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Abstract: This paper investigates the impacts of non-uniformities of pipe diameter (i.e., an
inhomogeneous cross-sectional area along pipelines) on transient wave behavior and propagation in
water supply pipelines. The multi-scale wave perturbation method is firstly used to derive analytical
solutions for the amplitude evolution of transient pressure wave propagation in pipelines, considering
regular and random variations of cross-sectional area, respectively. The analytical analysis is based
on the one-dimensional (1D) transient wave equation for pipe flow. Both derived results show
that transient waves can be attenuated and scattered significantly along the longitudinal direction
of the pipeline due to the regular and random non-uniformities of pipe diameter. The obtained
analytical results are then validated by extensive 1D numerical simulations under different incident
wave and non-uniform pipe conditions. The comparative results indicate that the derived analytical
solutions are applicable and useful to describe the wave scattering effect in complex pipeline systems.
Finally, the practical implications and influence of wave scattering effects on transient flow analysis
and transient-based leak detection in urban water supply systems are discussed in the paper.

Keywords: water supply pipeline; transient wave; non-uniformities; wave scattering; transient
modelling; leak detection

1. Introduction

Wave scattering has been commonly studied in shallow water fields where the water waves
propagate through the channel bottom with randomly varying bars, as depicted in Figure 1 [1].
Experimental results for such cases together with some theoretical considerations are investigated
and discussed in [2,3]. The results in these studies showed that, with the existence of random
non-uniformities (inhomogeneities) of channel bottom elevation, eventually the amplitude of the
generated wave decreases along the longitudinal direction and it tends to zero if the longitudinal
distance is large enough.

Similar random non-uniformities can be found in pipelines (closed conduits) such as random
variations in the pipe cross-sectional area (pipe diameter), with respect to length, developing with age
(refer to Figure 2). In practical systems, many factors can attribute to the random non-uniformities
of pipe cross-sectional area, for example, bio-film build up, corrosion, and deposition in water
supply pipes, drainage pipes, crude oil pipes, and arterial systems. In particular, in water pipelines,
non-uniformities of pipe diameter may be induced by various different factors as shown in Figure 3,
including corrosion, sediment, junctions and complex connections.
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Figure 1. Bottom bar profile in Chesapeake Bay (adapted from [1]). 

 
Figure 2. Cross-sectional views of aged water pipelines (adapted from [4]). 

 

Figure 3. Different factors attributed to non-uniformities of pipe diameter (pictures adapted from 
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From the perspective of steady flow in water piping systems, pipe diameter non-uniformities may
cause additional energy losses and, thus, require more pumping capacity. On the other hand, from the
perspective of unsteady flow, random variations in pipe diameters can result in random reflections
and damping of waterhammer waves. So far, the phenomenon of wave scattering in water piping
systems and its implications for the structural integrity and robustness of such systems are still not
well understood. Recent numerical and experimental studies [4,5] have demonstrated the significant
influence of irregular pipe diameters (e.g., roughness and blockage) on the transient wave propagation
behaviors, and also on the transient-based defect detection methods (e.g., leakage and blockage).
Moreover, their results also indicate that wave scattering by pipe diameter non-uniformities is more
important and influential than the corresponding friction effect induced by roughness/irregularities
to the wave damping and reflection in both the time and frequency domains. Therefore, an in-depth
understanding of such wave scattering effects due to pipe diameter non-uniformities is necessary and
critical to transient modelling, analysis and application in water supply pipe systems.

In fact, the wave scattering phenomenon and its relevant influence has been widely studied
in many different application fields in the literature such as condensed matter, electromagnetism,
seismology and fluid mechanics. For example, a classic paper [6] showed that random impurities have
an important consequence on the propagation of electrons in a dirty crystal: the diffusive motion of
electrons is terminated and all electrons become localized (this phenomenon is known as Anderson
localization). Anderson’s idea was used later in the analysis of the propagation of surface waves over
a random seabed. Experimental results from previous studies [1,2] demonstrated the localization
of water waves over the rough bottom. The analogy between water wave dynamics and Anderson
localization is pointed out in [3]. Furthermore, the behavior and propagation of slowly modulated
waves in random media has been studied in [7]. However, so far there is no such systematic analysis
and theoretical investigation of the transient wave scattering phenomenon in urban water supply
pipelines, although it is widely observed from laboratory experiments and field tests in this research
area [4,5,8].

To investigate the potential wave-scattering phenomenon induced by random pipe diameter
non-uniformities (i.e., pipe cross-sectional area) and to understand its impact on the transient wave
propagation in water piping systems, in the present paper the method of multi-scale perturbation from
the literature is firstly applied to one-dimensional (1D) waterhammer equations, which describe the
flow dynamics in a pipe under the additional assumption that the pipe cross-sectional area (diameter)
varies in a random manner along the longitudinal coordinate. Two cases—regular and random pipe
non-uniformities—are considered for the analytical derivations. The obtained analytical results are
then compared and validated by numerical simulations, which are achieved by the step-discretization
approximation for different pipe non-uniformities. Thereafter, further discussion of the practical
implications of the results and findings in this study to transient system modelling and pipe leak
detection is performed in the paper. Finally, relevant conclusions are drawn at the end of this study.

2. Problem Statement and Study Framework

In realistic water supply pipelines, the non-uniformities of pipe diameters could be formed
by various different reasons, as shown in Figure 3, resulting in relatively random geometries and
distributions of such non-uniformities, as sketched in Figure 4a. In many theoretical studies (e.g., [4,5]),
these random non-uniformities are usually treated approximately as different regular shapes or their
combinations, in order to conduct mathematical operations and numerical computations. For example,
Figure 4b with a relatively smooth variation (e.g., sinusoidal shape) and Figure 4c with relatively
sharp variation (e.g., step shape) are two commonly used approximations. From the perspective of
mathematics, the complicated random situation in Figure 4a could be a superposition of different
numbers of simplified cases in Figure 4b,c. Therefore, it is a good start to investigate and understand
the simplified cases, which can provide insights and a basis to explore and explain more complicated
situations, such as the random case in Figure 4a.
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Figure 4. Sketch of different types of pipe diameter non-uniformities (side-sectional profile): (a) 
realistic and random situation; (b) regular approximation by sinusoidal variation; (c) regular 
approximation by step variation. 
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wave behavior and propagation in non-uniform pipelines in urban water supply systems. 
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coordinate. In the numerical simulations, the wall shear stress is modelled by the Darcy–Weisbach 
formula, where only the steady state friction is included. The method of characteristics (MOC) is 
used for the 1D numerical simulations in this study, and the details for implementing this numerical 
scheme into above transient model can refer to the classic textbooks and references in this field 
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highlight the effect of wave scattering during transient flow process.  

Figure 4. Sketch of different types of pipe diameter non-uniformities (side-sectional profile): (a) realistic
and random situation; (b) regular approximation by sinusoidal variation; (c) regular approximation by
step variation.

To this end, in this study, the regular case of pipe diameter non-uniformities in Figure 4b is used
for preliminary analytical analysis for transient wave propagation in pipelines, while the random case
in Figure 4a is applied for further analytical derivations so as to obtain the complete characteristics
of transient flows in realistic pipelines. Thereafter, the other regular case in Figure 4c is adopted
as a discrete approximation of a random case in order to achieve numerical simulations for the
validation of the derived analytical results in this study. The detailed settings for such numerical
simulations are provided later in the part covering numerical applications. The obtained analytical and
numerical results are finally discussed for an in-depth understanding of the transient wave behavior
and propagation in non-uniform pipelines in urban water supply systems.

3. Models and Methods

For clarity, the main models and analysis methods used in this study for investigating transient
wave scattering effect in water supply pipelines are summarized as follows.

3.1. One-Dimentional (1D) Transient Model

The continuity and momentum equations of the 1D waterhammer model for compressible pipe
flow with pipe diameter non-uniformities (i.e., varying pipe cross-sectional area) by neglecting the
friction and visco-elastic effects are considered herein [4,9],

∂(ρA)

∂t
+

∂(ρQ)

∂x
= 0, (1)

∂(ρQ)

∂t
+ A

∂P
∂x

+ τwπD = 0, (2)

where ρ is fluid density; A = A(x) is pipe cross-sectional area; D = D(x) is pipe diameter; Q = Q(x, t) is
pipe discharge; P = P(x, t) is pressure; τw is wall shear stress; x is spatial coordinate; and t is temporal
coordinate. In the numerical simulations, the wall shear stress is modelled by the Darcy–Weisbach
formula, where only the steady state friction is included. The method of characteristics (MOC) is used
for the 1D numerical simulations in this study, and the details for implementing this numerical scheme
into above transient model can refer to the classic textbooks and references in this field [9,10]. While in
the analytical analysis, the friction effect (wall shear stress term in the equation) is excluded due to the
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mathematical complexity and difficulty of analytical derivation, and so as to highlight the effect of
wave scattering during transient flow process.

For analytical derivation, the continuity and momentum Equations (1) and (2) can be further
lumped into wave equation form through following transformation,

∂2P
∂t2 = −ρa2

A
∂2Q
∂x∂t

, (3)

ρ
∂2Q
∂x∂t

= − ∂

∂x

(
A

∂P
∂x

)
. (4)

where a is acoustic wave speed. After the mathematical elimination operation, the result becomes,

A
∂2P
∂t2 = a2 ∂

∂x

(
A

∂P
∂x

)
, (5)

with the pipe cross-sectional area A(x) varying with x. Furthermore, Equation (5) can also be rewritten as,

∂2P
∂t2 = a2 ∂

∂x

(
A

∂P
∂x

)
︸ ︷︷ ︸

(a)

+ (1− A)
∂2P
∂t2︸ ︷︷ ︸

(b)

, (6)

where part (a) in Equation (6) has a similar form solved in previous studies for shallow surface wave
problems [7], while the other part (b) of Equation (6) is an additional term originated from the case of
pressurized wave propagation in water supply pipelines that is focused and dealt with in this study.
Similarly, the multi-scale perturbation method from previous studies is further adapted and applied to
solve this transient wave equation for pressurized water pipelines [7,11], which is elaborated in the
following section.

3.2. Multi-Scale Perturbation Method

The method of multi-scale perturbation used in this study follows the previous studies [7,11],
with three sets of coordinate scales in both spatial and time introduced as follows:

spatial domain: x, x1 = εx, x2 = ε2x, (7)

time domain: t, t1 = εt, t2 = ε2t, (8)

where the three scales (x, x1, x2 and t, t1, t2) correspond to wave oscillations, initial wave modulation,
and the modulation by randomness when waves propagate along the pipeline, respectively;
ε characterizes the ratio of different scales and ε << 1. The derivatives with respect to x and t are
transformed in accordance with the chain rule as [11],

x = x; x1 = εx; x2 = ε2x; t = t; t1 = εt; t2 = ε2t;

∂

∂x
→ ∂

∂x
+ ε

∂

∂x1
+ ε2 ∂

∂x2
+ · · · ;

∂

∂t
→ ∂

∂t
+ ε

∂

∂t1
+ ε2 ∂

∂t2
+ · · · . (9)

As a result, the solution is represented in the form of a perturbation series such as,

P = P0(x, x1, x2, t, t1, t2) + εP1(x, x1, x2, t, t1, t2) + ε2P2(x, x1, x2, t, t1, t2) + · · · , (10)

where P0, P1 and P2 correspond to the above three scales of wave propagation and modification,
respectively. It is important to note that high order terms (>2) with regard to ε from Equations (9) and
(10) are neglected in the following analytical analysis under the assumption of a relatively small extent
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of non-uniformities of pipe diameters or cross-sectional areas. This assumption will be validated and
discussed through numerical applications later in this study.

4. Analytical Results and Analysis

By applying the multi-scale perturbation method in Equation (9) to the transient wave equation
in Equation (6), the analytical results of wave scattering with regard to the pressure wave envelopment
and evolution can be obtained for both the regular case in Figure 4b and the random case in Figure 4a
of pipe diameter variations. For clarity and due to the page space limit, only the key steps and results
are presented as follows, while the detailed derivations are neglected in this paper.

4.1. Results of Regular Non-Uniformities

For the analysis of the regular case of pipe diameter non-uniformities, it is assumed that the
disordered pipe section has a regular variation magnitude of a pipe cross-section area as shown
in Figure 4b, which is defined by the relatively disordered cross-sectional area (i.e., δA = ∆A/A0)
following a periodic co-sinusoidal variation along the pipeline, as follows:

A(x) = A0(1 + εδA cos(λbx)) = 1 + εδA cos(λbx), (11)

where A0 is the mean value of the pipe cross-sectional area, assuming A0 = 1.0 m2 in this study for
simplification; and λb is the periodic length of pipe diameter disorders.

Based on the multi-scale wave perturbation technique, the wave scattering results in the regularly
disordered pipeline can be obtained as three following cases:

1. Subcritical detuning: 0 < Ω < Ω0, T(x1) =
ΩsinhK(L−x1)+iaK cosh K(L−x1)

Ωsinh(KL)+iaK cosh(KL)

R(x1) =
Ω0sinhK(L−x1)

Ωsinh(KL)+iaK cosh(KL)

, (12)

where T and R are transmission and reflection coefficients respectively; Ω0 and Ω represent the
incident wave frequency and pipe disorder variation frequency, respectively, and Ω0 = δAω/2,
Ω = aλb; x1 is the distance along the disordered section in the pipeline; i is the imaginary unit,
and i2 = −1; L is the total length of disordered section along the pipeline; and K is the detuning

(group) wave number and, K =

√∣∣∣Ω2
0 −Ω2

∣∣∣/a.

2. Supercritical detuning: Ω > Ω0, T(x1) =
Ω sin K(L−x1)+iaP cos K(L−x1)

Ω sin(KL)+iaK cos(KL)

R(x1) =
Ω0 sin K(L−x1)

Ω sin(KL)+iaK cos(KL)

. (13)

3. Bragg resonance: Ω = Ω0, {
T(x1) =

cosh Ω0(L−x1)/a
cosh Ω0L/a

R(x1) = −i sinhΩ0(L−x1)/a
cosh Ω0L/a

. (14)

Particularly, the Bragg resonance of the regularly disordered pipe in Equation (14) indicates
that all waves are reflected completely by the disordered section along the pipeline. The analytical
reflection coefficient (R) along the disorder distance (X = x1) can be obtained according to Equation
(14) and shown in Figure 5. The results of Figure 5 show clearly that, under a fixed disorder
magnitude, the reflection coefficient (R) is decreasing along the pipeline, which indicates that the
wave perturbation energy is decayed gradually by the disorder section. As expected, the reflection
coefficient (R) at a fixed location of the pipe disorder section increases with the disorder magnitude
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(δA) due to more wave energy reflecting back at the initial disorder section in the larger disorder
magnitude (δA) case. For example, the reflection coefficient at the starting location of the disorder
section (i.e., X/L0 = 0) could attain 0.9 when the disorder magnitude is about 10% of the mean value
(i.e., ε ~ 0.1). Under this situation, there would be very little wave energy (perturbations) remaining at
the end of pipe disorder section (since the total energy in the entire pipeline is conserved), resulting
in a relatively high decrease-gradient of the reflection coefficient curve for larger δA case as shown
in Figure 5. More numerical validations to corroborate the analytical result are conducted later in
this study.
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4.2. Results of Random Non-Uniformities

For the case of random pipe diameter non-uniformities, as shown in Figure 4a, it is assumed that
the pipe cross-sectional area follows the random variation function as,

A(x) = A0(1 + εζ(x)) = (1 + εζ(x)), (15)

where ζ(x) is a function that represents the random variation characteristics of the pipe cross-sectional
area and is assumed to be of zero mean and be of standard deviation of σ(x); other symbols are as
defined above.

After applying the multi-scale perturbation analysis, the solution of the pressure wave
envelopment to Equation (6) has the following form [4],

B = B0e−λx = B0e−λat, (16)

where B = B(x) = the amplitude of the wave envelope with distance or with the equivalent time t = x/a
with a = wave speed along the pipe disorder section; B0 = amplitude of the incident wave; λ = λr − iλi
is complex wave number, with λr and λi = wave damping factor and wave phase change (frequency
shift) factor, respectively, and

λr =
αk2σ2

α2 + 4k2 , λi = −
kα2σ2

2(α2 + 4k2)
. (17)

where k = incident wave number and k = ω/a, with ω = wave frequency; α = spatial correlation
coefficient of the blockage and α ~ 1/λb with λb = correlation length which describes the spatial
variability of pipe diameter non-uniformities.

The result of Equation (17) indicates that the wave amplitude exponentially decreases with
longitudinal distance (x). In other words, the wave is localized by the random non-uniformities of the
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pipe diameter or cross-sectional area along the pipeline. The localization distance can be defined and
used for characterizing the wave scattering by the random diameter non-uniformities as

Lloc =
1

ε2λr
=

α2 + 4k2

ε2σ2αk2 , (18)

which represents the spatial distance for the wave amplitude decreased by an exponential factor of e−1

as shown in Figure 6. This parameter (Lloc) is used later in this study for the evaluation of the wave
scattering effect due to different pipe diameter non-uniformities.
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Particularly, for a specified water supply pipeline under investigation, the correlation length of
random pipe diameter non-uniformities (i.e., Lcor ~ 1/α) is usually determinate (but maybe known or
unknown for the analyst), and therefore, a dimensionless parameter (termed as wave scattering factor)
can be further defined for better characterizing the wave scattering effect in that system as,

ϕ = αLloc = α
1

ε2λr
=

α2 + 4k2

ε2σ2k2 =
1

σ2
A

(
4 +

(α

k

)2
)

. (19)

Specifically, a smaller ϕ value (shorter localized distance) means a relatively more significant
wave scattering effect, and vice versa. Based on this result, the typical dependence relationship of the
wave scattering factor on the properties of incident waves and pipe diameter non-uniformities can
be shown in Figure 7. It is clearly shown in Figure 7 that when the incident wave length is around
twice as long as the correlation length of the random pipe diameter non-uniformities (i.e., k/α = 1/2),
the wave scattering effect would attain to maximum (i.e., minimum localized distance), and thus the
incident wave can be strongly attenuated (scattered) along the pipe disorder section.
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It is necessary to point out that the obtained results of Equation (14) for the regular pipe disorder
case and Equation (19) for the random pipe disorder case are obtained under the assumptions of
linearization with relatively small extent of non-uniformities and no-reflection boundary conditions
in the water pipeline system. The validity and accuracy of these results and assumptions are to be
validated by the numerical simulations conducted later in this study.

5. Numerical Validation

5.1. Settings of Numerical Tests

To validate the derived analytical results presented above and evaluate the importance of the
wave-scattering effect on transient wave propagation, the hypothetic pipeline system shown in
Figure 8a is used for a numerical simulation, which consists of three pipe sections: upstream uniform
pipe section, middle disordered pipe section (for testing), and downstream uniform pipe section.
The length of each section is 2000 m, and the no-reflection boundary condition from the two ends of
the whole pipeline is imposed for the numerical simulation. For simplicity, all pipes are assumed to
have a constant steady-state friction factor and wave speed (e.g., f = 0.01 and a = 1000 m/s). The step
approximation illustrated in Figure 4c is applied for the numerical simulation for both regular and
random non-uniformities, which can be shown in Figure 8b.
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A total of nine test cases, listed in Table 1, were conducted for numerical analysis, with cases
1~3 applied for a regular pipe disorder situation and cases 4~9 for a random pipe disorder situation.
Moreover, for each test, three different relationships between the incident wave length (λw = 1/k)
and the characteristic/correction length (distance) of pipe diameter non-uniformities (λb = 1/α) were
considered for the evaluation. It is assumed that both types of non-uniformities (represented by pipe
cross-sectional area) have a zero mean relative to the original nominal value. Note that λb represents
the periodic length of disordered diameters for the regular disorder case, while it represents the
correlation length of disordered diameters in the pipeline for the random disordered cases (i.e., 1/α).

Table 1. Settings for the numerical test cases.

Type Case No. λw/2λb A0 (m2) δA Distribution Function Correlation Function

Regular
1 >1

1.0 σA/A0 = 0.20
Degenerate

(deterministic)
0 for ζ 6= 0
1 for ζ = 02 =1

3 <1

Random

4 >1
1.0 σA/A0 = 0.23 Uniform e−α|ζ|5 =1

6 <1

7 >1
1.0 σA/A0 = 0.23 Upper triangular e−α|ζ|8 =1

9 <1
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Initially, the pipeline system was considered to be under a steady state. Note that for comparison,
the results for the completely uniform pipeline without non-uniformities (termed as the “intact” case
hereafter) were also obtained for each test case. For transient generation, the incident wave at the upstream
entrance of the pipeline was assumed to be a sinusoidal perturbation of pressure head signal as:

H(t) = H0

[
1 + R f sin(ωt)

]
, (20)

where H = instant pressure head; H0 = initial steady pressure head level; Rf = amplitude factor of
incident wave and Rf = 0.2 in this study; and ω = incident wave frequency.

For test cases of the random pipe diameter non-uniformities, two kinds of probability distributions
were considered for the randomness of the non-uniformities: one followed uniform distribution (for
cases 4~6) and the other was upper triangular distribution (for cases 7~9). It was assumed that the
random variables of pipe diameter disorder were correlated with an exponential function along the
pipeline in the spatial domain. Other numerical settings for different cases are listed in Table 1.

5.2. Validation for Regular Case

In the regular disordered tests, the total disordered distance was assumed to be 2000 m (L0) and
there were a total of 20 uniformly spaced reaches with each 100 m (λb = 200 m). A continuously
sinusoidal incident wave defined by Equation (20) was used in this study and the incident wave
frequency was adjusted to achieve the three cases: λw/2λb > 1, λw/2λb = 1 and λw/2λb < 1.
The envelope of the maximum and minimum pressure head profiles along the disordered pipe
section was extracted from the numerical results and plotted in Figure 9a–c.
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The results comparison in Figure 9 indicates that the attenuation of the pressure wave along
the pipeline due to the wave-scattering effect behaves much more significantly for case two, with
λw/2λb = 1 in Figure 9b, than other two cases, (λw/2λb > 1 in Figure 9a and λw/2λb < 1 in Figure 9c,
which is consistent with the analytical results of Equations (12)–(14) and Figure 7. Meanwhile, for the
cases of λw/2λb > 1 and λw/2λb < 1, the pressure wave envelopes were larger than that of the intact
case because of the superposition of the scattered waves. To further validate the analytical solution, the
reflection coefficients (R) of perfect resonance for case no. two were calculated and plotted in Figure 10.
As shown in Figure 10, obvious discrepancies were observed between the analytical and numerical
results, which were actually increasing with the disorder magnitude (δA). This result implies that
the linearized analytical solution can provide good estimations for the wave scattering effect of a
relatively small pipe disorder situation, which is due to the linearization assumption imposed by the
analytical analysis.

Water 2017, 9, 789  11 of 19 

 

 
Figure 9. Results of the pressure wave envelope for regular disorder cases: (a) λw/2λb = 1 and δA = 
0.05; (b) λw/2λb = 1 and δA = 0.10; and (c) λw/2λb = 1 and δA = 0.20. 

The results comparison in Figure 9 indicates that the attenuation of the pressure wave along 
the pipeline due to the wave-scattering effect behaves much more significantly for case two, with 
λw/2λb = 1 in Figure 9b, than other two cases, (λw/2λb > 1 in Figure 9a and λw/2λb < 1 in Figure 9c, 
which is consistent with the analytical results of Equations (12)–(14) and Figure 7. Meanwhile, for 
the cases of λw/2λb > 1 and λw/2λb < 1, the pressure wave envelopes were larger than that of the 
intact case because of the superposition of the scattered waves. To further validate the analytical 
solution, the reflection coefficients (R) of perfect resonance for case no. two were calculated and 
plotted in Figure 10. As shown in Figure 10, obvious discrepancies were observed between the 
analytical and numerical results, which were actually increasing with the disorder magnitude 
(δA). This result implies that the linearized analytical solution can provide good estimations for 
the wave scattering effect of a relatively small pipe disorder situation, which is due to the 
linearization assumption imposed by the analytical analysis.  

 

Figure 10. Cont.



Water 2017, 9, 789 12 of 19
Water 2017, 9, 789  12 of 19 

 

 

 
Figure 10. Comparisons of the numerical and analytical results of the reflection coefficients for the 
case of λw/2λb = 1: (a) δA = 0.05; (b) δA = 0.10; and (c) δA = 0.20. 

5.3. Validation for the Random Case 

In the numerical tests involving randomly disordered pipes, the disordered diameters were 
assumed to be spatially correlated along the pipeline. For simulations, it was assumed that the 
continuously-correlated random diameters could be discretized into many small reaches, with each 
reach 1 m representing one spatial random point of the original continuous disordered section. In 
this study, the generation of samples of randomly correlated diameters was based on the “NORTA” 
(normal to anything) theorem, which was developed by Ghosh [12]. Thereafter, a Monte-Carlo 
simulation (MCS) with 500 samples was conducted and the statistical results were retrieved for the 
analysis [13].  

With the MCS-based numerical simulations, the pressure wave profiles were obtained and 
shown in Figures 11–13 for the cases of λw/2λb > 1, λw/2λb < 1 and λw/2λb = 1, respectively. It is clear 
from these results that the pressure wave amplitude decays exponentially with distance along the 
pipe with random diameter non-uniformities. Moreover, the results for both uniform and triangular 
distributions of random non-uniformities indicate that the wave scattering effect behaves most 
significantly when λw/2λb = 1 (see Figure 12), which is similar to the results of the regular disorder 
cases analyzed above. The results also imply that the different probability distributions (uniform or 
triangular) for random non-uniformities along the pipeline have little impact on the wave-scattering 
effect, as long as the other parameters remain the same, e.g., mean, standard deviation and 
correlation.  

Figure 10. Comparisons of the numerical and analytical results of the reflection coefficients for the case
of λw/2λb = 1: (a) δA = 0.05; (b) δA = 0.10; and (c) δA = 0.20.

5.3. Validation for the Random Case

In the numerical tests involving randomly disordered pipes, the disordered diameters were
assumed to be spatially correlated along the pipeline. For simulations, it was assumed that the
continuously-correlated random diameters could be discretized into many small reaches, with each
reach 1 m representing one spatial random point of the original continuous disordered section. In this
study, the generation of samples of randomly correlated diameters was based on the “NORTA” (normal
to anything) theorem, which was developed by Ghosh [12]. Thereafter, a Monte-Carlo simulation
(MCS) with 500 samples was conducted and the statistical results were retrieved for the analysis [13].

With the MCS-based numerical simulations, the pressure wave profiles were obtained and shown
in Figures 11–13 for the cases of λw/2λb > 1, λw/2λb < 1 and λw/2λb = 1, respectively. It is clear from
these results that the pressure wave amplitude decays exponentially with distance along the pipe with
random diameter non-uniformities. Moreover, the results for both uniform and triangular distributions
of random non-uniformities indicate that the wave scattering effect behaves most significantly when
λw/2λb = 1 (see Figure 12), which is similar to the results of the regular disorder cases analyzed above.
The results also imply that the different probability distributions (uniform or triangular) for random
non-uniformities along the pipeline have little impact on the wave-scattering effect, as long as the
other parameters remain the same, e.g., mean, standard deviation and correlation.
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For validation, the analytical and numerical results of dimensionless localization length (ϕ) in
Equation (19) for different cases and their relative errors were calculated and are listed in Table 2.
The results show that the maximum relative error is less than 5%, which implies good prediction by the
linear analytical solutions of Equation (19) for wave scattering in random pipe disorder cases. On this
point, the analytical results of Equation (19) have been validated for describing the qualitative influence
and importance trend of wave scattering induced by random diameter non-uniformities in the pipe.

Table 2. Analytical and numerical results of the wave scattering factor.

Case No.
Uniform Distribution Upper Triangular Distribution

4 5 6 7 8 9

Wave scattering
factor (ϕ)

Analytical 125.0 75.0 159.4 125.0 75.0 159.4
Numerical 127.5 74.5 157.0 125.8 76.3 152.5

Relative error (%) 2.0 0.7 1.5 0.7 1.7 4.5
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6. Results Discussion and Implications

6.1. Energy Analysis of Transient Wave Scattering

It is clear in Equation (19) that the localization distance (by wave scattering factor ϕ) decreases with
an increase of the amplitude of pipe random non-uniformities (σA) because of more serious reflections
by these non-uniformities in the pipeline. To further explain and understand the wave scattering
effect, an energy analysis is performed based on the energy formulations in previous studies [14,15].
The results of case no. four in Table 2 are retrieved from the model and plotted in Figure 14. It is clearly
shown in Figure 14 that the total energy in the pipeline system with random variation in diameters is
always conserved, although each form of the energy (kinetic or internal) changes significantly with
time. In other words, as a result of the wave scattering effect, the total energy has been re-distributed
in the system due to the pipe diameter non-uniformities such that pressure wave envelopment is
scattered significantly along the pipeline as indicated in the analytical solutions.
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6.2. Impacts on Transient Modelling and Analysis

The pressure wave envelopment attenuation in the present waterhammer models is usually
attributed to friction damping (and viscoelasticity damping if pipes are plastic) [9,15]. With the
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existence of wave scattering effects, especially in the aged pipeline system, the actual damping of
pressure waves might not be fully represented by only the friction (and pipe-wall viscoelasticity if
appropriate), while the wave scattering effect with energy re-distribution in the system may provide a
great contribution to the total attenuation. Therefore, it is necessary to inspect the relative importance
of wave scattering and friction and their roles in pressure wave envelopment attenuation, such that the
transient flow behaviors in these disordered pipes can be well understood and accurately simulated
by waterhammer models.

In this regard, the analytical results derived above in this study may provide useful guidance and
estimation of the influence of wave scattering. Specifically, the analytical results of Equation (19) in
this study indicates an increasing localization distance (ϕ) and thus a decreasing wave scattering effect
with an increase of the ratio of α/k. That is, when the incident wave length is shorter in comparison
with the correlation length of random diameter non-uniformities (i.e., α << k), the wave scattering
effect becomes more significant and the waves are localized more seriously in the pipeline. As a result,
high frequency waves propagating in the randomly disordered pipeline can be greatly scattered such
that most of the waves are reflected back upstream (i.e., the incident part) and hardly transmitted
downstream (i.e., the outgoing part), if only the pipeline is long enough.

In practical transient (waterhammer) systems, however, the incident waves are usually “fast and
sharp” signals, for example caused by a sudden closure or opening of valves, the starting or stopping
of pumps, etc., where the operation time duration is rather short. From this perspective, in pipe
systems with potential random diameter non-uniformities and under transient conditions, the wave
scattering induced wave envelopment attenuation is generally dominant in comparison with friction
damping. In this regard, many typical examples have been shown in previous studies [4,5,8], where
significant discrepancies were commonly observed between the real data (from both laboratory and
field tests) and the numerical model results (e.g., MOC-based simulation with steady and/or unsteady
friction components).

Another important implication for transient system analysis is that the random non-uniformities
can cause an increase in the pressure head (also energy) in certain regions of the pipeline system since
most of the waves are reflected or trapped by the disordered section of the pipeline. This is clearly
worrisome for aged pipes since such a pressure increase was likely not accounted for when pipes were
designed for the water supply system. Therefore, the wave behavior in aged pipelines might become
very complicated due to the potential wave scattering effect, such that the design schemes of system
strength from their initial new states may become overestimated or underestimated for some sections
of the pipe system.

6.3. Impacts on Transient-Based Leak Detection

Transient-based defect detection techniques are being developed by various researchers [16–26].
The idea is to intentionally inject a wave, typically a pressure variation by, for example, changing a
valve setting, and then measure the subsequent pressure response of the system. The key is to find the
signature of the defect in the measured signal and use it to identify the nature, location and size of
the defect.

A previous study by the author [27] has demonstrated that the current transient-based pipe defect
detection methods are mainly dependent on wave damping and reflections and that the “fast and
sharp” input wave signals are preferable to these methods. Clearly, such approaches could become
intractable in the presence of random non-uniformities in the pipeline system. The non-uniformities in
pipes may be due to pipe diameter, material and thickness as well as fluid properties such the case
of pumped sewerage. Consequently, these pipe defect detection methods are particularly difficult
to be applied in the aged pipes and/or sewage drainage systems where potential non-uniformities
commonly exist. For illustration, two test cases (T1 and T2) listed in Table 3 are examined in which the
disordered pipe diameter shown in Figure 8 is present. Four types of leak detection methods—transient
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reflection method (TRM), transient damping method (TDM), system response function method (SRFM),
and inverse transient method (ITM)—were used in this investigation [27].

Table 3. Results of leak detection under the presence of wave scattering in the pipeline.

Case Real Leak Information,
xL* & AL*

Predicted Leak Information, xp* & Ap* Max. Error, |xL* −
xp*| & |AL* − Ap*|TRM TDM SRFM ITM

T1 No Leak 0.50 & 0.01 0.50 & 0.038 0.25 & 0.024 0.46 & 0.031 — & —

T2 0.1 & 0.002 0.49 & 0.012 0.44 & 0.042 0.17 & 0.019 0.34 & 0.035 39% & 40%

In Table 3, leak location and size (xL
* & AL

*) were normalized by the total pipe length and average
pipe cross-sectional area, respectively. The relative errors of predicted dimensionless leak location by
using these four methods are also listed in the table. The results of case T1 show that the additional
pseudo leak is detected by all four methods, while actually there is no leak along the pipeline. In case
T2, the maximum predicted error using the four methods can reach 39% and 40% for the leak location
and size, respectively. This also indicates that the four leakage detection methods are invalid or
inaccurate when wave scattering induced reflections and “damping” exist.

Actually, many recent studies have evidenced the wave scattering phenomenon in water supply
distribution systems, where the water supply demand (and thus the pressure head) was observed
to pulse frequently and continuously, although transient oscillations were relatively small [28–33].
Consequently, these preliminary results and analysis indicated that the wave scattering effect could
have a great influence on both transient system analysis and transient-based utilization in urban
water pipeline systems. More attention needs to be paid to the impact of the wave scattering effect
on transient wave behavior and propagation (reflection and damping) so that present models and
techniques can be applied with confidence to practical pipeline systems.

7. Conclusions

The analytical expressions for transient wave evolution in water pipelines with different
non-uniformities were derived in this paper by using the multi-scale wave perturbation method,
which was validated and examined through extensive 1D numerical simulations. The analytical and
numerical results showed the fact that pressure waves are attenuated significantly by both the regular
and random pipe diameter non-uniformities along the longitudinal direction, which has been widely
observed in the numerical and experimental results in the literature. Meanwhile, the derived results
imply that the importance and influence of the wave scattering effect in the pipeline is dependent
on the relationship between the incident wave frequency and non-uniform pipe diameter variation
frequency. Particularly, the wave scattering induced wave localization length becomes smaller and
thus the attenuation of wave envelope is more significant when the ratio of incident wave length and
the correlation length of the non-uniformities becomes smaller. As a result, for the specific pipeline
system with the existence of pipe diameter non-uniformities, the wave scattering effect becomes critical
for the high frequency incident waves, which is, however, common in water hammer flows.

The preliminary results and findings of this study are useful and implicative to both transient
theory (transient modelling and analysis) and practice (transient utilization). Firstly, the wave
behavior in the aged pipelines might become very complicated due to the unavoidable wave
scattering effect such that the design schemes of the system strength from their initial new states
may become invalid/inaccurate (overestimated or underestimated) for the regional or global pipe
system. Secondly, the complicated wave reflections and amplitude attenuation induced by the wave
scattering effect may result in inaccurate predictions or even the invalidity of current transient-based
pipe defect detection methods. Finally, but not least importantly, the transient (waterhammer) flow
theories, such as friction and viscoelasticity models, which are usually validated and calibrated through
the measured data of pressure wave attenuation and reflections from practical systems, may be wrongly
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represented and explained if the potential wave scattering effect has not been considered or not been
well included in the analysis.

It is important to note that the assumption of a relative small extent of pipe diameter
non-uniformities has been used in the analytical analysis of this study, where high-order (>2) terms
were ignored in the derivation process. With this assumption, clear discrepancies, especially for the
regular case of pipe non-uniformities, were observed between the analytical and numerical results
obtained in this study. From this perspective, more future work is required to further validate and
verify the accuracy and applicability of the derived analytical results in this paper.
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