequency 35

36 ultrasound; Tidemark; Roughness

37 Introduction

38	Osteoarthritis (OA) is a prevalent chronic musculoskeletal disease, which affects
39	millions of old adults around the world. The hallmark of OA includes articular
40	cartilage loss and also subchondral bone disturbance (Li et al. 2013, Wen et al. 2014).
41	Clinically, X-ray imaging is commonly used for the diagnosis of OA and grading of
42	the severity of disease. However, plain x-radiography of OA knee could only depict
43	the macroscopic changes of bone and joint at the advanced stage of disease, such as
44	joint space narrowing, osteophytosis, subchondral bone sclerosis and cystic lesion
45	(Altman et al. 1986). Several MRI techniques have been well developed to assess the
46	morphology of cartilage and bone in OA (Eckstein et al. 2006, Ristow et al. 2009), but
47	the high cost of MRI examination and long scanning time for data acquisition limit its
48	application for screening of knee OA in the community. Arthroscopy is a minimally
49	invasive approach to provide the information about the surface of articular cartilage
50	directly, but it fails to probe the change in either deep layer of cartilage or subchondral
51	bone (Chaturvedi et al. 2017).
52	Clinical ultrasonography in the range of several MHz can be used for detection of

53 synovitis in arthritic joints; yet it was not sensitive enough to detect the early

54	degeneration of articular cartilage when such a relatively low frequency was chosen
55	(Wang et al. 2010). Considering the limitations of conventional ultrasonography, high
56	frequency ultrasound (normally > 20 MHz) has been adopted to offer a closer
57	inspection of the samples with a much higher resolution. Quite a few studies have
58	showed that ultrasonic signals coming from articular cartilage surface bear the
59	information related to the osteoarthritic change. The ultrasonic parameters such as
60	surface reflection coefficient and roughness index could reflect the quality of articular
61	cartilage and enable us to distinguish the normal and degenerated articular cartilage at
62	its early stage (Brown et al. 2008, Kiviranta et al. 2007, Mannicke et al. 2016,
63	Mannicke et al. 2014, Rohrbach et al. 2017, Saarakkala et al. 2006, Saarakkala et al.
64	2004, Wang et al. 2010, Wang et al. 2014).
65	Anatomically, non-calcified articular cartilage is connected with subchondral bone
66	through an osteochondral junction, which mainly consists of an intermediate calcified
67	cartilage layer with two interfaces, i.e. the tidemark on the cartilage side and the
68	cement line on the bone side. Osteochondral junction is most vulnerable for macro-
69	and micro-damages under mechanical stress, which will lead to tidemark disruption,
70	angiogenesis and invasion of sensory nerves and blood vessels from the subchondral

71	bone into the noncalcified cartilage in the initiation of OA (Suri and Walsh 2012).
72	Imaging of the osteochondral junction is desirable for early detection of OA.
73	Ultrasound has been proposed as a method to assess the cartilage and bone
74	simultaneously (Aula et al. 2010, Brown et al. 2008, Liukkonen et al. 2013, Niu et al.
75	2012, Saarakkala et al. 2006). The most commonly used parameters include the
76	ultrasound reflection and surface roughness from the two interfaces, i.e., the cartilage
77	surface and the cartilage-bone interface. However, few studies have tried to evaluate
78	the roughness of the cartilage-bone interface and to explore its association with
79	subchondral bone quality and quantity (Table 1).
80	In this study, we aimed to employ high frequency ultrasound for assessing the
81	cartilage-bone interface using the parameters of ultrasound reflection and roughness.
82	We hypothesized that the ultrasonic changes at the cartilage-bone interface measured
83	by high-frequency ultrasound was closely related to the subchondral bone quality and
84	quantity in the osteoarthritic joints.
85	Materials and Methods

86 Sample preparation

87 Institutional ethic committee approved all the experimental procedures (Ref No:

88	UW-09368) and informed consent was obtained from each patient in this study.
89	Osteochondral samples were collected from the tibial plateau of 10 patients (3 males,
90	7 females, age 72 \pm 9 years), who received total knee replacement surgery due to late
91	stage of knee OA, from February to April 2016 in one of the authors' institutes. Then
92	there were 3~4 osteochondral disks with a diameter of 10 mm being drilled from each
93	sample, with most of them harvested from the lateral side where more cartilage was
94	remained (Figure 1A&B). A total of 33 osteochondral disks were collected from all
95	the samples and frozen at -80°C before a series of experimental procedures, including
96	ultrasound, micro-computed tomography (micro-CT) and histological examinations.
97	Ultrasound Imaging
97 98	Ultrasound Imaging Osteochondral disks were immersed in the physiologic saline solution, thawed for
97 98 99	Ultrasound Imaging Osteochondral disks were immersed in the physiologic saline solution, thawed for at least 1 hour, and then fixed at the bottom of a container using some plastic clay
97 98 99 100	Ultrasound Imaging Osteochondral disks were immersed in the physiologic saline solution, thawed for at least 1 hour, and then fixed at the bottom of a container using some plastic clay (Blu-Tack, Bostik, Thomastown, Australia) for ultrasound measurement (Figure 1C).
97 98 99 100 101	Ultrasound Imaging Osteochondral disks were immersed in the physiologic saline solution, thawed for at least 1 hour, and then fixed at the bottom of a container using some plastic clay (Blu-Tack, Bostik, Thomastown, Australia) for ultrasound measurement (Figure 1C). Radiofrequency (RF) and B-mode ultrasound signals were collected using a linear
97 98 99 100 101 102	Ultrasound Imaging Osteochondral disks were immersed in the physiologic saline solution, thawed for at least 1 hour, and then fixed at the bottom of a container using some plastic clay (Blu-Tack, Bostik, Thomastown, Australia) for ultrasound measurement (Figure 1C). Radiofrequency (RF) and B-mode ultrasound signals were collected using a linear array transducer (MS550D, VisualSonics, Inc., Toronto, Canada) of a high-frequency
97 98 99 100 101 102 103	Ultrasound Imaging Osteochondral disks were immersed in the physiologic saline solution, thawed for at least 1 hour, and then fixed at the bottom of a container using some plastic clay (Blu-Tack, Bostik, Thomastown, Australia) for ultrasound measurement (Figure 1C). Radiofrequency (RF) and B-mode ultrasound signals were collected using a linear array transducer (MS550D, VisualSonics, Inc., Toronto, Canada) of a high-frequency ultrasound imaging system (Vevo LAZR, VisualSonics, Inc., Toronto, Canada).
97 98 99 100 101 102 103 104	Ultrasound Imaging Osteochondral disks were immersed in the physiologic saline solution, thawed for at least 1 hour, and then fixed at the bottom of a container using some plastic clay (Blu-Tack, Bostik, Thomastown, Australia) for ultrasound measurement (Figure 1C). Radiofrequency (RF) and B-mode ultrasound signals were collected using a linear array transducer (MS550D, VisualSonics, Inc., Toronto, Canada) of a high-frequency ultrasound imaging system (Vevo LAZR, VisualSonics, Inc., Toronto, Canada). Multiple focuses could be set for imaging but for the ease of RF signal processing, a

106	the second bright line seen in the ultrasound image of the disk. The -3 dB bandwidth
107	was 17 MHz to 33 MHz with a central frequency of 25 MHz for the chosen transducer,
108	which was experimentally determined by measuring the reflected pulse from a
109	polished steel plate. Axial and lateral resolutions of the transducer were 40 μm and 80
110	μ m, respectively, according to information from manufacturer. The transducer could
111	be translated in three directions and rotated when fixed in a positioning system
112	(Figure 1C) and it was adjusted to obtain a maximally reflected signal from the
113	cartilage surface before data collection, indicating an optimized perpendicularity
114	between ultrasound beam and cartilage surface. For spatial averaging, the sample
115	container was horizontally rotated along the center of the disk and the scanning
116	process was repeated at four scans with an angular interval of 45° in the horizontal
117	plane (Figure 1D). Average results from the four scans were used to represent the
118	properties of that sample. Ultrasound signals were digitized as 32-bit floating data at
119	an equivalent sampling rate of 1000 MHz and stored for off-line processing as
120	described in the next part.
121	Extraction of ultrasound parameters for quantitative analyses

122 Five parameters, i.e., integrated reflection coefficient (IRC) and ultrasound123 roughness index (URI) of the cartilage surface, and the tidemark, respectively and

124	cartilage thickness were calculated from the obtained ultrasound signals. Details for
125	extraction of parameters can be found in our previous publications (Wang et al. 2010,
126	Wang et al. 2014) and related calculation methods of thickness, IRC and URI are
127	given in Table 2. In brief, the thickness of articular cartilage was determined by
128	multiplying the time of flight of ultrasound inside the cartilage layer (Figure 2A) by a
129	constant speed of sound of articular cartilage (1620 m/s) (Myers et al. 1995). For IRC,
130	it reflects the strength of ultrasound reflection at tissue interface (Figure 2A), because
131	of acoustic impedance difference on its both sides. The reflection spectrum was firstly
132	corrected by a calibration spectrum measured from a reference steel plate placed at
133	the same distance and then spatially averaged, before finally being averaged within
134	the -3 dB bandwidth to obtain IRC. A window with length of 0.4 μ s (about 400 points)
135	was used to gate the signal for spectral analysis. For the tidemark, sample specific
136	reflection at the cartilage surface and attenuation caused by the overlying cartilage
137	layer were also corrected (Saarakkala et al. 2006) using an average attenuation
138	coefficient of 0.27 dB/MHz/mm (Nieminen et al. 2004). For URI, a surface profile
139	was firstly obtained by detecting the surface point from the RF signal, subtracted by
140	its natural curvature, and then a standard deviation was calculated to represent the

141	surface roughness of the interface. A total number of 148 lines were obtained for the
142	scan length of 4 mm so the interval between each two lines was 27 μ m. Please be
143	noted that there might be some degradation for the performance of URI measurement
144	at the cartilage surface than the tidemark because the focus was placed at the tidemark
145	interface. Typical images of the disk and the detected interface profiles are shown in
146	Figure 2B. In order to be different from that of the cartilage, a subscription of "bone"
147	was used to indicate the ultrasonic parameter measured from the tidemark. All
148	ultrasound parameters were calculated using custom-written codes using Matlab
149	(V.2014b, The Mathworks Inc., Natick, MA, USA) based on the RF data collected
150	from the osteochondral disks.

151 Micro-CT examination

Micro-CT was performed to obtain the 3D structure of the subchondral bone for assessing its bone quality and quantity after ultrasound measurement using our established protocol (Wen et al. 2013). In brief, osteochondral disks were scanned by a micro-CT system (VivaCT 40, Scanco Medical AG, Bruttisellen, Switzerland) with an isotropic voxel size of $21 \times 21 \times 21 \ \mu m^3$. Bone 3D structures were generated and quantitatively analyzed via the associated micro-CT software (Scanco Medical AG) for both the subchondral plate and subchondral trabecular bone. For the subchondral
plate, bone mineral density (BMD), bone volume fraction (BV/TV) and cortical
thickness (Ct.Th) were measured. For trabecular bone, the following bone parameters
BME, BV/TV, trabecular thickness (Tb.Th), trabecular separation (Tb.Sp) and
connection density (Conn.D), were measured.

163 Histological examination

After micro-CT scanning, the samples were decalcified and embedded in wax sequentially for routine histopathological examination using our established protocol (Wen et al. 2013). The samples were positioned along the direction of ultrasound

imaging and sectioned at $5\mu m$ in thickness for hematoxylin and eosin staining.

168 Statistical analysis

169 Non-parametric Spearman correlation was used to analyze the relationship between

170 ultrasound and micro-CT bone parameters and also between ultrasound parameters of

- 171 cartilage and tidemark. A confidence level of p < 0.05 was used to indicate a
- 172 significant difference or correlation. All the statistical analyses were performed with
- 173 SPSS (V.21, IBM SPSS Inc., Chicago, USA).

174 **Results**

175	Ultrasound, micro-CT and histological imaging of cartilage-bone interface
176	As shown in Figure 3, the ultrasound images delineated two interfaces in human
177	knee OA samples. One is the water - articular cartilage surface interface, and the other
178	is the cartilage-bone interface. High-frequency ultrasound images of disintegrated
179	cartilage-bone interface in knee OA samples were consistent with the rough surface of
180	subchondral bone plate in micro-CT images, and also the irregular, discontinuous or
181	double tidemark histopathologically.
182	Ultrasound roughness index of cartilage-bone interface reflected subchondral
183	bone quality and quantity
184	IRC were -40.1 \pm 3.6 dB at articular cartilage surface and -24.0 \pm 7.7 dB at
185	tidemark (the cartilage-bone interface) in all knee OA samples ($n = 33$). While URI of
186	the cartilage surface and the tidemark was 64.1 \pm 25.8 $\mu m,$ and 36.8 \pm 7.4 μm
187	respectively. The thickness of articular cartilage measured under high-frequency
188	ultrasound was 2.66 ± 0.79 mm.
189	Earth a completion and the DC significant descentles a second to the descent day of the second large
	For the correlation analysis, IRC significantly correlated with URI of the cartilage

and micro-CT parameters were listed in Table 3. Most of the ultrasound parameters of the cartilage interface had no significant correlations with the micro-CT parameters of the subchondral bones, except a weak association between URI and cortical thickness $(\rho=0.41, p=0.017)$. For IRC_{bone}, it was found to have no significant correlation with the subchondral

plate (p > 0.05), but with some of the trabecular bone parameters, including Tr.Sp ($\rho =$ 196 -0.40, p = 0.020), Tr.N ($\rho = 0.44$, p = 0.011) and Conn.D ($\rho = 0.44$, p = 0.011). For 197 URIbone, it was significantly correlated to most of the bone parameters, including 198 BMD ($\rho = -0.40$, p = 0.020), BV/TV ($\rho = -0.73$, p < 0.001) and Ct.Th ($\rho = -0.45$, p = -0.45, p = -199 0.008) of the subchondral bone plate and BMD ($\rho = -0.43$, p = 0.012), BV/TV 200 (ρ =-0.39, p = 0.025) and Tb.Th (ρ =-0.52, p = 0.002) of the subchondral trabecular 201 bone. The strongest correlation between ultrasound and micro-CT parameters was 202 found between URI_{bone} and BV/TV of the subchondral bone plate (ρ^2 =-0.53, p<0.001) 203 204 (Figure 4B).

205 Discussion

The present study adopted two parameters of the second interface (IRC_{bone} and
URI_{bone}) derived from the high frequency ultrasound imaging of osteochondral disks

208 for non-destructive evaluation of the microscopic change at the osteochondral junction. It is well known that the reflection of ultrasonic wave from the 209 210 osteochondral junction was mainly from the interface between calcified and non-calcified cartilage, i.e. the tidemark (Modest et al. 1989). In this sense, both 211 IRCbone and URIbone mainly reflected the changes of tidemark in OA. 212 Comparisons between previous and present studies were summarized in Table 1. 213 Ultrasound was once proposed for the measurement of subchondral bone in previous 214 studies. In order to penetrate deeper in the bone, an ultrasound frequency as low as 5 215 MHz was proposed for the measurement of cartilage and bone simultaneously (Aula 216 et al. 2010). The integrated backscattering of the bone, rather than IRCbone, was found 217 218 in a significant correlation with the bone mineral density of the subchondral plate. 219 Possibly due to poor resolution, URI of the tidemark was not specifically investigated in that study. Compared with previous studies, we adopted the parameters obtained 220 from high frequency ultrasound for the assessment of cartilage and subchondral bone 221 quality in human OA samples. We firstly provided the evidence suggesting URIbone as 222 223 an indicator for subchondral bone quality and quantity.

224 Mounting evidence has shown correlations between subchondral bone structure

225	and articular cartilage degradation in early OA using different imaging modalities
226	such as MRI (Bolbos et al. 2008). We also performed the correlation analyses under
227	ultrasound. Compared to IRC_{bone} , URI_{bone} - a morphological parameter of the
228	tidemark was more closely associated with the subchondral bone plate and underneath
229	trabecular bone mass and microstructure although most of the correlation coefficients
230	were weak ($\rho^2 < 0.2$). Particularly, URI _{bone} strongly correlated with the bone quantity
231	(BV/TV) of the subchondral bone plate ($\rho^2 > 0.5$) in addition to weak correlation with
232	the bone quality (BMD) ($\rho^2 < 0.2$). Multivariate regression analysis further proved
233	that BV/TV of the subchondral bone plate was a major independent variable to
234	determine the roughness of tidemark as indicated by URIbone (data not presented here).
235	However, as shown in Figure 4, it was noted that URIbone was actually negatively
236	associated with subchondral plate BV/TV in a non-linear manner. The decrease of
237	subchondral plate BV/TV indicated a loss of structural integrity and an increase of
238	subchondral plate porosity, which might allow new blood vessels and nerves growing
239	and breaching the osteochondral junction in the early stage of OA (Suri and Walsh
240	2012). Our findings prompt the needs for further investigation into the temporal
241	changes of URIbone in the process of OA development to test whether URIbone could be

a robust imaging biomarker for early OA.

Tidemark serves as an interface between the uncalcified cartilage and the 243 subchondral bone. Therefore, the changes of tidemark in OA detected by URIbone 244 might reflect not only the disturbance of subchondral bone but also articular cartilage 245 degradation, particularly that in the deep zone. It has been demonstrated recently that 246 the hypertrophic changes and apoptosis of articular chondrocytes could also be 247 measured based on ultrasound measurement (Rohrbach et al. 2017). Further 248 investigation is in need to look into the weight of bone and cartilage changes that 249 might contribute to the roughness change of tidemark under ultrasonic measurement 250 (Mannicke et al. 2014). More parameters might also be considered in future 251 ultrasound measurement to study different aspects of changes in OA related to various 252 253 parts of the structure including cartilage, bone and junction. 254 Originally, we expected that IRCbone might also change with subchondral bone as a 255 result of the acoustic impedance at the tidemark and cement line in the cartilage-bone 256 interface. However, there was a lack of biophysically meaningful and statistically 257 significant correlations between IRCbone and subchondral bone changes in knee OA samples although a few weak correlations were coincidentally found between IRCbone 258

259	and trabecular bone parameters (Tr.Sp, Tr.N and Conn.D). The propagation path of
260	ultrasonic wave through the surface and different layers of OA cartilage would affect
261	the calculation of IRC_{bone} . Theoretically, the effect should be precisely corrected yet it
262	was very difficult to measure practically. Taken together, URI_{bone} appeared to be a
263	relatively more reliable imaging parameter for the assessment of tidemark in OA.
264	There were some major limitations in the current study. Firstly, a fixed attenuation
265	coefficient was used for correction in calculation of IRC _{bone} , which was not precise
266	enough to obtain the true value of this parameter and might affect the practical utility
267	of this parameter. Secondly, the sample number $(n = 33)$ was still quite small, which
268	might not be large enough to generalize our study conclusions. Thirdly, this study was
269	limited to a cross-sectional observation and all of samples were from late-stage of OA
270	knees, which might be the partial reason for a relatively low correlation between
271	measured ultrasound parameters of tidemark and bone micro-CT parameters. It
272	prompts the needs to deploy it in a longitudinal study to generalize our findings. Last
273	but not least, the clinical value of the current imaging approach remains questionable
274	at this stage although it could be employed ex vivo successfully. High frequency
275	ultrasound, while having good resolution, cannot penetrate deep in soft tissue. It

276	remains a major practical issue to be addressed as an in-vivo non-invasive
277	measurement. Intra-articular measurement through an arthroscopic portal using a
278	miniaturized transducer could be an alternative way to identify the microscopic
279	changes at the tidemark in the cases with severe pain but lack of obvious radiological
280	changes (Huang and Zheng 2009, Liukkonen et al. 2014, Viren et al. 2009). However,
281	arthroscopy is still a minimally invasive procedure, which is not appropriate for
282	screening of early OA (Kiviranta et al. 2007).

283 Conclusions

284 The feasibility of using high frequency ultrasound imaging for quantitatively 285 assessing osteochondral junctions in knee osteoarthritis has been demonstrated ex vivo in this study. The results indicated that high-frequency ultrasound can be a potential 286 287 tool to measure the morphological (particularly the roughness index) change of the 288 osteochondral junction, particularly the tidemark, as reflection of change of the subchondral bone quality or deep cartilage degradation in osteoarthritis. Future 289 experiment is needed to demonstrate that this method can be used as a clinical tool to 290 measure the change of articular cartilage and subchondral bone simultaneously in 291 osteoarthritis in vivo. 292

293 Acknowledgement

- Hong Kong Health and Medical Research Fund Research Fellowship Scheme (Ref
- 295 No. #01150087) supported this study.

296 References

297	Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, Christy W, Cooke T,
298	Greenwald R, Hochberg M. Development of criteria for the classification and
299	reporting of osteoarthritis: classification of osteoarthritis of the knee. Arthritis
300	Rheum. 1986; 29:1039-49.
301	Aula AS, Toyras J, Tiitu V, Jurvelin JS. Simultaneous ultrasound measurement of
302	articular cartilage and subchondral bone. Osteoarthritis Cartilage 2010;
303	18:1570-76.
304	Bolbos RI, Zuo J, Banerjee S, Link TM, Ma CB, Li XJ, Majumdar S. Relationship
305	between trabecular bone structure and articular cartilage morphology and
306	relaxation times in early OA of the knee joint using parallel MRI at 3 T.
307	Osteoarthritis Cartilage 2008; 16:1150-59.
308	Brown CP, Hughes SW, Crawford RW, Oloyede A. Joint laminate degradation
309	assessed by reflected ultrasound from the cartilage surface and osteochondral
310	junction. Phys. Med. Biol. 2008; 53:4123-35.
311	Chaturvedi V, Thabah MM, Ravindran V, Kiely PDW. Medical arthroscopy: A tool for
312	diagnosis and research in rheumatology. Int. J. Rheum. Dis. 2017; 20:145-53.

313	Eckstein F, Burstein D, Link TM. Quantitative MRI of cartilage and bone:
314	degenerative changes in osteoarthritis. NMR Biomed. 2006; 19:822-54.
315	Huang YP, Zheng YP. Intravascular ultrasound (IVUS): a potential arthroscopic tool
316	for quantitative assessment of articular cartilage. Open Biomed. Eng. J. 2009;
317	3:13-20.
318	Kiviranta P, Toyras J, Nieminen MT, Laasanen MS, Saarakkala S, Nieminen HJ, Nissi
319	MJ, Jurvelin JS. Comparison of novel clinically applicable methodology for
320	sensitive diagnostics of cartilage degeneration. Eur. Cell Mater. 2007; 13:46-55.
321	Li G, Yin J, Gao J, Cheng TS, Pavlos NJ, Zhang C, Zheng MH. Subchondral bone in
322	osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res.
323	Ther. 2013; 15:223.
324	Liukkonen J, Hirvasniemi J, Joukainen A, Penttilä P, Virén T, Saarakkala S, Kröger H,
325	Jurvelin JS, Töyräs J. Arthroscopic ultrasound technique for simultaneous
326	quantitative assessment of articular cartilage and subchondral bone: an in vitro
327	and in vivo feasibility study. Ultrasound Med. Biol. 2013; 39:1460-68.
328	Liukkonen J, Lehenkari P, Hirvasniemi J, Joukainen A, Viren T, Saarakkala S,
329	Nieminen MT, Jurvelin JS, Toyras J. Ultrasound arthroscopy of human knee

330	cartilage and subchondral bone in vivo. Ultrasound Med. Biol. 2014; 40:2039-47.
331	Mannicke N, Schone M, Liukkonen J, Fachet D, Inkinen S, Malo MK, Oelze ML,
332	Toyras J, Jurvelin JS, Raum K. Species-independent modeling of high-frequency
333	ultrasound backscatter in hyaline cartilage. Ultrasound Med. Biol. 2016;
334	42:1375-84.
335	Mannicke N, Schone M, Oelze M, Raum K. Articular cartilage degeneration
336	classification by means of high-frequency ultrasound. Osteoarthritis Cartilage
337	2014; 22:1577-82.
338	Modest VE, Murphy MC, Mann RW. Optical verification of a technique for in-situ
339	ultrasonic measurement of articular-cartilage thickness. J. Biomech. 1989;
340	22:171-76.
341	Myers SL, Dines K, Brandt DA, Brandt KD, Albrecht ME. Experimental assessment
342	by high-frequency ultrasound of articular cartilage thickness and osteoarthritic
343	changes. J. Rheumatol. 1995; 22:109-16.
344	Nieminen HJ, Saarakkala S, Laasanen MS, Hirvonen J, Jurvelin JS, Töyräs J.
345	Ultrasound attenuation in normal and spontaneously degenerated articular
346	cartilage. Ultrasound Med. Biol. 2004; 30:493-500.

347	Niu HJ, Wang Q, Wang YX, Li DY, Fan YB, Chen WF. Ultrasonic reflection
348	coefficient and surface roughness index of OA articular cartilage: relation to
349	pathological assessment. BMC Musculoskelet. Disord. 2012; 13:34.
350	Ristow O, Steinbach L, Sabo G, Krug R, Huber M, Rauscher I, Ma B, Link TM.
351	Isotropic 3D fast spin-echo imaging versus standard 2D imaging at 3.0 T of the
352	knee - image quality and diagnostic performance. Eur. Radiol. 2009; 19:1263-72.
353	Rohrbach D, Inkinen SI, Zatloukalová J, Kadow-Romacker A, Joukainen A, Malo
354	MK, Mamou J, Töyräs J, Raum K. Regular chondrocyte spacing is a potential
355	cause for coherent ultrasound backscatter in human articular cartilage. J. Acoust.
356	Soc. Am. 2017; 141:3105-16.
357	Saarakkala S, Laasanen MS, Jurvelin JS, Töyräs J. Quantitative ultrasound imaging
358	detects degenerative changes in articular cartilage surface and subchondral bone.
359	Phys. Med. Biol. 2006; 51:5333-46.
360	Saarakkala S, Toyras J, Hirvonen J, Laasanen MS, Lappalainen R, Jurvelin JS.
361	Ultrasonic quantitation of superficial degradation of articular cartilage.
362	Ultrasound Med. Biol. 2004; 30:783-92.
363	Suri S, Walsh DA. Osteochondral alterations in osteoarthritis. Bone 2012; 51:204-11.

364	Viren T, Saarakkala S, Kaleva E, Nieminen HJ, Jurvelin JS, Toyras J. Minimally
365	invasive ultrasound method for intra-articular diagnostics of cartilage
366	degeneration. Ultrasound Med. Biol. 2009; 35:1546-54.
367	Wang SZ, Huang YP, Saarakkala S, Zheng YP. Quantitative assessment of articular
368	cartilage with morphologic, acoustic and mechanical properties obtained using
369	high-frequency ultrasound. Ultrasound Med. Biol. 2010; 36:512-27.
370	Wang Y, Huang YP, Liu A, Wan W, Zheng YP. An ultrasound biomicroscopic and
371	water jet ultrasound indentation method for detecting the degenerative changes of
372	articular cartilage in a rabbit model of progressive osteoarthritis. Ultrasound Med.
373	Biol. 2014; 40:1296-306.
374	Wen C, Lu WW, Chiu KY. Importance of subchondral bone in the pathogenesis and
375	management of osteoarthritis from bench to bed. J. Orthop. Translat. 2014;
376	2:16-25.
377	Wen CY, Chen Y, Tang HL, Yan CH, Lu WW, Chiu KY. Bone loss at subchondral
378	plate in knee osteoarthritis patients with hypertension and type 2 diabetes
379	mellitus. Osteoarthritis Cartilage 2013; 21:1716-23.
380	

382 Figure Captions List:

Figure 1: (A) A schematic diagram showing where osteochondral disks of 10 mm in 383 diameter were extracted for experimental test; (B) A picture of an osteochondral disk 384 with articular cartilage at the top and subchondral bone at the bottom; (C) A schematic 385 diagram showing how an osteochondral disk was positioned for ultrasound 386 measurement and (D) the four scan directions for an osteochondral disk. Please refer 387 388 to the corresponding text for details. Figure 2: (A) Left: interactions of ultrasound beam (in red) with the two main 389 390 interfaces, i.e. the cartilage surface and the cartilage bone interface; Right: typical ultrasound signal of an osteochondral disk where the two echoes from the two 391 392 interfaces are shown; (B) Left: a typical ultrasound image showing where the two interfaces (in green) are detected; Right: the surface profile signals obtained in 393 394 ultrasound measurement where ultrasound roughness index can be further calculated. 395 Figure 3: Typical results for ultrasound imaging (top row), micro-CT (middle row) and histology (bottom row) among different osteochondral disks with different 396 397 morphologies of the tidemark in human knee OA samples. (A) Smooth tidemark, (B) double tidemark and (C) (D) intermediate levels of tidemark smoothness. Scale bars 398

- 399 indicate a distance of 500 μ m.
- 400 Figure 4: (A) Spearman correlation ($\rho = -0.55$) between the cartilage surface
- 401 roughness (URI) and the integrated reflection coefficient (IRC) from the cartilage
- 402 surface and (B) Spearman correlation ($\rho = -0.73$) between ultrasound roughness index
- 403 of the cartilage-bone interface (URI_{bone}) and the bone mineral density of the
- 404 subchondral bone plate (BMD_{plate}).

405 Tables:

406 Table 1: Comparison between this study and some previous work on using ultrasound

		US freq (MHz)	US parameters				Poforono
Study	Specime n, Status		Reflecti on - C	Reflectio n - CB	Roughne ss - C	Roughne ss - CB	e method for bone
Brown et al. (2008)	Animal, OA	10			×	×	×
Saarakkala et al. (2006) Niu et al. (2012)	Animal, OA	20 55				×	×
Aula et al. (2010)	Animal, Normal	5				×	pQCT
Liukkonen et al. (2013)	Human, Normal	9				×	μCΤ
This study	Human, OA	25					μCT

407 for simultaneous cartilage and bone assessment

408 Abbreviations: US – ultrasound, C – Cartilage surface, CB – Cartilage-bone interface
409 (tidemark)

Cartilage thickness	IRC	URI
$\frac{cT_{tof}}{2}$	$\frac{1}{\Delta f} \int_{f_1}^{f_2} R_c^{dB} df$	$\sqrt{\frac{1}{m}\sum_{i=1}^{m}(d_i-\bar{d})^2}$

410 Table 2: A list of ultrasound parameters measured from the osteochondral disk

411 *c*: speed of ultrasound in cartilage, T_{tof} : time of flight between the two interface 412 echoes

413 *IRC*: integrated reflection coefficient, $R_c^{dB}(f)$ is the corrected frequency-dependent 414 reflection coefficient in unit of dB, Δf is the -3 dB bandwidth from $f_1 = 17$ MHz to 415 $f_2 = 33$ MHz. A window with length of 0.4 µs was used to gate the signal at the two 416 interfaces for spectral analysis;

417 URI: ultrasound roughness index, m = 148 is the total number of points for the surface 418 profile used in the current study, d_i is the surface position at point *i* and \bar{d} is the

- 419 smoothed surface profile after compensating the natural curvature of the cartilage
- 420 surface;

Acoustic	Micro-CT parameters of subchondral plate			Micro-CT parameters of subchondral trabecular bone					
parameters									
	BMD	BV/TV	Ct.Th	BMD	BV/TV	Tb.Sp	Tb.Th	Tb.N	Conn.D
IRC	-0.20	-0.10	-0.22	-0.15	-0.15	0.11	-0.02	-0.17	-0.23
URI	0.13	0.18	0.41*	0.38	0.34	-0.27	0.33	0.33	0.34
Cart. Th	0.01	-0.002	0.29	0.02	-0.02	-0.24	-0.11	0.29	0.28
IRCbone	-0.12	0.07	0.17	0.24	0.25	-0.40 *	0.10	0.44 *	0.44 *
URIbone	-0.40 *	-0.73 ***	-0.45 **	-0.43 *	-0.39 *	0.33	-0.52 **	-0.30	-0.26

421 Table 3: Spearman correlation (ρ) between the measured acoustic parameters and micro-CT parameters

422 Level of significance: * p < 0.05, ** p < 0.01, *** p < 0.001