
Robust Aircraft Sequencing and Scheduling Problem with Arrival/Departure Delay using Min-max

Regret Approach

K.K.H. NG, C.K.M. LEE*, Felix T.S. CHAN, Yichen QIN

Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China

* Corresponding author

Address: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.

Tel.: +852 3400 3899; fax: +852 2362 5267

Email Address: kkh.ng@connect.polyu.hk (K.K.H. NG), ckm.lee@polyu.edu.hk (C.K.M. LEE), f.chan@polyu.edu.hk (Felix T.S.

CHAN), Yichen.qin@connect.polyu.hk (Yichen QIN)

https://doi.org/10.1016/j.tre.2017.08.006 This is the Pre-Published Version.

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:kkh.ng@connect.polyu.hk
mailto:ckm.lee@polyu.edu.hk
mailto:f.chan@polyu.edu.hk
mailto:Yichen.qin@connect.polyu.hk

Robust aircraft sequencing and scheduling problem with arrival/departure delay using the min-max regret approach

Abstract

This study considers the aircraft sequencing and scheduling problem under the uncertainty of arrival and departure delays for

multiple heterogeneous mixed-mode parallel runways. To enhance runway resilience, runway operations should remain robust to

mitigate the effects of delay propagation. The main objective of this research was to identify an optimal schedule by evaluating the

robustness of feasible solutions under its respective worst-case scenario. A novel artificial bee colony algorithm was developed and

verified by experimental results. The proposed efficient artificial bee colony algorithm can obtain close-to-optimal results with less

computational effort in regard to a one-hour flight traffic planning horizon.

Keywords: Robust scheduling, Min-max regret approach, Mixed-mode parallel runways, Swarm Intelligence, Artificial bee colony

algorithm

1. Introduction

1.1. Problem description

With the introduction of low-cost carriers in Western countries and the remodelling of airport-airline relationships, air transport

demand has been significantly increased due to the capacity bottlenecks (Francis et al., 2004; Gelhausen et al., 2013). The

performance of the aircraft turnaround process and the airport-airline relationship affects the decision-making of the objective

function in the aircraft sequencing and scheduling problem (ASSP) model. The common First-Come-First-Served (FCFS) approach

creates unnecessary spare capacity in the ASSP model (Bennell et al., 2017; Ng and Lee, 2016a). The most relevant operational

problem in the aircraft scheduling literature often considered the global optimality in practice within a reasonable computation time

(Samà et al., 2015). It is frequently observed that real-time aircraft re-scheduling in runway operation occurs. Air Traffic Control

(ATC) obtains the latest information on flights to determine a schedule. The ATC workload has dramatically increased due to rising

air transport demand. The estimated time of arrival/departure may not be close to the true operation time, which may lead to

disruption of planned flight schedules and subsequent ground operation schedules (Sinclair et al., 2014). In fact, the introduction of

a robustness optimisation technique in the ASSP problem improves the resilience at busy airports and leverages the possible

workload of re-scheduling effort.

This paper aims to improve the runway operations by considering the solution quality, computation time, the resilience level of

runway operation and the degree of robustness in makespan optimisation of aircraft scheduling in hedging uncertainties. In this

model, we considered the aircraft sequencing and scheduling problem with multiple heterogeneous mixed-mode parallel runways.

In mixed-mode runway operation, the runway is used for both aircraft landings and take-offs. The arrival and departure rate in an

airport usually does not have a stationary distribution subjected to the landing/take-off demand patterns, which implies inefficient

runway capacity usage, solely for landing or take-off in independent runway operation (Jacquillat and Odoni, 2015a, b; Jacquillat

et al., 2017). Mixed-mode parallel runway operations further enhance the capacity to handle airborne and airport traffic, but also

increase the degree of ATC workload. Uncontrollable delays also increase the vulnerability to disruptions. To enhance the robustness

of a flight schedule and reduce the possibility of a re-scheduling effort by ATC, the objective of this research was to minimise the

maximum makespan deviation from optimality over all worst-case scenarios using the min-max regret approach.

The iterative relaxation framework is the standard procedure to solve the min-max regret problem (Aissi et al., 2009). Aissi et al.

(2009) addressed that the computational complexity for min-max regret optimisation is a great challenge in the field. Meta-heuristics

in min-max regret optimisation have been successfully applied to parallel machine scheduling, job shop scheduling and other related

problems (Feng et al., 2016; Hu et al., 2016; Xu et al., 2013). Therefore, we propose the Efficient Artificial Bee Colony (EABC)

algorithm to enhance the computational efficiency for obtaining a robust schedule with close-to-optimal condition.

1.2. Literature review

Runway capacity is the major bottleneck in air traffic management (Balakrishnan and Chandran, 2010; Ghoniem et al., 2014). In

order to maintain a smooth airport operation, managing aircraft landing and take-off procedures has become a key component in air

transport systems. Runway operation includes the flight approach operation/Aircraft Landing Problem (ALP) (see, e.g., Beasley et

al. (2001); Bencheikh et al. (2009); Caprı̀ and Ignaccolo (2004); Hancerliogullari et al. (2013); Hansen (2004); Liu (2011); (Ng and

Lee, 2017); Pinol and Beasley (2006); Salehipour et al. (2013); Vadlamani and Hosseini (2014)), departing operation/Aircraft Take-

off Problem (ATP) (see, e.g., Atkin et al. (2008); Hancerliogullari et al. (2013)) and mixed-mode parallel operation/ASSP (see, e.g.,

Bennell et al. (2011); Lieder and Stolletz (2016)). Mixed-mode parallel operation allows simultaneous runway operations for a pair

of flights on different runways (Beasley et al., 2000).

Regarding the objectives in formulating the ASSP model, various objective functions can be found in the literature. These include:

minimising the makespan (Balakrishnan and Chandran, 2010; Harikiopoulo and Neogi, 2011; Ma et al., 2014; Ng and Lee, 2016a),

minimising total/weighted tardiness of all flights (Ng and Lee, 2016b; Pinol and Beasley, 2006; Sabar and Kendall, 2015; Salehipour

et al., 2013), and minimising total/average/weighted delay of all flights (Lieder and Stolletz, 2016; Liu, 2011; Samà et al., 2015).

The FCFS approach is a policy that maintains fairness among flights in a schedule (Farhadi et al., 2014). Dear and Sherif (1989)

revealed that the FCFS approach is undesirable as the ASSP solution must be updated promptly to cope with real-time needs. Beasley

et al. (2004) proposed a displacement rule for ASSP to absorb the perturbations in a predefined schedule. Farhadi et al. (2014)

introduced Constrained Position Shifting (CPS) based on the FCFS schedule in mixed-mode parallel runway operation. Soomer and

Koole (2008) evaluated the trade-off between total cost, delay and fairness to obtain a schedule that compromises different

stakeholders’ interests.

Microscopic air traffic flow modelling enhances the level of practical usage and robustness of the solution, which provides detailed

control of the practice of air traffic control, including air segments, holding patterns, runway operation and ground operation.

Detailed characteristics of airport infrastructure and flight paths facilitate the modelling accuracy regarding the on-time coordinates,

status and speed profile (Samà et al., 2017). Bianco et al. (1997) formulated microscopic modelling in runway scheduling with

blocking and a no-wait version of job-shop scheduling using an alternative graph for managing the streaming of Terminal

Manoeuvring Area (TMA) operations. Regarding airport layout and the structure of air segments, sophisticated characteristics and

real-world constraints have been proposed in runway scheduling using the extensive versions of microscopic modelling (D'Ariano

et al., 2015; D'Ariano et al., 2012; Samà et al., 2017; Samà et al., 2014; Samà et al., 2013). Artiouchine et al. (2008) and Eun et al.

(2010) considered the discrete holding patterns and airborne delays to maintain a smooth landing schedules. Providing the latest

information assists ATC to resolve the potential conflict detection and collusion-free guidance within the TMA. The current research

progress is still mired in the static approach. The aforementioned literature is static in nature, which means that all variables and

information are known in advance.

Most international airports find that the associated financial costs caused by airborne delays are significant so they try to moderate

the cost by reducing the flight delay times (Ball et al., 2010; Hansen and Zou, 2013; Ng and Lee, 2017; Zou and Hansen, 2012).

The sensitivity of an airport network is remarkable as all the airport resources are highly linked (Beatty et al., 1999). The delay of a

flight leads to delay propagation of various airport activities and scheduling (Campanelli et al., 2016; Churchill et al., 2010; Kafle

and Zou, 2016; Pyrgiotis et al., 2013). It is known that aircraft approaching and take-off times are not precisely determined in

advance due to the dynamic changes of the environment. Risk analysis in the ASSP model is lacking in the current literature.

According to the decision theory of risk analysis, uncertainties are defined as the outcome of a decision remaining unknown when

an alternative is selected (Bell, 1982). Various uncertainties, practical constraints and the changes in the dynamic environment are

considered in the model, which leads to an increase in the practical complexities in the decision-making for ATC. There are two

types of methods for handling uncertainty: stochastic and robust modelling. In the stochastic approach, the uncertain variables in a

model are designed as a known probability distribution by the historical data. Nonetheless, the expected outcome may not be able

to be derived from past records in certain situations. Therefore, robustness analysis has become of more interest under the risk-

adverse approach than optimal performance. Robustness analysis provides a paradigm supporting the decision-making considering

imprecision so as to properly frame a decision based on any possible input data (Aissi et al., 2009). Robust schedule modelling

develops a solution by hedging against the worst-case scenarios and is especially applicable to the potential huge loss of disruption

afterwards. The possible scenarios in robustness analysis can be classified as interval and discrete scenarios (Kouvelis and Yu, 1997).

There are three robustness criteria for robustness analysis: absolute robustness, robust deviation and relative deviation (Xu et al.,

2013). The min-max regret approach was considered in this research and is designed for developing a robust schedule that minimises

the maximum makespan deviation from the optimal schedule under the worst-case scenario. The runway is considered as a

bottleneck between the airborne and airport traffic. Any delay in air traffic causes significant delays among the airport activities if

proper management in the ASSP model is omitted (Rodríguez-Díaz et al., 2017). The motivation for using the min-max regret

approach is to neutralise the risk and avoid wrong decisions (e.g., delay/revision in airline schedule, poor gate assignment, customer

dissatisfaction and overcharging for the congestion externality) (Basso, 2008). The major drawback of using Mixed Integer Linear

Programming (MILP) in the min-max regret approach is that the computation time is significantly lengthened in resolving large-

sized instances, and high computational capacity is required. The computation using the exact algorithm in min-max regret

optimisation is costly as the complexity of the computation increases along with the number of worst-case scenarios (Feng et al.,

2016). Also, the complexity of the computation increases dramatically with the size of the model due to the nature of the non-

deterministic polynomial hard (NP-hard) problem (Bianco et al., 1997).

During the development of meta-heuristics in the current literature, the solution quality derived from the meta-heuristics regarding

exploitation and exploration has greatly narrowed the research gap for the complex mathematical modelling in real-life applications,

especially under the population-based meta-heuristics approach (Bianchi et al., 2009; Glover, 1986). The meta-heuristics approach

is a high-level model-free framework to obtain a near optimal solution within a satisfactory calculation time and includes: Stochastic

Search, evolutionary algorithms, physics-based algorithms and swarm intelligence. Several meta-heuristic approaches have been

recently proposed in the ASSP model, including Simulated Annealing (SA) (Hancerliogullari et al., 2013; Salehipour et al., 2013),

Variable Neighbourhood Search (VNS) (Ng and Lee, 2016b; Salehipour et al., 2013; Vadlamani and Hosseini, 2014), Iterative Local

Search (ILS) (Sabar and Kendall, 2015), Genetic Algorithm (GA) (Beasley et al., 2001; Pinol and Beasley, 2006), Memetic

Algorithm (MA) (Bencheikh et al., 2009), Biogeography-Based Optimisation (BBO) (Dastgerdi et al., 2015), Bat Algorithm (Xie

et al., 2013) and Ant Colony Optimisation (ACO) (Jiang et al., 2014; Zhan et al., 2010). Among these four groups, swarm intelligence

has been well studied in regard to scheduling problems and is regarded as a promising technique for resolving the NP-hard model

(Karaboga and Akay, 2009; Karaboga et al., 2014). The mechanism of the SI algorithm aims to maintain the balance of exploitation

and exploration to enhance the time for convergence and optimality (Zhang et al., 2015). The main feature of searching for an

optimal value in swarm intelligence relies on the swarm behaviour of self-organisation, decentralisation and collective searching

(Jeanne, 1986; Kube and Bonabeau, 2000; Trelea, 2003).

1.3. Contribution of the research

The contribution of the research can be summarised as follows: First, we address the mixed-mode parallel operation and the

uncertain parameters in the scheduled time of operations in order to enhance the capacity and resilience level. In this research,

minimising the maximum regret value in the robust ASSP system under the mixed-mode parallel operation was considered in the

problem formulation. The arrival and departure delays fall into an interval case to represent a different level of delays. We believe

that the design of robust scheduling considering uncontrollable delays enhances the resilience level of runways and reduces the ATC

efforts in runway rescheduling. To achieve the practical applicability of mixed-mode parallel operation, we formulate the landing

and take-off time of each arrival or departure flight in a time interval, which is affected by the possible scenarios of different levels

of arrival and departure delays. To the best of our knowledge, this is the first attempt to adopt a decision theory for the robust ASSP,

extending the model of the robust machine scheduling problem (Hu et al., 2016; Xu et al., 2013). Second, this paper presents a novel

swarm intelligence algorithm, which significantly reduces the computational effort in iterative relaxation procedure for min-max

regret optimisation. The proposed EABC algorithm enhances the convergence rate and reduces computation time. The proposed

EABC algorithm is based on the following modified framework to solve the problem above. The initialisation phase in the EABC

algorithm is computed by a proposed constructive heuristic to build a satisfactory solution. Inefficient neighbourhood search,

crossover and reverse operators, are eliminated in the employed bee phase to enhance the searching quality, as these two operators

work inefficiently during the exploitation phase. In addition, an objective-guided updating mechanism in the scout bee phase is

considered. With these proposed improvements of the Artificial Bee Colony (ABC) algorithm, the robust solution is improved

regarding the computation time as well as the solution quality in our experiments by comparing with the exact algorithm, biological

evolution and swarm intelligence algorithms.

1.4. Organisation of the paper

The organisation of this paper is summarised as follows. After the introduction of the research and literature study on the ASSP

model in Section 1, Section 2 describes robust ASSP modelling and problem formulation. Section 3 presents the solution procedure

for the robust ASSP model using the exact method, meta-heuristics and proposed EABC algorithms. Computational experiments

are reported in Section 4. Finally, the concluding remarks and future work are raised in Section 5.

2. Problem formulation

In this study, a robust ASSP with arrival and departure delays was considered in the system, aiming to enhance the robustness of the

scheduling with the objectives of makespan minimisation, considering the limited number of runways, resource capacity constraints

and ATC regulation. Due to the technological advancement and improvement of radar monitoring systems, air traffic controllers can

apply simultaneous operations by following the particular rules and regulations to improve the effectiveness of runway control. The

runway configuration of the formulated problem is denoted as a mixed-mode parallel operation, in which the runways are not

exclusively for approach or departure only. Compared with independent parallel operation, the mixed-mode parallel operation

reduces redundant runway capacity, and enhances the maximum capability of the aerodrome capacity to handle the air traffic

incorporating the constraints of the separation requirements. For example, 196 seconds of separation time is required if an

approaching large-sized flight is scheduled to land before a small-sized approaching aircraft in a segregated operation model. Under

the mixed-mode operation, the trailing departure flight has a 75-second pause until completion of the landing process of a large-

sized aircraft. Other considerations may also affect the decision for the selection of parallel operation, such as the physical properties

of runways, the minimum distance for parallel operation, the noise abatement procedures for residential areas and the capability of

ATC. Other assumptions are considered below in constructing the robust ASSP model.

2.1. Assumption of the robust ASSP

Several assumptions were made before the formulation of the robust ASSP model. First, the robust ASSP schedules are limited to

the runway decisions without the involvement of the TMA resources, such as ground operations, terminal air traffic control and

queue length in the airborne traffic. Second, the length of all the runways is sufficient to perform the mixed-mode operation.

Depending on the flight classes and size, adequate length of the runway is required to accommodate the speed reduction for landing

operations. Moreover, the minimal length of the runway for landing and take-off are different even for the same classes of flights.

Third, the separation requirement caused by the runway’s physical properties (i.e. near-parallel runways, the size of the no-

transgression zone (NTZ), the terrain constraints surrounding the airport and the noise abatement procedures) are minimal in the

instrument landing system. For example, Hong Kong International Airport is not able to operate missed approaches and departure

procedures for the south runway due to the terrain constraints of Lantau Island. Fourth, the probabilities of a missed approach and

departure, the penetration of NTZ, pilot error, runway incursions and the abnormal operation are negligible. Emergency operations

require clearance of deviation procedures and establishing an appropriate separation between flights before the recovery of cleared

routes and normal operation. The emergency events in terminal air traffic are ignored in the robust ASSP model. Fifth, the parameters

of approaching and departing delays are imprecise concerning interval values. The estimation of the arrival time is not precisely

obtained even if flights have entered the near terminal area. The planned schedule may also be disrupted by any small disturbances,

including the flight delay, the terminal weather and the level of wind speed, the airborne conflict and disruption on the turnaround

procedures. The formulation of imprecision in robust optimisation assists schedulers to create a robust schedule by considering

plausible values or time intervals of the operation time.

2.2. The robust ASSP model

In the robust ASSP model, the number of aircraft is defined as 𝑛, and each flight is denoted as 𝑖, 𝑖 = (1,2, … , 𝑛). Any pair of

consecutive runway operations is regarded as 𝑗 and 𝑖 to denote a pair of arrival/arrival, departure/departure, arrival/departure and

departure/arrival flights in a consecutive sequence. The maximum number of runways is 𝑚. Each approaching flight can only land

after it reaches the tower control region, where the departing flight may execute take-off procedures once the pilot receives

permission for take-off from the tower control. The scheduled landing/departing time represents the estimated landing/departing

time for an aircraft to land on a corresponding runway under the planning horizon. The assigned time of operation between the two

consecutive flights must be larger than the required separation time 𝑠𝑗𝑖 , according to the flight classes and runway operation

(Balakrishnan and Chandran, 2010). The notation and decision variables are shown in Table 1.

Table 1

Notation and decision variable

Notations Explanation

𝑖 Aircraft ID 𝑖 ∈ 𝐼, (𝑖 = 1,2, … , 𝑛)

𝑛 The maximum number of aircraft

𝑟 Runway ID 𝑟 ∈ 𝑅, (𝑟 = 1,2, … , 𝑚), 𝑚 ≥ 2

𝑚 The maximum number of runway

𝑆𝑖𝑗 The runway operation based separation time between aircraft 𝑖 and 𝑗 scheduled on the same runway, 𝑆𝑖𝑗 ≥ 0

𝑆𝑇𝑂𝑖𝑟 The scheduled landing/take-off time of aircraft i on runway 𝑟

𝑆𝑇𝑂𝑖𝑟 The lower bound value of scheduled landing/take-off time of aircraft 𝑖 on runway 𝑟

𝑆𝑇𝑂𝑖𝑟
̅̅ ̅̅ ̅̅ ̅ The upper bound value of scheduled landing/take-off time of aircraft 𝑖 on runway 𝑟

𝑆𝑇𝑂𝑖𝑟
𝑠 The time interval of landing/take-off time of aircraft 𝑖 on runway 𝑟, 𝑆𝑇𝑂𝑖𝑟

𝑠 ∈ [𝑆𝑇𝑂𝑖𝑟, 𝑆𝑇𝑂𝑖𝑟
̅̅ ̅̅ ̅̅ ̅]

𝜀𝑖𝑟 The possible deviation from the predetermined operation time with or without interruption

𝑠 The possible realised operation time in a scenario, 𝑠 = (𝑆𝑇𝑂1𝑟
𝑠 , 𝑆𝑇𝑂2𝑟

𝑠 , … , 𝑆𝑇𝑂(𝑛−1)𝑟
𝑠 , 𝑆𝑇𝑂𝑛𝑟

𝑠), 𝑠 ∈ 𝛿

ω The set of all feasible schedules

𝑀 Large number associated with the artificial variable

Decision variables Explanation

𝑋 A schedule X is constructed by 𝑥𝑖𝑟, 𝑦𝑗𝑖𝑟 and 𝑇𝑖𝑟
𝑠 (𝑥).

𝑥𝑖𝑟 1, if aircraft 𝑖 is assigned to runway 𝑟; 0, otherwise

𝑦𝑗𝑖𝑟 1, if aircraft 𝑗 is before aircraft 𝑖 on the same runway 𝑟 (not necessarily immediately); 0, otherwise

𝑇𝑖𝑟
𝑠 (𝑋) The assigned operation time for aircraft i on the runway r in schedule 𝑋 under scenario 𝑠, 𝑇𝑖𝑟 ≥ 0

𝐶𝑟
𝑠(X) The makespan of schedule X under scenario 𝑠, 𝐶𝑟 ≥ 0

𝑥𝑖𝑟 is the decision variable to identify the runway assignment of each flight 𝑖, while 𝑦𝑗𝑖𝑟 defines the landing/take-off sequence if

flight 𝑗 lands before flight 𝑖 on runway 𝑟 (not necessarily immediately). Given that the scheduled operation times are

heterogeneous on different runways for the same flight 𝑖, the scenario 𝑠 = (𝑆𝑇𝑂1𝑟
𝑠 , 𝑆𝑇𝑂2𝑟

𝑠 , … , 𝑆𝑇𝑂(𝑛−1)𝑟
𝑠 , 𝑆𝑇𝑂𝑛𝑟

𝑠), 𝑠 ∈ 𝛿 is a set of

scheduled times of operation and 𝑆 denotes a set of all possible scenarios. A schedule is represented as 𝑋. 𝜀𝑖𝑟 is the deviation

between the lower bound and upper bound value of scheduled landing/take-off time of flight 𝑖 on runway 𝑟 to represent the

possible operation time given an unknown distribution. We assume that the possible operation time of all flights are different and

follow into an interval case.

2.3. The robust ASSP formulation

The min-max regret approach seeks to undertake all the scenarios with uncertainties in the aircraft landing and take-off schedules

to conduct the robust scheduling. Accordingly, the model aims to discover a robust ASSP schedule by minimising the maximum

makespan deviation from the optimal schedule under the worst-case scenarios. 𝐶𝑟
𝑠 is the completion time of runway 𝑟 under

scenario 𝑠. The makespan 𝐹(𝑋, 𝑠) of a schedule 𝑋 under scenario 𝑠 is determined as Equation (1), while the minimal makespan

of a schedule is denoted as the optimal schedule 𝑋𝑠
∗ under scenario 𝑠 by Equation (2). Given a feasible solution 𝑋 ∈ 𝜔, its regret

value 𝑅𝑒𝑔𝑟𝑒𝑡(𝑋, 𝑠) under scenario 𝑠 ∈ 𝛿 is defined as the difference between the makespan of schedule 𝑋 and the optimal

makespan under this scenario by Equation (3), while the maximal regret is interpreted as Equation (4). Feasible solution is defined

as a solution that satisfies all the constraints from the mathematical formulation. Subsequently, the model establishes the robust

scheduling by minimising the deviation from the optimal solution under the worst-case scenarios by Equation (5).

𝐹(𝑋, 𝑠) = max
𝑟∈𝑅

(𝐶𝑟
𝑠(𝑋)) (1)

𝐹𝑠
∗ = 𝐹(𝑋𝑠

∗, 𝑠) = 𝑚𝑖𝑛
𝑋∈𝜔

𝐹(𝑋, 𝑠) (2)

𝑅𝑒𝑔𝑟𝑒𝑡(𝑋, 𝑠) = 𝐹(𝑋, 𝑠) − 𝐹𝑠
∗ (3)

𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(𝑋) = max
𝑠∈𝛿

𝑅𝑒𝑔𝑟𝑒𝑡(𝑋, 𝑠) (4)

min
𝑋∈𝜔

𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(𝑋) = min
𝑋∈𝜔

max
𝑠∈𝛿

(𝐹(𝑋, 𝑠) − 𝐹𝑠
∗) (5)

The makespan of runway 𝑟 in schedule 𝑋 under scenario 𝑠 is calculated by Equation (6) and must be equal to the assigned

landing time of the last flight on the runway system for a finite time horizon. Equations (7) and (8) compute the assigned

landing/take-off time of each flight 𝑖 ∈ 𝐼, where 𝐼 is the set of flights, taking into account the separation time 𝑆𝑗𝑖 between two

flights 𝑗 and 𝑖, and its scheduled operation time. The assigned operation time of all flights denotes the time of runway operation in

TMA. ATC will assign an appropriate landing time based on the corresponding scheduled time of operation (STO), including the

landing and take-off, with the consideration of the runway availability and the air traffic. The configuration and physical properties

of the runways may vary, which leads to an unrelated STO.

𝐶𝑟
𝑠 ≥ 𝑇𝑖𝑟

𝑠 (𝑋) − 𝑀(1 − 𝑥𝑖𝑟), ∀𝑖, 𝑟, 𝑠 (6)

𝑇𝑖𝑟
𝑠 (X) − 𝑇𝑗𝑟

𝑠 (𝑋) ≥ 𝑆𝑗𝑖 − 𝑀(1 − 𝑦𝑗𝑖𝑟), ∀𝑖, 𝑗, 𝑖 ≠ 𝑗, 𝑟, 𝑠 (7)

𝑇𝑖𝑟
𝑠 (X) ≥ 𝑆𝑇𝑂𝑖𝑟

𝑠 − 𝑀(1 − 𝑥𝑖𝑟), ∀𝑖, 𝑟, 𝑠 (8)

The robust ASSP is a kind of scheduling problem that evaluates the optimal robust scheduling that can perform well under all the

possible scenarios. The critical runway is defined as a runway with the longest completion time under scenario 𝑠 in an aircraft

schedule 𝑋 . Equation (9) minimises the maximum deviation of makespan across all the scenarios 𝑠 ∈ 𝛿 . The completed

mathematical formation of the robust ASSP model is shown below:

(RobustASSP) min
𝑋

(max
𝑠∈𝛿

[𝐹(𝑋, 𝑠) − 𝐹𝑠
∗]) (9)

𝑠. 𝑡.

 𝑥𝑖𝑟 + 𝑥𝑗𝑟 ≤ 1 + 𝑦𝑖𝑗𝑟 + 𝑦𝑗𝑖𝑟 , ∀𝑖, 𝑗, 𝑖 ≠ 𝑗, 𝑟 (10)

 𝑦𝑗𝑖𝑟 + 𝑦𝑖𝑗𝑟 ≤ 1, ∀𝑖, 𝑗, 𝑖 ≠ 𝑗, 𝑟 (11)

 ∑ 𝑥𝑖𝑟 = 1, ∀𝑖𝑚
𝑟=1 (12)

𝑥𝑖𝑟 ∈ {0,1}, ∀𝑖, 𝑟 (13)

𝑦𝑗𝑖𝑟 ∈ {0,1}, ∀𝑖, 𝑗, 𝑟 (14)

and

(6) - (8)

Constraints (10) and (11) guarantee that 𝑦𝑗𝑖𝑟 is equal to 1 if flight 𝑖 is assigned after flight 𝑗 on the corresponding runway 𝑟 (not

necessarily immediately). Otherwise, the 𝑦𝑗𝑖𝑟 takes a zero value. Each flight 𝑖 is restricted to being assigned to only one runway 𝑟

for the landing/take-off schedule by constraint (12). Constraints (13) and (14) confirm that the decision variables 𝑥𝑖𝑟 and 𝑦𝑗𝑖𝑟 are

binary numbers.

In the iterative relaxation framework, each iteration determines the worst-case scenario of a given schedule in several extreme point

scenarios by calculating the optimal makespan of each extreme point scenario to obtain the respective regret values of a given

schedule as shown in Proposition 1. The extreme point scenario is defined in Definition 1. Under each extreme point scenario 𝑠,

the scheduled operation time of each flight is equal to either its lower bound value 𝑆𝑇𝑂𝑖 for non-critical runways or its upper bound

value 𝑆𝑇𝑂𝑖 for the critical runway in the min-max regret approach depending on the Definition 1.

Definition 1. Given a makespan minimisation in the ASSP, the regret of a solution 𝑥 ∈ 𝑋 is maximised for the extreme point

scenario 𝑠𝑘, which is defined as follows:

𝑆𝑇𝑂𝑖
𝑠𝑘

= {
𝑆𝑇𝑂𝑖
̅̅ ̅̅ ̅̅ , 𝑖𝑓 𝑥𝑖𝑘 = 1
𝑆𝑇𝑂𝑖 , 𝑖𝑓 𝑥𝑖𝑘 = 0 , 𝑖 = 1,2, … , 𝑛 (15)

or

 𝑆𝑇𝑂𝑖
𝑠𝑘

= 𝑆𝑇𝑂𝑖
̅̅ ̅̅ ̅̅ 𝑥𝑖𝑘 + 𝑆𝑇𝑂𝑖(1 − 𝑥𝑖𝑘) , 𝑖 = 1,2, … , 𝑛 (16)

Definition 2. A runway 𝜁 ∈ 𝑚 is declared to be critical in an aircraft schedule 𝑋 ∈ 𝜔 under scenario 𝑠 ∈ 𝛿 if the completion time

of runway 𝑟 is the longest in schedule 𝑋 under scenario 𝑠.

𝐶𝜁
𝑠(𝑋) = 𝑚𝑎𝑥

𝑟∈𝑅
{𝐶𝑟

𝑠(𝑋)} = 𝐹(𝑋, 𝑠) (17)

Proposition 1. For any schedule 𝑋 ∈ 𝜔, let 𝑠0 be a worst-case scenario under the flight landing and take-off schedule when runway

𝜁 ∈ R is critical. There must be a scenario 𝑠𝜁 that meets the following conditions. First, runway 𝜁 is critical under scenario 𝑠𝜁 .

Second, scenario 𝑠𝜁 is a worst-case scenario for flight schedule 𝑋.

Proof. See Appendix A.

3. Methodology

The makespan minimisation under the deterministic situation and the robust optimisation are the two optimisation processes as in

the iterative relaxation procedure. With respect to the objective of minimising runway makespan, the objective function in

optimisation under the worst-case scenario is 𝐶𝑟
𝑠. The regret value of each runway can then be extracted by Equation (3), given that

definitions 1 and 2 hold under the worst-case regret approach. As for robust optimisation, the objective value is the minimising of

the maximum regret value by considering all the possible scenarios with Equation (5). The objective in robust optimisation is

nonlinear and requires further modification of the objective function and constraints.

3.1. Implementation of an exact algorithm

The regret value 𝑅𝑒𝑔𝑟𝑒𝑡(𝑋, 𝑠) measures the difference between the makespan of a schedule and the optimal solution under scenario

𝑠. The optimal makespan 𝐹𝑠
∗ under scenario s can be directly calculated by mixed-integer programming. However, finding the

minimal-maximal regret cannot be solely solved as it involves an infinite number of scenarios |Ω| = ∞. Therefore, an iterative

relaxation procedure is incorporated to obtain a robust solution in the min-max regret optimisation model (Inuiguchi and Sakawa,

1995; Mausser and Laguna, 1998; Mausser and Laguna, 1999). The relaxation procedure for the min-max regret optimisation is a

standard approach for developing a robust schedule from an initial solution under scenario 𝑠0 by adding regret cuts obtained from

the worst-case scenarios in previous solutions iteratively. Since there is infinite number of possible realisation of scenarios, we can

only consider the limited number of scenarios to confine the model by introducing regret cuts. Regret cut refers to the valid

inequalities tightening the lower bound of the objective function of the robust optimisation during the search process. The lower

bound of the objective function is tightened gradually during the iteration process, as more scenarios are taken into consideration.

The initial solution is constructed by taking all the scheduled operation times of landing/take-offs as the lower bound values. The

iterative process identifies the worst-case scenario of the latest solution, and further constructs a relaxed ASSP model by

incorporating the newly identified worst-case scenario into the iterative relaxation procedure. Hence, the robust solution for the

ASSP model can be determined using the iterative relaxation procedure.

Proposition 2. The maximum regret value is denoted by comparing with each runway as critical 𝜁 ∈ R for the aircraft landing and

take-off sequence 𝑋 for a multiple runways system (𝑚 ≥ 2), using the following equation.

𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(𝑋) = max
ζ∈𝑅

(𝐶ζ
𝑠ζ

− 𝐹
𝑠ζ
∗) (18)

Proof. See Appendix A.

The maximum regret value is unknown if the critical runway 𝜁 is not defined in the robust ASSP. The critical runway 𝜁 can be

calculated by defining runway 𝑟∗ as critical using the equation of 𝑟∗ = arg max
ζ∈𝑅

(𝐶ζ
𝑠ζ

− 𝐹
𝑠ζ
∗). The assigned time of operation of the

flight 𝑇𝑖
𝑠 is associated with its scheduled time of operation 𝑆𝑇𝑂𝑖

𝑠 or the scheduled operation time of the leading flight with

separation requirement 𝑇𝑗
𝑠 + 𝑆𝑗𝑖 by Equations (6) - (8) under scenario 𝑠, which further constitutes the formation of the completion

time 𝐶𝑟
𝑠. The regret value 𝑅𝑉 cannot be solely solved as it involves two optimisation operators in Equation (5), resulting in the

nonlinear objective function. The robust aircraft landing and take-off sequence can be resolved by reformulating the model as

follows:

𝑚𝑖𝑛 𝑅𝑉 (19)

𝑠. 𝑡.

𝐶𝑟
𝑠𝑘

− 𝐹
𝑠𝑘
∗ ≤ 𝑅𝑉, ∀𝑠𝑘 ∈ 𝛺, 𝑟 = 1, 2, … , 𝑚 (20)

and

(6) - (8), (10) - (14)

𝐹𝑠𝑟
∗ is the optimal makespan under scenario 𝑠, while the 𝐶𝑟

𝑠 is the completion time of runway 𝑟 under the worst-case scenario 𝑠𝑘.

It is not appropriate to directly apply mixed-integer linear programming in solving the robust ASSP model. Therefore, an iterative

process is required to consider each worst-case scenario by returning the constraints of the solution 𝑋 to the robust ASSP model.

As in the aforementioned procedure of the min-max regret optimisation, the regret value cannot be obtained by a single optimisation

method, and the number of worst-case scenarios is infinite. As we are seeking the optimal solution with minimal-maximal regret

value across all the feasible solutions. The worst-case scenario of one solution can be used to confine the searching process of

seeking a new incumbent solution. Specifically, once an incumbent solution found, its maximal regret value associated with its

worst-case scenarios is recorded and presented in the form of cut for a subsequent iteration, implying that the new incumbent solution

shall satisfy the prior identified worst-case scenario of the earlier found solutions. Proposition 2 develops and declares the worst-

case scenarios with a limited set of scenarios 𝛺 = (𝑠1, 𝑠2, … , 𝑠𝜔) . The near-optimal/optimal makespan of finite extreme point

scenarios can be obtained by solving a MIP given a known scenario 𝑠𝑘 ∈ 𝛺. The constraint is a form of regret cut from the equation

𝐶𝑟
𝑠𝜁

− 𝐹
𝑠𝜁
∗ ≤ 𝑅𝑉, 𝑟 = 1, 2, … , 𝑚. Assume that the minimal-maximal regret for the robust ASSP model is 𝑅�̂�. Given RV̌ ≤ 𝑅�̂�, the

objective value 𝑅�̌� in the relaxed ASSP model is a non-decreasing value as the lower bound value 𝑅�̌� increases to satisfy the

regret cuts. Afterwards, the robust model can be solved using an iterative process by revising the objective function (9).

Given a schedule 𝑋 , the maximal regret 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(𝑋) can be obtained in accordance with its worst-case scenario 𝑠 ∈ 𝛿 by

proposition 1 and 2. First, the upper bound regret value 𝑅�̂� is set to be ∞ and the lower bound regret value 𝑅�̌� is set to be 0. Then,

the model obtains the optimal makespan under the lower-bound scenario as an initial solution X̂. The maximal regret from an initial

solution 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(�̂�) is defined as an upper bound regret value 𝑅�̂� for the robust ASSP model. If the current lower bound value

is smaller than the upper bound value 𝑅�̌� < 𝑅�̂�, the following process continues. The worst-case scenario �̂� will be added in the

set of scenarios 𝛿 in order to generate a new regret cut for the relaxed ASSP model. The objective value 𝑅𝑉 in the relaxed robust

ASSP solution becomes the lower bound regret value 𝑅�̌�. The iteration is repeated until the lower bound regret value 𝑅�̌� is equal

to or larger than the upper bound regret value 𝑅�̂�. Solution �̂� will then become the robust optimal solution. The pseudo code of

the iterative relaxation procedure is shown in Table 2.

Table 2

The pseudo code of the iterative relaxation procedure

The algorithm architecture of the iterative relaxation procedure

Set lower bound regret value 𝑅�̌� = 0 and upper bound regret value 𝑅�̂� = ∞

Set the optimal makespan under lower-bound scenario as an initial solution �̂�

Define the upper bound regret value under extreme point scenario 𝑅�̂� = 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(�̂�)

WHILE 𝑅�̌� < 𝑅�̂�

 Identify the worst case scenario �̂� of the solution �̂�

 IF 𝑅�̌� ≥ 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(�̂�)

 THEN 𝑅�̂� = 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(�̂�)

 Add regret cuts 𝐶𝑟
𝑠𝜁

− 𝐹
𝑠𝜁
∗ ≤ 𝑅𝑉, 𝑟 = 1, 2, … , 𝑚 to the relaxed robust model

 Solving the relaxed ASSP model and obtain the best-known solution �̂� and set its 𝑅�̌� = 𝑅𝑉

END

3.2. Proposed efficient artificial bee colony algorithm

The major drawback of using mixed integer programming (MIP) in the min-max regret approach is that the computation time is

significantly lengthened in resolving large-sized instances, and high computational capacity is required. The computation using the

exact algorithm in the min-max regret optimisation is costly as the complexity of the computation increases along with the number

of worst-case scenarios (Feng et al., 2016). Also, the complexity of the computation increases dramatically with the size of the

model due to the nature of the non-deterministic polynomial hard (NP-hard) problem (Bianco et al., 1997; Garey and Johnson, 1979).

The relaxed ASSP model includes the makespan optimisation under each extreme point scenario and the robust optimisation in the

iterative relaxation procedure. Meta-heuristics can be applied in these two optimisation problems. The ABC algorithm is a popular

Swarm Intelligence-based algorithm which is able to balance the exploitation and exploration during the searching process. The

conventional ABC algorithm adopts the division of labour strategy, self-organisation and collective behaviour of honey bees to

explore and exploit the searching process efficiently. Although the basic ABC algorithm and the algorithm performance compared

with other meta-heuristics have been well studied in regard to the general scheduling problem, customisation of the algorithm

remains an important determinant to improve the algorithm’s performance for robust modelling. In our exploratory experiments,

biological evolution and variants of ABC algorithms have been applied. Our preliminary analysis showed that the results were not

satisfied, in terms of the objective value and the computation time. The solution quality of the robust schedule is determined by the

accuracy of the set of regret cuts added into the iterative relaxation model. The quality of regret cuts depends on the deviation of the

best-known makespan under the worst-case scenario derived by the meta-heuristics from the real optimal makespan value.

Specifically, the regret cut is presented in the form of 𝐶𝑟
s − 𝐹s

∗ ≤ 𝑅𝑉, 𝑟 = 1, 2, … , 𝑚 in the mathematical model. For example, if

𝐹𝑠
1 obtained by meta-heuristics is larger than the true optimal, the value on the left-hand side of regret cuts becomes smaller than

the one determined by the true optimal 𝐹s
∗ in each round of the iterative relaxation procedure. In this connection, the quality of the

regret cut tightening the lower bound of the objective function becomes weak. The best-known makespan under worst-case scenario

𝐹𝑠 does not guarantee an optimal condition as meta-heuristics are approximation algorithms and limited computation time is required.

Poor solution quality in the worst-case optimisation by meta-heuristics implies poor quality of the final min-max regret solution. In

order to obtain close-to-optimal solution in reasonable computation time, a novel EABC algorithm is introduced in this section.

To improve the convergence rate of the ABC algorithm for the robust ASSP model, two enhanced strategies and two novel

algorithmic components are introduced. As the computation in the min-max regret optimisation is costly using the iterative relaxation

procedure, simplification of the decision variables in the solution representation and elimination of inefficient neighbourhood

searching are introduced in the EABC algorithm to reduce the computational burden in the employed bee phase. In addition, we

propose two novel components in the EABC algorithm to improve the solution quality. First, a constructive heuristic specifically

designed for the mixed-mode runway scheduling under uncertainty. The constructive heuristic provides a fairly good initial solution

as an input and maintains a diversity of the population. The EABC algorithm will then continue to exploit better solution by an

iterative process. Second, we adopt an objective-guided updating mechanism in scout bee phase. If a candidate solution 𝑐𝑖 is the

worst solution in regards to the objective value 𝑓𝑢𝑛(𝑐𝑖) and reaches the maximum tolerance of unsuccessful update 𝑡𝑟𝑖𝑎𝑙(𝑐𝑖) >

𝑙𝑖𝑚𝑖𝑡, during the iterative process of the EABC algorithm, the local optimal solution will be replaced by a memorised solution.

Otherwise, it will be restructured by the local search operators to formulate a new solution. In this regard, the objective-guided

updating mechanism accelerates the convergence of the algorithm. In the robust optimisation using min-max regret criterion, each

iterative relaxation procedures will generate a worst-case optimal or a robust optimal solution. Before the start of the iterative process

of the EABC algorithm, the solution from the previous iteration (either a worst-case optimal or a robust optimal solution) will be

recorded as memorised solution. The memorised solution in the robust optimisation is obtained from the worst-case optimal/near-

optimal solution in the previous iteration, while the memorised solution in the worst-case optimisation is produced from the robust

optimal/near-optimal solution in the previous iteration. As a result, the proposed EABC algorithm yields better solutions than other

well-known meta-heuristics. Following the description of the components of the EABC algorithm, the computational experiments

and the robustness analysis of the algorithm are discussed. The notation of the EABC algorithm is presented in Table 3.

Table 3

Notation of the efficient artificial bee colony algorithm

Notations Explanation

𝐶𝑆 The size of bee colony

𝑆𝑁 The number of candidate solutions

𝑀𝑎𝑥𝐼𝑡𝑒𝑟 The maximum number of iterations

𝑑𝑖𝑚 The dimension of an independent solution

𝑐𝑖,𝑖 = 1,2, … , 𝑆𝑁 The position of each solution in bee colony

𝑓𝑢𝑛(𝑐𝑖) The objective value of solution 𝑐𝑖

𝑓𝑖𝑡(𝑐𝑖) The fitness value of solution 𝑐𝑖

𝑃𝑟𝑜𝑏(𝑐𝑖) The probability of an individual solution 𝑐𝑖 among the entire colony in term of fitness value

𝑐�̅� The neighbour solution of an individual solution 𝑐𝑖

𝑐𝑚 The memorised solution obtained in previous robust optimisation

𝑡𝑟𝑖𝑎𝑙(𝑐𝑖) The accumulated trial value of an individual solution 𝑐𝑖, which cannot be enhanced the quality of solution in

terms of its objective value

𝑙𝑖𝑚𝑖𝑡 The maximum tolerance of trial(𝑐𝑖)

𝑝 Random number, 0 ≤ 𝑝 < 1

The pseudo code of the proposed EABC algorithm is shown in Table 4. The EABC algorithm initially produces a set of candidate

solutions 𝑐𝑖 , 𝑖 = 1,2, … , 𝑆𝑁. Each candidate solution will be replaced by a proposed constructive heuristic, as stated in Section 3.2.2,

to formulate a “seed” for exploitation and exploration. The constructive heuristic provides a high-quality solution and leads to a fast

convergence to close-to-optimal solutions by the EABC algorithm. Then, the EABC algorithm performs searching by the employed

bee phase (as described in Section 3.2.3), onlooker bee phase (as described in Section 3.2.4) and scout bee phase (as described in

Section 3.2.5) to improve the candidate solutions iteratively until the stopping criterion is met. After the completion of the iterative

process, the EABC algorithm reports the best-known solution during the searching process.

Table 4

The pseudo code of the efficient artificial bee colony algorithm

The algorithm architecture of the efficient artificial bee colony algorithm

Initialization

 Develop the First-come-first-serve sequence according to the scheduled operation time

 Generate an initial solution using constructive heuristic

 Compute the objective value 𝑓𝑢𝑛(𝑐𝑖) of each solution 𝑐𝑖

 Initial the parameter 𝑙𝑜𝑜𝑝, and set 𝑀𝑎𝑥𝐼𝑡𝑒𝑟

DO

Employed Bee Phase

 Apply neighbourhood search on each candidate solution 𝑐𝑖, ∀i to construct a neighbourhood solution 𝑐�̅�

 Calculate the objective value 𝑓𝑢𝑛(𝑐𝑖) and 𝑓𝑢𝑛(𝑐�̅�) of candidate solution 𝑐𝑖 and neighbourhood solution 𝑐�̅�

 Apply greedy selection to construct the new solution

 IF the objective value 𝑓𝑢𝑛(𝑐�̅�) is better than 𝑓𝑢𝑛(𝑐𝑖)

 THEN

 Replace candidate solution 𝑐𝑖 by neighbourhood solution 𝑐�̅�

 ELSE

 trial(𝑐𝑖) = 𝑡𝑟𝑖𝑎𝑙(𝑐𝑖) + 1

Onlooker Bee Phase

 Calculate the fitness value 𝑓𝑖𝑡(𝑐𝑖) of candidate solution 𝑐𝑖 using the equation (28)

 Generate a uniform random number 𝑝 and select one candidate solution under roulette wheel selection scheme

 Apply neighbourhood search to the corresponding candidate solution

Scout Bee Phase

 IF the trial of a candidate solution 𝑙𝑖𝑚𝑖𝑡(𝑐𝑖) is over the maximum tolerance of unsuccessful updates 𝑙𝑖𝑚𝑖𝑡

 THEN

 IF the candidate solution 𝑐𝑖 is the worst solution among the population

 THEN

 Replace candidate solution 𝑐𝑖 by the memorised solution 𝑐𝑚

 ELSE

 Perform non-objective guided neighbourhood search to restructure the candidate solution 𝑐𝑖

Stopping criterion

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑡𝑒𝑟 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑡𝑒𝑟 + 1

WHILE 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑡𝑒𝑟 < 𝑀𝑎𝑥𝐼𝑡𝑒𝑟

Return the best-known solution

3.2.1. Solution representation

The binary decision variables in the MIP model are inefficient when the model is resolved by meta-heuristics, particularly in

population-based meta-heuristics, since extra memory and computation time are required for binary searching in such cases.

Therefore, the transformation is an essential step to reduce the computational effort in the meta-heuristics formulation. In the robust

ASSP model, aircraft assignment and sequencing are conducted by the decision variables 𝑥𝑖𝑟 and 𝑦𝑗𝑖𝑟 . The assignment and

sequencing are determined with regard to the position on the array under the meta-heuristics approach. Assuming that there are three

aircraft in the landing system, aircraft 0 is assigned to land immediately before aircraft 1 on runway 0, while aircraft 2 is assigned

to land on runway 1. Aircraft 0 and 2 are in the first position of the landing sequence on the corresponding runways. Therefore, the

decision variables 𝑥00, 𝑥10 and 𝑥21 are equal to 1 in the aircraft assignment problem. As for the aircraft-sequencing problem, the

decision variable 𝑦010 is equal to 1. In order to reduce unnecessary solution space during searching, the solution is represented as

a single array with the dimension 𝑑𝑖𝑚, where 𝑑𝑖𝑚 = 𝑛 × 𝑚. The value of -1 in the solution denotes an empty position in the ASSP

solution. The solution representation is shown in Fig. 2.

Fig. 2. Solution representation under the meta-heuristics approach

The design of the min-max regret approach aims to obtain a robust ASSP schedule to minimise the maximal regret value by

considering a set of worst-case scenarios. The two main stages require optimisation techniques in the solution. They are robust

scheduling and makespan optimisation under the worst-case scenario. The process workflow using the ABC algorithm in deriving

the worst-case optimal makespan and the robust makespan are the same, except for the computation of objective value and fitness

value. The objective function in the optimal makespan under the worst-case scenario is 𝐹(𝑋, 𝑠𝜁), while the objective function in

the robust ASSP considering all the worst-case scenario follows Equations (19) and (20).

3.2.2. Initialisation using constructive heuristic

Randomised initialisation in the SI algorithms causes a lengthy convergence time, as a randomised procedure does not guarantee

that the searching process started from a promising solution region. SI algorithms perform exploitation and exploration procedures

through trial-and-error interaction to obtain close-to-optimal value. The algorithm requires extra effort in searching from an

unpromising solution region to a satisfactory solution, which leads to extensive exploitation. To a certain extent, the algorithm

undertakes considerable unsuccessful searching and results in frequent termination searching in the exploration phase. With the

purpose of minimising the adverse effect in the SI algorithm, a constructive heuristic is a successive approximation scheme to

generate a satisfactory initial solution with high quality. A simple constructive heuristic approach is introduced in this section.

The design of the constructive heuristic approach takes a similar perspective of an objective function and the FCFS scheme. The

maximum number of flights is equal to 𝑛. Flights 𝑖 = (1,2, … , 𝑛) are sorted in ascending order as an FCFS scheme using an

insertion operator according to its scheduled operation time 𝑆𝑇𝑂𝑖 = (𝑆𝑇𝑂1, 𝑆𝑇𝑂2 , … , 𝑆𝑇𝑂𝑛−1, 𝑆𝑇𝑂𝑛). The constructive heuristic

takes 𝑛 steps (1 ≤ 𝑖 ≤ 𝑛) to complete the initial solution. After creating the sequential order of the scheduled operation, each

flight is assigned a runway by the greedy method. The first flight is assigned a random runway as a seed. For the remaining flights

on the sorted list, the algorithm measures the assigned time of operation 𝑇𝑖𝑟 if flight 𝑖 is assigned after the last assigned flight on

runway 𝑟 = (1 ≤ 𝑟 ≤ 𝑚) in a consecutive sequence, including the separation time requirement. If the assigned time of operation

𝑇𝑖𝑟 is equal to the scheduled time of operation 𝑆𝑇𝑂𝑖𝑟 , then flight 𝑖 is successively scheduled on runway 𝑟 without any delays.

Otherwise, the calculation will be repeated and 𝑟 = 𝑟 + 1 until flight 𝑖 is assigned or 𝑟 = 𝑚 . The iterative process will be

complete when 𝑟 is equal to 𝑚 , which refers to the situation in which flight 𝑖 requires extra time to perform the operation

compared to its preferred time of operation due to limited resources. Two approaches can be applied to resolve this solution – the

least completion time method or by random assignment. The runway assignment is selected by measuring the completion time of

the runway for 𝑚 scenarios when flight 𝑖 is assigned to the latest position of each runway using the least completion time method.

Random assignment refers to a situation in which flight 𝑖 is randomly assigned to a runway. According to our preliminary study,

the random assignment approach ensures the diversity of the initial solution, and is able to achieve better optimality in the iterative

relaxation procedure. In our model, the random assignment approach is considered in the constructive heuristic, and the operation

performs the next iteration until all flights are assigned.

3.2.3. Employed bee phase

The EABC algorithm is a population-based algorithm and involves searching a set of candidate solutions 𝑐𝑖 = 1,2, … , 𝑆𝑁. The

employed bee phase aims to generate a neighbourhood solution 𝑐�̅� from a known solution 𝑐𝑖 by exploitation operators so as to

obtain a search of the robust ASSP model for all the solutions c𝑖. Neighbourhood searching includes local search operators and

crossover operators. Local search operators are simple operators to randomly select element(s) in a known solution and revise the

structure of a solution. Insert, swap and reverse operators are commonly applied in the employed bee phase in job-shop scheduling

and vehicle routing problems (Pan et al., 2013; Schiavinotto and Stützle, 2007; Szeto et al., 2011). The insert operator randomly

removes a flight at the 𝑖th position and reinserts it into the 𝑗th position. The swap operator randomly exchanges two elements at the

𝑖 th position and 𝑗 th position. The reverse operator randomly selects a subsequence of flights and reverses the order of the

corresponding subsequence. Crossover operators are combining two different candidate solutions to construct a neighbourhood

solution (Vallada and Ruiz, 2011). The random element selection falls into the range of 1 ≤ 𝑖𝑡ℎ, 𝑗𝑡ℎ ≤ 𝑑𝑖𝑚.

The reverse operator and crossover operator are common local search operators in hybrid meta-heuristics. Crossover is a genetic

operator and usually hybridised with other metaheuristics (Gandomi and Alavi, 2012; Pant et al., 2007; Zhang et al., 2016; Zhang

et al., 2014). However, these two operators are suggested to be removed if the model requires timely decision-making. In the robust

modelling, the iterative relaxation procedure takes several rounds of the optimisation process. The number of iterations in the

iterative relaxation procedure is subjected to the number of the worst-case scenarios. To enhance the efficiency of the optimisation

process, inefficient operators should be removed. In our prior study, the reverse operator was found to be less effective in improving

the solution as the order of a solution represents the sequential time of operation. The neighbourhood solution obtained by reverse

operators usually has a higher makespan value. Also, the computation to obtain the neighbourhood solution using a crossover

operator requires the measurement of the fitness value on the population and formulates the probabilistic distribution in the wheel

roulette selection (Zhang et al., 2014). The computation time of crossover is significant in each iteration. Comparatively, swap and

insert operators are simple and effective in obtaining satisfactory neighbourhood solutions.

Four operators are considered in the employed bee phase shown as follows:

• Select a flight and use the insert operator on the same runway for schedule 𝑋

• Select a flight and use the insert operator on different runways for schedule 𝑋

• Select two flights and use the swap operator on the same runway for schedule 𝑋

• Select two flights and use the swap operator on different runways for schedule 𝑋

After generating a neighbourhood solution, the objective-guided greedy method is considered in comparing the solution quality

between candidate solution 𝑐𝑖 and neighbourhood solution 𝑐�̅�. The quality of both solutions is evaluated by the objective function

fun(𝑐𝑖). If the solution quality of the neighbourhood solution fun(𝑐�̅�) is better than the original one fun(𝑐𝑖), the candidate solution

will be updated by the neighbourhood solution. Any unsuccessful update using each operator will be counted for each candidate

solution 𝑐𝑖 by the parameter 𝑡𝑟𝑖𝑎𝑙(𝑐𝑖).

3.2.4. Onlooker bee phase

The Onlooker bee phase enhances the exploitation process by utilising the fitness probability distribution to improve the overall

solution quality. The onlooker bee utilises the information, shared by the employed bee, to further exploit the selected food source.

The selection criterion of high-quality candidate among the candidate solutions depends on the winning probability value 𝑝𝑖 . The

fitness approximation 𝑓𝑖𝑡(𝑐𝑖) is a measurement to identify the quality of each solution according to a cumulative probability

distribution of a population set, which deviates from the objective value fun(𝑐𝑖) using Equation (21) (Pan et al., 2013). The

objective value 𝑓𝑢𝑛(𝑐𝑖) in the worst-case optimisation is determined by the makespan value 𝐹(𝑋, 𝑠) of a schedule under an

extreme scenario 𝑠 , while the objective value 𝑓𝑢𝑛(𝑐𝑖) in the robust optimisation is computed by the regret value 𝑅𝑉 . The

proposed Equation (21) is able to handle zero and positive values, as the regret value can be a non-negative value in Equation (3).

The larger fitness value 𝑓𝑖𝑡(𝑐𝑖) implies a better solution quality across the population. The selective probability of each solution

𝑝𝑟𝑜𝑏(𝑐𝑖) is derived by Equation (22).

𝑓𝑖𝑡(𝑐𝑖) =
1

1+𝑓𝑢𝑛(𝑐𝑖)
, ∀𝑖 (21)

𝑝𝑟𝑜𝑏(𝑐𝑖) =
𝑓𝑖𝑡(𝑐𝑖)

∑ 𝑓𝑖𝑡(𝑐𝑖)𝑆𝑁
𝑖=1

, ∀𝑖 (22)

Due to the simplicity, the selection process in Equation (22) is used in the ABC algorithm (Tasgetiren et al., 2011). Each onlooker

bee generates a uniform random number 𝑝 ranging from [0,1) under the roulette wheel selection scheme, and carries out a

neighbourhood search on the selected candidate solution, as stated in Section 3.2.3. The greedy approach is also applied to measure

the solution quality between 𝑐𝑖 and 𝑐�̅�. Satisfactory solutions are selected several times in the neighbourhood search procedure,

and speeds up the time to convergence in the onlooker bee phase.

3.2.5. Scout bee phase

Candidate solutions will be trapped in local optimum under the intensive neighbourhood searching process, which refers to the

degraded searching scenario. The algorithm is not able to obtain a superior neighbourhood solution from the preceding solution in

such case. To escape from the local optimum trap in the scout bee phase, the trapped solution is abandoned, and a certain level of

solution diversity remains in the population. The selection criteria of the trapped solution are based on the negative feedback

mechanism using the parameter 𝑡𝑟𝑖𝑎𝑙, as mentioned in Section 3.2.3. If the number of unsuccessful updates of a solution 𝑡𝑟𝑖𝑎𝑙(𝑐𝑖)

exceeds the maximum tolerance of an unsuccessful update, the solution will then be updated by a new solution to maintain diversity

among the candidate solutions.

The proposed updating mechanism utilises the information from the prior optimised solution by an iterative relaxation procedure.

The design of the updating mechanism insists on enhancing the convergence rate by information exchange (Su et al., 2017). To

reduce the computational effort for optimisation in the iterative relaxation procedure, a robust solution in each round of iterations is

memorised as a source for a promising search start point, except for the initial solution in the iterative relaxation procedure. Since

the optimal solution for the worst-case scenario and the robust optimal solution in the next iteration shares the same sequential

elements and structure, the preceding solution can be regarded as a promising and new intermediate solution in the worst-case

scenario optimisation and the robust optimisation. The updating mechanism is explained as follows. If one solution is considered as

a trapped candidate solution, the algorithm will further evaluate the solution quality regarding the objective value 𝑓𝑖𝑡(𝑐𝑖) among

the population. If the trapped candidate solution is the worst-observed objective value compared with other candidates, the solution

will be replaced by the memorised solution in the previous iteration. Otherwise, non-objective guided insert and swap operators will

revise the solution sequence of the trapped candidate solution to restructure the trapped solution. The proposed scout bee phase

helps to catalyse the process of intensification and diversification to obtain a preferable or optimal solution until the stopping criteria

are satisfied.

4. Result of experiment

4.1. Description of test instances

Since there are no benchmark instance sets of the robust ASSP model in the literature, randomly generated instance sets were adopted

in this research. Test instances were generated for the evaluation of the proposed algorithm following the below criteria. The uniform

distributions of the scheduled time of operation 𝑆𝑇𝑂𝑖𝑟
𝑠 fell into an interval [𝑆𝑇𝑂𝑖𝑟 , 𝑆𝑇𝑂𝑖𝑟]. The lower bound value of scheduled

time of operation 𝑆𝑇𝑂𝑖𝑟 was randomly assigned from an interval of [0, 60𝑚
𝑛⁄] to represent an arrival/departure rate of flights for

a runway. The upper bound value of scheduled time of operation 𝑆𝑇𝑂𝑖𝑟 is constructed by the lower bound value of scheduled time

of operation 𝑆𝑇𝑂𝑖𝑟 with a time length of runway dependent arrival or departure delay for each flight 𝜀𝑖𝑟, where 𝜀𝑖𝑟 ∈ (0, 𝛽]. The

description of the test instance is shown in Table 5 with 𝑛 = (6,12,18,24,30) for two runways – mixed-mode parallel operation,

and 𝑛 = (10,18,28,36,46) for three runways – mixed-mode parallel operation. Flight classes SSF, MSF and LSF represent small-

size, medium size and large size flights correspondingly. The distribution of the flight classes for both sets of the test instances are

(50% LSF and 50% MSF) and (50% LSF, 33.3% MSF and 16.7% SSF). (60, 120) are used for beta value 𝛽, resulting in a total of

40 test instances. 𝛽 is the maximum deviation of possible operation time 𝜀𝑖𝑟 in the computational experiment.

Table 5

Instance description of the robust ASSP model

ASSP model

%LSF=50%, % MSF=50% %LSF=50%,%MSF=33.3%,%SSF=16.7%

Instance ID 𝑛 Instance ID 𝑛

Two runways -

mixed mode

parallel

operation

1001 6 2001 6

1002 12 2002 12

1003 18 2003 18

1004 24 2004 24

1005 30 2005 30

Three runways -

mixed mode

parallel

operation

3001 10 4001 10

3002 18 4002 18

3003 28 4003 28

3004 36 4004 36

3005 46 4005 46

SSF=Small size flight; MSF= Medium size flight; LSF=Large size flight

The configuration of the computational environment was an Intel Core i7 3.60 GHz CPU and 16 GB random-access memory under

the Windows 7 Enterprise 64-bit operating system. The performance of the EABC algorithm was evaluated by randomly generated

ASSP instances and compared to other meta-heuristics and modified ABC algorithms. These included the Branch-and-Bound (B-B)

algorithm, Genetic Local Search (GLS) (Liu, 2011), Original Artificial Bee Colony (ABC) algorithm (Karaboga and Basturk, 2008),

Modified Artificial Bee Colony (MABC) Algorithm and Hybrid Artificial Bee Colony (HABC) algorithm (Zhang et al., 2014).

Table 6

Algorithm design for comparison

Algorithm design GLS ABC MABC HABC EABC

Initialization Randomized Randomized Constructive heuristic Constructive heuristic
Constructive

heuristic

Exploitation
Local search

Crossover
Local search Local search

Local search

Crossover
Local search

Exploration NULL Scout Bee Scout bee Scout bee Efficient scout bee

The exact method was also applied for baseline results by IBM ILOG CPLEX Optimization Studio 12.6.3 so as to evaluate the

performance of the proposed algorithm. All the algorithms are written in C# language with visual studio 2015. The parameter setting

was conducted in the preliminary study for parameter tuning (the detailed parameter analysis is described in Appendix B). The final

parameters of the proposed EABC algorithm for the worst-case optimisation and the robust optimisation are set as follows:

• 𝐶𝑆 = 40, 𝑆𝑁 = 𝐶𝑆
2⁄

• 𝑙𝑖𝑚𝑖𝑡 = 2 × 𝑆𝑁 × 𝑚 × 𝑛

• 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 1000 × m × 𝑛

4.2. Effectiveness of meta-heuristics

Each algorithm was given a maximum computation time of 3,600 seconds to resolve the test instance. The time limit was chosen in

accordance with the characteristic of the instance. The number of flights in the large-sized instances is the approximate number of

air traffic scenarios during the peak hours in the Hong Kong International Airport. The runway schedule was designed for an hour

of traffic. Therefore, the computation time of the schedule must be less than 3,600 seconds to maintain a continuity of runway

scheduling in the time horizon. In order to evaluate the algorithm performance, optimality gap 𝑅𝑒𝑔𝑟𝑒𝑡 𝐺𝑎𝑝 %, average robust cost

A𝑅𝐶, relative percentage increase 𝑅𝑃𝐼(𝐴𝑅𝐶), least significant difference LSD and the number of best value #𝑏𝑒𝑠𝑡 are reported.

The robust optimisation in the iterative relaxation procedure measures the regret deviation between 𝑅�̂� and 𝑅�̌� as a termination

criterion. The optimisation process is not guaranteed to produce a robust solution with the situation of 𝑅�̂� = 𝑅�̌� given a limited

computation time. Therefore, the optimality gap is reported for the performance of the exact method by Equation (23) (Pereira and

Averbakh, 2011).

𝑅𝑒𝑔𝑟𝑒𝑡 𝐺𝑎𝑝 % =
𝑅�̂�−𝑅�̌�

𝑅�̂�
 (23)

The robustness cost 𝑅𝐶(𝑋) of schedule X is defined as its maximum regret value among all possible scenarios in the set S by

Equation (24). 0 value in 𝑅𝑒𝑔𝑎𝑟𝑑 𝐺𝑎𝑝 % implies a robust optimal solution and the worst-case scenarios are obtained (Lu et al.,

2014). Otherwise, the near-optimal robust solution is obtained. The maximum regret value 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(𝑋𝐹𝐶𝐹𝑆) using FCFS

sequencing policy with mixed-mode runways (FCFS-MIX) was also included in the experiment for comparison. The heuristic of

FCFS-MIX sequencing policy followed the rules proposed by Farhadi et al. (2014). The construction of a FCFS-MIX schedule

considers the lower bound value of scheduled time of operation 𝑆𝑇𝑂𝑖𝑟 as an input source.

𝑅𝐶(𝑋) = 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(𝑋) = max
𝑠∈𝛿

𝑅𝑒𝑔𝑟𝑒𝑡(𝑋, 𝑠) = max
𝑠∈𝛿

(𝐹(𝑋, 𝑠) − 𝐹𝑠
∗) (24)

Repeatability testing was adopted to measure the effectiveness of the proposed algorithm under the same condition as the selected

instances, such as delay time, and scheduled operation time of each flight. The RC obtained by the exact method provides a reference

point for the evaluation of the meta-heuristics algorithms, comparing the deviation of the maximum regret value with the average

regret value. The meta-heuristics approaches generate a robust near optimal solution with less computation effort. In each iteration,

the 𝐹𝑠
∗ obtained is not guaranteed to be an optimal condition under worst-case scenario 𝑠 . Thus, the maximum regret value

 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(𝑋) constructed by meta-heuristics is an approximate value. The performance of the proposed algorithm was measured

by the 𝑅𝑃𝐼(𝐴𝑅𝐶), as shown in Equation (25), given that the 𝑅𝐶∗ is the maximum regret value obtained by the exact method with

limited computational power. The average Robustness cost 𝐴𝑅𝐶 is the average performance of the maximum regret value obtained

by the meta-heuristics approach in ten repeated experiments.

𝑅𝑃𝐼(𝐴𝑅𝐶) =
𝐴𝑅𝐶−𝑅𝐶∗

𝑅𝐶∗ × 100 (25)

The LSD intervals for the mean estimation of the “noise” in the computational results is needed to provide valid mean comparisons.

Equation (26) measures the LSD intervals at a 95% confidence level for estimating the statistically significant difference of the RPI

among the test instances (Pan et al., 2013). Since the computation time for optimisation is limited to 3,600 seconds, the 𝑅𝐶∗ is not

guaranteed to be an optimal condition. If A𝑅𝐶 is better than the 𝑅𝐶∗ , 𝑅𝑃𝐼(𝐴𝑅𝐶) will be a negative value to indicate better

algorithm performance. In this regard, the lower bound value of LSD may also be negative.

𝐿𝑆𝐷 ∈ [𝑅𝑃𝐼(𝐴𝑅𝐶) − 1.96
𝜎𝑅𝑃𝐼(𝑅𝐶)

√𝑛
, 𝑅𝑃𝐼(𝐴𝑅𝐶) + 1.96

𝜎𝑅𝑃𝐼(𝑅𝐶)

√𝑛
] (26)

With the purpose of measuring the robustness of the proposed algorithm, the #𝑏𝑒𝑠𝑡 reports the best number of 𝑅𝐶(𝑋) values out

of the solutions obtained by the exact method, given 10 repeated experiments.

4.3. Computational results with meta-heuristics

With the aim of evaluating the effectiveness of the proposed algorithm and other meta-heuristics, the computational results by the

exact method is a reference or baseline for comparison of the deviation of 𝑅𝐶(𝑋) and computation time. The computational results

by the exact method using CPLEX are presented in Table 7. CPLEX failed to obtain the robustness cost for the instances with less

than or equal to 18 flights, given a 3,600-second computational limit. Except the InstanceID-1005-𝛽-60 and InstanceID-2004-𝛽-60,

the 𝑅𝑒𝑔𝑟𝑒𝑡 𝐺𝑎𝑝 % is at least 20% from the regret lower bound.

Table 7

Computational performance by the exact method

In
st

an
ce

 I
D

𝛽 CPU (s) 𝑅�̂� Regret Gap %

In
st

an
ce

 I
D

𝛽 CPU (s) 𝑅�̂� Regret Gap %

1001
60 3.38 30 Opt

3001
60 108.08 0 Opt

120 3.24 55 Opt 120 31.23 14 Opt

1002
60 14.54 9 Opt

3002
60 >3600 9 Opt

120 1166.73 18 Opt 120 >3600 9 Opt

1003
60 >3600 2 100%

3003
60 >3600 36 Opt

120 >3600 123 96.75% 120 >3600 66 71.21%

1004
60 >3600 108 67.59%

3004
60 >3600 79 88.61%

120 >3600 102 65.69% 120 >3600 68 91.18%

1005
60 >3600 12 Opt

3005
60 >3600 61 90.16%

120 >3600 183 62.84% 120 >3600 98 74.49%

2001
60 1.31 0 Opt

4001
60 37.89 23 Opt

120 4.04 13 Opt 120 158.03 59 Opt

2002
60 1312.40 19 Opt

4002
60 >3600 25 96.00%

120 2636.59 28 Opt 120 >3600 62 91.94%

2003
60 >3600 14 64.29%

4003
60 >3600 31 41.94%

120 >3600 65 92.31% 120 >3600 88 100.00%

2004
60 >3600 67 47.76%

4004
60 >3600 16 Opt

120 >3600 87 62.07% 120 >3600 77 66.23%

2005
60 >3600 48 50.00%

4005
60 >3600 94 21.28%

120 >3600 130 40.77% 120 >3600 220 39.09%

Opt: Optimal condition

We then investigated the effectiveness of the meta-heuristics in contrast with the performance of the exact method. Table 8 shows

the computational performance of the meta-heuristics for the instances of two and three runways’ mixed-mode parallel operations

respectively. A total of ten replications for each instance were conducted to calculate the average performance of the algorithm. The

average robustness cost 𝐴𝑅𝐶 and the deviation between the average value and optimal 𝑅𝑃𝐼(𝐴𝑅𝐶) are reported. The closer value

of 𝑅𝑃𝐼(𝐴𝑅𝐶) indicates less deviation from the optimal value. If 𝑅𝐶∗ is in an optimal condition, the value of 𝑅𝑃𝐼(𝐴𝑅𝐶) must be

larger than or equal to 0.00%. Negative values in 𝑅𝑃𝐼(𝐴𝑅𝐶) indicate that meta-heuristics obtain a better solution than the exact

method. Concurrently, 𝑅𝐶∗ was not in the optimal condition. The bold values in 𝑅𝑃𝐼(𝐴𝑅𝐶) are the best values or have the smallest

gap from the optimal compared to other meta-heuristics. It can be seen that the EABC algorithm achieved the best performance in

𝑅𝑃𝐼(𝐴𝑅𝐶) generally. It can be observed that the smallest 𝑅𝑃𝐼(𝐴𝑅𝐶) compared with other meta-heuristic approaches was counted

as 24 out of the 40 instances. The average 𝑅𝑃𝐼(𝐴𝑅𝐶) of EBAC algorithm is equal to 3.40%, which is smaller than others. The

result presents that the 𝑅𝑃𝐼(𝐴𝑅𝐶) of the proposed EABC algorithm achieved the best value over the other meta-heuristics

approaches.

Table 8

Comparison of FCFS-MIX heuristic and meta-heuristics for the instances of two / three runways’ mixed-mode parallel operation

𝛽

In
st

an
ce

 I
D

Average RC gap 𝑅𝑃𝐼(𝐴𝑅𝐶) for two runways system (in

percentage)

In
st

an
ce

 I
D

Average RC gap 𝑅𝑃𝐼(𝐴𝑅𝐶) for three runways system (in

percentage)

FCFS GLS ABC MABC HABC EABC FCFS GLS ABC MABC HABC EABC

60
1001

236.67 10.50 7.39 0.00 0.00 1.42
3001

15500.00 29.24 7.04 6.71 4.80 7.04

120 76.36 37.77 7.70 3.00 1.59 5.73 1064.29 28.11 8.18 6.76 5.84 5.54

60
1002

2755.56 13.05 1.59 4.44 4.03 3.98
3002

2088.89 14.37 7.81 10.91 7.48 6.00

120 1355.56 14.01 8.98 1.73 1.01 0.88 2133.33 25.85 12.08 9.81 6.32 8.68

60
1003

25300.00 9.79 11.83 4.84 3.74 1.03

3003
1144.44 14.86 8.20 4.09 3.09 1.65

120 323.58 18.86 10.83 7.60 7.82 5.16 562.12 16.82 7.71 3.88 2.37 2.36

60
1004

538.89 13.83 4.19 4.80 4.98 4.19

3004
677.22 10.28 -1.35 3.18 2.49 -1.35

120 609.80 12.12 7.96 7.14 7.82 6.18 777.94 16.62 0.78 1.04 0.14 -0.70

60
1005

6675.00 5.26 0.38 0.38 1.52 0.00

3005
845.90 3.97 1.60 1.78 0.89 0.54

120 340.98 11.27 3.13 4.35 3.92 2.55 552.04 4.01 6.53 -0.38 -0.38 0.62

60
2001

2600.00 12.05 0.52 0.00 0.00 0.00

4001
486.96 22.10 8.12 8.02 8.67 7.73

120 223.08 23.26 4.82 5.42 2.17 5.39 164.41 34.98 13.88 13.54 13.46 11.83

60
2002

547.37 3.97 8.32 1.04 3.37 3.37
4002

1252.00 10.64 4.11 4.11 7.52 4.11

120 357.14 16.75 6.53 6.03 6.82 7.48 493.55 16.01 9.40 4.15 3.68 5.25

60 2003 3421.43 4.25 0.48 4.21 1.67 0.48 4003 1058.06 9.71 1.93 2.67 2.86 4.33

120 676.92 11.45 21.60 4.89 5.45 4.16 368.18 18.96 11.49 6.13 3.83 5.11

60
2004

568.66 3.84 1.13 6.18 3.14 1.13

4004
3987.50 5.18 0.09 1.58 0.76 0.26

120 414.94 0.49 -0.84 1.42 5.14 0.64 707.79 12.49 4.39 1.84 0.33 -1.29

60
2005

1356.25 15.48 10.94 4.05 1.97 1.28

4005
824.47 12.05 8.72 0.85 0.01 0.09

120 464.62 6.55 14.20 7.56 5.56 4.43 275.00 6.09 7.73 0.09 -0.20 0.25

Average 2442.14 12.23 6.59 3.95 3.59 2.98 1748.20 15.62 6.42 4.54 3.70 3.40

Bold value: The minimum RPI(ARC) across the same instance

To demonstrate the statistical difference between the meta-heuristics regarding solution quality 𝑅𝑃𝐼(𝐴𝑅𝐶), the LSD intervals for

different algorithms are presented in Table 9. Fig. 3 shows the LSD intervals at a 95% confidence level with the LSD factors and

algorithm type. The results show that the LSD intervals of the GLS and ABC algorithms have a wide range, which implies that the

algorithms fail to obtain satisfactory and steady performance across the selected instances. It is clear from Fig. 3 that the HABC and

EABC are significantly better than other meta-heuristics approaches. HABC and EABC algorithms perform similarly using the

measurement of LSD intervals. Besides the solution quality of the proposed algorithm, the computational burden is also a major

indicator in determining the efficiency of the algorithm. The average computation time of the HABC algorithm is around triple the

results for the EABC algorithm. Considering the computational effort as well as the algorithm performance, the performance of the

EABC algorithm surpassed the other types of ABC approaches. Detailed information on the computation time is given in Appendix

A. It can be concluded that the EBC algorithm improved the average 𝑅𝑃𝐼(𝐴𝑅𝐶) and computation time.

Table 9

Comparison of the least significant difference

LSD interval at a 95% confidence level GLS ABC MABC HABC EABC

Maximum max 𝑅𝑃𝐼(𝐴𝑅𝐶) 37.77% 21.60% 13.54% 13.46% 11.83%

Minimum min 𝑅𝑃𝐼(𝐴𝑅𝐶) 0.49% -1.35% -0.38% -0.38% -1.35%

Mean 𝑅𝑃𝐼(𝐴𝑅𝐶) 13.92% 6.50% 4.25% 3.64% 3.19%

Standard deviation 𝜎𝑅𝑃𝐼(𝑅𝐶) 8.57% 4.89% 3.17% 3.04% 3.06%

Upper bound of Least Significant Different LSD 30.71% 16.08% 10.46% 9.59% 9.19%

Lower bound of Least Significant Different LSD -2.87% -3.07% -1.97% -2.31% -2.82%

Average CPU (sec) 153.32 25.92 103.00 188.39 56.61

Fig. 3. Means and 95% LSD intervals for different meta-heuristics approaches

The number of best solutions out of the optimal performance are also important factors in the replication testing. Each algorithm

was repeated ten times for each instance. The #𝑏𝑒𝑠𝑡 performance is shown in Table 10. The # 𝑏𝑒𝑠𝑡 parameter counts the number

reaching optimal or better than the 𝑅𝐶∗ under limited computational power, if the 𝑅𝐶(𝑋) outperformed the result by the exact

method. The average values of # 𝑏𝑒𝑠𝑡 for the GLS, ABC, MABC, HABC and EABC algorithms are 0.70, 0.75, 1.65, 1.70 and 2.55

respectively. The results indicate that the EABC algorithm is a fairly good approximation algorithm for the robust ASSP model.

Table 10

The number of best solutions out of the optimal performance

In
st

an
ce

 I
D

𝛽

#𝑏𝑒𝑠𝑡

In
st

an
ce

 I
D

𝛽

#𝑏𝑒𝑠𝑡

GLS ABC MABC HABC EABC GLS ABC MABC HABC EABC

1001
60 0 0 10 10 9

3001
60 0 0 1 1 1

120 0 0 6 9 3 120 0 0 0 0 0

1002
60 0 0 0 0 0

3002
60 0 0 0 0 0

120 0 0 2 2 5 120 0 0 0 0 0

1003
60 1 0 0 0 0

3003
60 0 0 0 0 3

120 0 0 0 0 0 120 0 0 1 0 0

1004
60 0 0 0 0 0

3004
60 0 10 0 0 10

120 0 0 0 0 0 120 0 0 1 6 6

1005
60 0 0 0 0 5

3005
60 0 0 0 1 5

120 0 0 0 0 0 120 1 0 8 6 4

2001
60 2 9 10 10 10

4001
60 1 0 1 0 1

120 1 1 1 4 0 120 0 0 0 0 1

2002
60 2 0 7 0 0

4002
60 0 0 0 0 0

120 1 0 0 0 0 120 1 0 0 0 1

2003
60 0 0 0 0 0

4003
60 0 0 0 0 0

120 8 0 0 0 2 120 0 0 0 0 0

2004
60 0 0 0 0 0

4004
60 0 0 3 4 7

120 9 10 4 0 6 120 0 0 1 3 9

2005
60 0 0 0 0 0

4005
60 0 0 3 4 9

120 0 0 0 0 0 120 1 0 7 8 5

Average 1.20 1.00 2.00 1.75 2.00 Average 0.20 0.50 1.30 1.65 3.10

Bold value: The maximum number of #best across the same instance

In the computational experiment, we evaluated the proposed algorithm using the measurement of 𝑅𝑃𝐼(𝐴𝑅𝐶), LSD intervals at a

95% confidence level, average CPU and #𝑏𝑒𝑠𝑡. The EABC algorithm was able to obtain a robust solution with 3.40% deviation

from optimal with a minute of computation time on average. Our results suggested that the proposed algorithm is overall beneficial

for practical usage and provides close-to-optimal results in a one-hour air traffic situation.

4.4. Discussion on the computational results

The conclusions are restricted to the setting of the test instances. In accordance with the algorithm design, the enhanced strategies

and novel algorithmic components contribute to the algorithm efficiency. The constructive heuristic contributes a 2.25%

improvement on average RC gap by comparing the mean 𝑅𝑃𝐼(𝐴𝑅𝐶) of ABC and MABC algorithms. Regarding the hybridisation

of GA and MABC algorithm, there is a 0.61% improvement of the mean 𝑅𝑃𝐼(𝐴𝑅𝐶) with extra-computation time significantly. We

notice that the computation time in GLS and HABC algorithms is costly when crossover operator is applied. In order to simplify

the computational burden and remain the same searching capability, an objective-guided updating mechanism is introduced in the

scout bee phase and crossover operator is eliminated. Although there is no statistical different between the HABC and the EABC

regarding the solution quality, the computation time of the EABC algorithm is 232% improvement than the HABC algorithm.

In general, the proposed EABC algorithm outperforms other meta-heuristic algorithms to achieve better solution quality and

satisfactory computation time. Particularly, the EABC algorithm yields close-to-optimal solutions with average one minute

computation time comparing to the benchmarking solutions obtained by an exact method with one hour computational limit. As for

the test instances with more than 18 flights (𝑛 ≥ 18), exact algorithm is not able to obtain global optimal results within one hour.

The computational results suggest that exact algorithm would be more preferable when the number of flights is below 12 in two/three

runways system. Otherwise, the proposed EABC algorithm is recommended for practical usage. The average values of RC gap

obtained by the EABC algorithm for two and three runways system are 2.98% and 3.40%. Among 24 out of the 40 test instances,

the EABC algorithm computes the best average RC gap over ten runtimes compared to the results obtained by FCFS policy, GLS

and variants of ABC algorithms. Therefore, we can conclude that the performance of EABC algorithm surpasses the meta-heuristics

and commercial MILP solver.

5. Concluding remarks

This paper investigates the potential of using the min-max regret approach for the mixed-mode parallel runway operation with

arrival and departure delays using the swarm intelligence-based algorithm. Compared to solely landing or take-off runways, mixed-

mode parallel operation enhances the runway capacity given that the arrival and departure rates per hour in an airport are not equal

and both operations can be performed for all the runways. The capacity of the runways can be enhanced by allowing landing and

take-off on the same runway schedule, but the conservatism in handling airborne and airport traffic in such operations should be

increased, as any accident due to the improper runway usage causes dramatic loss and disruption to the airport management. Arrival

and departure delays in the aircraft sequencing and scheduling problem are common phenomena in air traffic control and operation.

Current research still focuses on the reassignment method or ground delay programs to alleviate and partially absorb the effect of

disrupted scheduling and passenger unease. However, the effect of aggregate delays should not be underestimated with the rising

air traffic demand. In practice, the arrival/departure time of flights is uncertain and cannot be estimated in advance by a satisfactory

probability distribution. The delay costs caused by rising air traffic demands includes administration costs for ASSP reassignment,

the ripple effect on subsequent flight scheduling, the financial cost of delayed management and passenger dissatisfaction. The

approaching and leaving time of an aircraft may deviate from the scheduled operation time due to bad weather conditions, congested

terminal airspace and aviation system delays. We believe that enhancing the robustness of a schedule can offset the uncontrollable

factors and schedule disruption. The Min-max regret approach is a risk-neutral decision, whereby flight scheduling can be performed

under uncertain environments. Robust ASSP scheduling with the min-max regret criteria is introduced herein to obtain a robust

schedule that considers the worst-case scenarios.

Regarding the solution procedure of the robust optimisation using the min-max regret approach, the proposed efficient artificial bee

colony algorithm can be a benefit to ATC to obtain the close-to-optimal schedules within a reasonable computation time for practical

usage. It is difficult to obtain a solution from large-sized instances by an exact algorithm, and therefore an efficient artificial bee

colony algorithm is proposed to solve the robust aircraft sequencing and scheduling problem with arrival and departure delays for

daily operation. The computational results demonstrated the effectiveness of the proposed algorithm by comparison with other meta-

heuristic approaches on generated instances. The proposed algorithm outperformed other meta-heuristic approaches regarding

objective function and computation time.

Several interesting aspects can be considered for future work. First, the uncertainty environment and the level of resilience of the

robust model can be extended. For instance, flight cancellation and emergency landing can be investigated to enhance the robustness

of the model under the extreme weather. Second, the definition of the robust criteria or worst-case scenario can cover other

stakeholders’ interests. For example, fairness in developing a robust ASSP schedule from the viewpoint of airlines can be considered.

Third, investigation of other meta-heuristics in robust optimisation can be studied.

Appendix A. Mathematical proof

Proof of Proposition 1. To obtain a regret value under the worst-case scenario by the equation of 𝑅𝑒𝑔𝑟𝑒𝑡(𝑋, 𝑠𝜁) = 𝐹(𝑋, 𝑠𝜁) − 𝐹𝑠
∗,

a feasible solution under the worst-case scenario must satisfy the above two conditions. Denoting that all the aircraft are scheduled

on runway 𝑟 in a landing/take-off sequence X as 𝑃(𝑋, 𝑟), 𝑟 ∈ 𝑅, the worst-case scenario 𝑠𝜁 can be derived from a scenario 𝑠0 by

modifying the scheduled operation time of each flight 𝑆𝑇𝑂𝑖
0 under scenario 𝑠𝑜. The regret value is measured as follows:

𝐹
𝑠𝜁
∗ − 𝐹𝑠0

∗ ≤ 𝐹(𝑋𝑠0
∗ , 𝑠𝜁) − 𝐹(𝑋𝑠0

∗ , 𝑠0) ≤ 𝛥 = 𝐹(𝑋, 𝑠𝜁) − 𝐹(𝑋, 𝑠0) (27)

The scheduled operation time for the flight 𝑆𝑇𝑂𝑖
𝑠0

 scheduled on critical runway ζ are set to be the upper bound operation time

𝑆𝑇𝑂𝑖 for all 𝑖 ∈ 𝑃(𝑋, 𝜁), 𝜁 ∈ 𝑅, while the scheduled operation time for the flight 𝑆𝑇𝑂𝑖
𝑠0

 scheduled on non-critical runway 𝑟 is

equal to the corresponding lower bound operation times 𝑆𝑇𝑂𝑖 , 𝑖 ∈ 𝑃(𝑋, 𝑟), 𝑟 ∈ 𝑅. The deviation of the objective value or makespan

∆ between the worst-case scenario 𝐹(𝑋, 𝑠𝜁) and optimal solution under scenario 𝐹𝑠
∗, 𝑠 ∈ 𝛿 becomes maximal by the transformation

of scheduled operation time of all the flights on the critical runway 𝑃(𝑋, 𝜁). Hence, the regret value is maximised by manipulating

the scheduled operation time 𝑆𝑇𝑂𝑖
𝑠 in the solution of the worst-case scenario 𝑋

𝑠𝜁
∗ compared with the optimal solution under

scenario 𝑋𝑠0
∗ using 𝐹(𝑋, 𝑠𝜁) − 𝐹(𝑋, 𝑠0). □

Proof of Proposition 2. The maximum regret value must be a positive real number in Equation (20). Assume that there exists a

runway 𝑟 ∈ 𝑅 , 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(𝑋) ≤ max
𝜁∈𝑅

(𝐶𝜁
𝑠𝜁

− 𝐹
𝑠𝜁
∗) . There exists a runway 𝑢 ∈ 𝑅 by contraction such that 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(𝑋) <

max
𝑢∈𝑅

(𝐶𝑢
𝑠𝑢

− 𝐹𝑠𝑢
∗). Since 𝐹(𝑋, 𝑠𝑢) ≥ 𝐶𝑢

𝑠𝑢
, 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(𝑋) < 𝐹(𝑋, 𝑠𝑢) − 𝐹𝑠𝑢

∗ , the maximum regret value will be less than 0, which

is not feasible in accordance with the definition of 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(𝑋). Therefore, Equation (20) holds. □

Appendix B. Parameter analysis of the EABC algorithm

The ABC algorithm, proposed by (Karaboga, 2005), is a swarm intelligence based on the behaviour of natural honeybee swarms.

Karaboga and Basturk (2007) compared the ABC algorithm with other meta-heuristics for numerical function optimisation. The

discrete ABC algorithm with modifications was applied in jobs-shop scheduling, machine scheduling and aircraft landing problems

(Lin and Ying, 2014; Ng and Lee, 2016a; Pan et al., 2013; Tasgetiren et al., 2011; Zhang et al., 2013). The parameters in the ABC

algorithm include 𝐶𝑆, 𝑙𝑖𝑚𝑖𝑡 and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟. The parameter tuning process is similar to the process in Akay and Karaboga (2009).

The experiments of parameter analysis were conducted by optimising a schedule 𝐹(𝑋𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑠), and the scheduled operation time

for all the flights 𝑆𝑇𝑂𝑖𝑟 is equal to the corresponding lower bound operation times 𝑆𝑇𝑂𝑖𝑟 . The computations by the EABC

algorithm were repeated in ten runtimes to obtain the average 𝐹(𝑋𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑠). The solution gap is calculated by Equation (25). Eight

large-sized instances were selected in the parameter evaluation for simplicity.

The 𝐶𝑆 parameter controls the size of the population in the ABC algorithm. The 𝐶𝑆 incrementally increased by 5 units until there

were no significant changes to the solution gap. Fig. 4. presents the computational result by fixing the 𝑙𝑖𝑚𝑖𝑡 as 2 and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 as

1000 × 𝑚 × 𝑛. After the 𝐶𝑆 reached 40, the improvement of the solution was less significant along with the increase of 𝐶𝑆 by

calculating the solution gaps for each instance. Therefore, the tuned 𝐶𝑆 parameter was equal to 40 in our experiments.

Fig. 4. Effect of colony size parameter

The 𝑙𝑖𝑚𝑖𝑡 parameter restricted the maximum number of unsuccessful updates by neighbourhood searching. A low value in the

𝑙𝑖𝑚𝑖𝑡 parameter causes an insufficient tolerance of neighbourhood searching, while a large value in the 𝑙𝑖𝑚𝑖𝑡 parameter affects the

ability of escaping local optima. Therefore, balancing the exploitation and exploration using the 𝑙𝑖𝑚𝑖𝑡 parameter is able to facilitate

the convergence of the searching. The changing of the 𝑙𝑖𝑚𝑖𝑡 parameter is suggested to be around 𝑆𝑁 × 𝐷𝑖𝑚, where 𝐷𝑖𝑚 is equal

to 𝑚 × 𝑛 (Akay and Karaboga, 2009). In our experiment, we considered 𝑙𝑖𝑚𝑖𝑡 as 𝛽 × 𝑚 × 𝑛, where 𝛽 is the coefficient of 𝑙𝑖𝑚𝑖𝑡

parameter and 𝛽 = 0.5, 1, 2, 3, 5, 10 . Fig. 5. indicates that when the 𝑙𝑖𝑚𝑖𝑡 parameter is equal to 2, and the selected instances

obtained the low solution gap from the optimal. Therefore, the tuned coefficient of 𝑙𝑖𝑚𝑖𝑡 parameter 𝛽 was equal to 2 in our

experiments.

Fig. 5. Effect of limit parameter

The maximum iteration 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 parameter affects the computation time in the optimisation. Designing an appropriate 𝑚𝑎𝑥𝐼𝑡𝑒𝑟

parameter provides an efficient convergence process in practical usage. The cycle time is equal to 𝛼 × 𝑚 × 𝑛, where 𝛼 is the

coefficient of 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 parameter and 𝛼 = 10, 100, 250, 500, 750, 1000, 1250, 1500, 1750, 2000. As shown in Fig.6., the result

shows that the solution gap has no significant changes after 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 parameter = 1,000. Therefore, the tuned coefficient of

𝑚𝑎𝑥𝐼𝑡𝑒𝑟 parameter 𝛼 was set to be 1,000.

Fig.6. The effect of cycle parameter

In conclusion, the fine-tuned parameters (𝐶𝑆 = 40, 𝑙𝑖𝑚𝑖𝑡 = 2 × 𝑚 × 𝑛, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 1000 × 𝑚 × 𝑛) were obtained by the above

parameter analysis.

Appendix C. Detailed iteration and average computation time

Table 11

Average iteration and for the instances of two runways’ mixed-mode parallel operation

In
st

an
ce

 I
D

𝛽

Itr Average CPU (sec)

GLS ABC MABC HABC EABC GLS ABC MABC HABC EABC

1001
60 1.00 2.30 2.20 2.20 2.10 6.04 4.26 4.06 8.40 5.09

120 1.90 2.80 2.30 2.10 2.40 9.37 5.40 4.22 6.60 3.77

1002
60 0.70 0.00 0.30 1.30 0.40 16.76 2.66 3.75 13.45 4.63

120 1.80 0.70 3.20 3.10 3.50 30.68 5.23 16.30 27.83 24.91

1003
60 1.20 0.10 0.40 0.40 0.80 41.74 6.42 11.36 12.39 10.63

120 2.10 0.00 3.20 3.30 2.40 70.75 6.93 48.86 53.93 24.41

1004
60 1.20 0.00 0.20 0.20 0.00 67.45 11.49 10.82 16.31 8.93

120 2.40 0.00 1.20 2.40 2.20 120.88 11.29 26.07 70.73 39.59

1005
60 0.40 0.00 0.00 0.00 0.30 56.88 17.17 11.99 17.55 17.83

120 2.30 0.00 0.40 0.00 0.10 170.45 15.64 20.42 137.54 15.65

2001
60 1.30 2.50 2.30 2.60 2.20 7.02 4.79 4.35 9.38 5.17

120 3.00 2.80 2.90 2.90 2.10 16.97 5.46 5.66 9.20 4.49

2002
60 0.20 0.50 0.00 0.00 0.00 11.28 4.73 2.87 4.68 3.42

120 2.40 1.90 2.40 3.10 1.20 38.77 10.24 16.62 29.05 11.59

2003
60 0.10 0.00 0.10 0.00 0.30 16.98 6.30 8.34 6.90 8.52

120 1.30 0.00 2.60 2.60 2.00 40.41 10.53 44.42 44.56 27.48

2004
60 0.20 0.00 0.10 0.10 0.00 30.67 9.15 12.93 14.05 9.15

120 0.40 0.00 0.40 1.30 0.50 28.61 11.25 16.59 42.97 17.38

2005
60 0.60 0.10 0.10 0.00 0.00 70.45 17.79 15.56 17.60 12.81

120 3.00 0.10 1.60 3.10 2.30 222.35 17.97 40.24 150.62 56.14

Average 1.38 0.69 1.30 1.54 1.24 53.73 9.24 16.27 34.69 15.58

Itr: Iteration

Table 12

Average iteration and computation time for the instances of three runways’ mixed-mode parallel operation

In
st

an
ce

 I
D

𝛽

Itr Average CPU (sec)

GLS ABC MABC HABC EABC GLS ABC MABC HABC EABC

3001
60 1.10 3.00 2.80 3.60 2.60 32.89 32.32 18.00 40.17 14.56

120 1.50 4.20 3.80 3.50 3.00 32.37 36.78 23.29 39.92 16.46

3002
60 1.30 0.50 1.10 3.10 1.80 86.30 17.01 23.47 101.51 27.55

120 2.20 4.20 4.30 5.00 4.40 127.90 83.84 73.92 160.54 63.80

3003
60 1.20 0.10 0.50 3.40 0.30 162.10 18.37 29.99 227.71 21.48

120 2.80 3.50 4.20 4.50 4.40 304.53 154.89 136.56 324.84 124.71

3004 60 0.60 0.00 0.50 1.40 0.00 154.21 27.42 36.93 171.84 22.06

120 2.00 0.00 4.70 3.60 3.90 361.79 27.64 253.86 417.25 229.42

3005
60 0.60 0.00 4.40 3.90 1.30 249.55 40.90 537.98 768.33 165.63

120 2.70 0.10 6.40 5.10 4.60 741.68 48.61 806.27 989.57 309.24

4001
60 1.60 3.50 2.50 3.50 2.70 40.74 33.88 15.67 40.56 14.34

120 2.00 4.90 5.20 4.30 4.30 45.39 38.22 31.86 49.12 25.48

4002
60 0.30 0.00 0.00 0.00 0.00 158.52 9.64 7.81 14.02 7.01

120 1.20 0.30 2.20 3.20 1.70 73.49 14.21 41.16 107.83 29.15

4003
60 1.40 0.00 0.30 2.30 0.90 193.71 18.06 24.32 183.22 37.47

120 2.30 1.50 5.80 6.40 6.00 251.88 86.45 194.03 460.31 212.68

4004
60 1.20 0.00 2.40 2.40 2.00 230.59 27.37 225.74 297.14 88.55

120 2.90 0.00 4.40 4.60 4.60 632.91 27.44 255.14 553.03 258.44

4005
60 1.90 0.10 3.90 3.40 0.10 548.32 50.90 420.01 681.81 36.70

120 2.20 0.20 6.10 6.10 4.60 629.59 58.08 638.54 1213.12 248.25

Average 1.65 1.31 3.28 3.67 2.66 252.92 42.60 189.73 342.09 97.65

Itr: Iteration

References

Aissi, H., Bazgan, C., Vanderpooten, D., 2009. Min–max and min–max regret versions of combinatorial optimization problems: A

survey. European Journal of Operational Research 197(2), 427-438.

Akay, B., Karaboga, D., 2009. Parameter Tuning for the Artificial Bee Colony Algorithm, In: Nguyen, N.T., Kowalczyk, R., Chen,

S.-M. (Eds.), Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems: First International

Conference, ICCCI 2009, Wrocław, Poland, October 5-7, 2009. Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, pp.

608-619.

Artiouchine, K., Baptiste, P., Dürr, C., 2008. Runway sequencing with holding patterns. European Journal of Operational Research

189(3), 1254-1266.

Atkin, J.A.D., Burke, E.K., Greenwood, J.S., Reeson, D., 2008. On-line decision support for take-off runway scheduling

with uncertain taxi times at London Heathrow airport. Journal of Scheduling 11(5), 323.

Balakrishnan, H., Chandran, B.G., 2010. Algorithms for Scheduling Runway Operations Under Constrained Position Shifting.

Operations Research 58(6), 1650-1665.

Ball, M., Barnhart, C., Dresner, M., Hansen, M., Neels, K., Odoni, A., Peterson, E., Sherry, L., Trani, A., Zou, B., 2010. Total delay

impact study : a comprehensive assessment of the costs and impacts of flight delay in the United States. NEXTOR Report Prepared

for the Federal Aviation Administration.

Basso, L.J., 2008. Airport deregulation: Effects on pricing and capacity. International Journal of Industrial Organization 26(4),

1015-1031.

Beasley, J.E., Krishnamoorthy, M., Sharaiha, Y.M., Abramson, D., 2000. Scheduling Aircraft Landings—The Static Case.

Transportation Science 34(2), 180-197.

Beasley, J.E., Krishnamoorthy, M., Sharaiha, Y.M., Abramson, D., 2004. Displacement problem and dynamically scheduling aircraft

landings. Journal of the Operational Research Society 55(1), 54-64.

Beasley, J.E., Sonander, J., Havelock, P., 2001. Scheduling Aircraft Landings at London Heathrow Using a Population Heuristic.

The Journal of the Operational Research Society 52(5), 483-493.

Beatty, R., Hsu, R., Berry, L., Rome, J., 1999. Preliminary Evaluation of Flight Delay Propagation through an Airline Schedule. Air

Traffic Control Quarterly 7(4), 259-270.

Bell, D.E., 1982. Regret in Decision Making under Uncertainty. Operations Research 30(5), 961-981.

Bencheikh, G., Boukachour, J., Alaoui, A.E.H., Khoukhi, F., 2009. Hybrid method for aircraft landing scheduling based on a job

shop formulation. International Journal of Computer Science and Network Security 9(8), 78-88.

Bennell, J.A., Mesgarpour, M., Potts, C.N., 2011. Airport runway scheduling. 4OR 9(2), 115.

Bennell, J.A., Mesgarpour, M., Potts, C.N., 2017. Dynamic scheduling of aircraft landings. European Journal of Operational

Research 258(1), 315-327.

Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J., 2009. A survey on metaheuristics for stochastic combinatorial

optimization. Natural Computing 8(2), 239-287.

Bianco, L., Dell’Olmo, P., Giordani, S., 1997. Scheduling Models and Algorithms for TMA Traffic Management, In: Bianco, L.,

Dell’Olmo, P., Odoni, A.R. (Eds.), Modelling and Simulation in Air Traffic Management. Springer Berlin Heidelberg, Berlin,

Heidelberg, pp. 139-167.

Campanelli, B., Fleurquin, P., Arranz, A., Etxebarria, I., Ciruelos, C., Eguíluz, V.M., Ramasco, J.J., 2016. Comparing the modeling

of delay propagation in the US and European air traffic networks. Journal of Air Transport Management 56, 12-18.

Caprı̀, S., Ignaccolo, M., 2004. Genetic algorithms for solving the aircraft-sequencing problem: the introduction of departures into

the dynamic model. Journal of Air Transport Management 10(5), 345-351.

Churchill, A., Lovell, D., Ball, M., 2010. Flight Delay Propagation Impact on Strategic Air Traffic Flow Management.

Transportation Research Record: Journal of the Transportation Research Board 2177, 105-113.

D'Ariano, A., Pacciarelli, D., Pistelli, M., Pranzo, M., 2015. Real-time scheduling of aircraft arrivals and departures in a terminal

maneuvering area. Networks 65(3), 212-227.

D'Ariano, A., Pistelli, M., Pacciarelli, D., 2012. Aircraft retiming and rerouting in vicinity of airports. IET Intelligent Transport

Systems 6(4), 433-443.

Dastgerdi, K., Mehrshad, N., Farshad, M., 2015. A New Intelligent Approach to Aircrafts Take-off/Landing Planning at Congested

Single Runway Airports. Journal of Soft Computing and Decision Support Systems 2(2), 17-25.

Dear, R.G., Sherif, Y.S., 1989. The dynamic scheduling of aircraft in high density terminal areas. Microelectronics Reliability 29(5),

743-749.

Eun, Y., Hwang, I., Bang, H., 2010. Optimal Arrival Flight Sequencing and Scheduling Using Discrete Airborne Delays. IEEE

Transactions on Intelligent Transportation Systems 11(2), 359-373.

Farhadi, F., Ghoniem, A., Al-Salem, M., 2014. Runway capacity management – An empirical study with application to Doha

International Airport. Transportation Research Part E: Logistics and Transportation Review 68, 53-63.

Feng, X., Zheng, F., Xu, Y., 2016. Robust scheduling of a two-stage hybrid flow shop with uncertain interval processing times.

International Journal of Production Research 54(12), 3706-3717.

Francis, G., Humphreys, I., Ison, S., 2004. Airports’ perspectives on the growth of low-cost airlines and the remodeling of the

airport–airline relationship. Tourism Management 25(4), 507-514.

Gandomi, A.H., Alavi, A.H., 2012. Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science

and Numerical Simulation 17(12), 4831-4845.

Garey, M.R., Johnson, D.S., 1979. Computers and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman.

Gelhausen, M.C., Berster, P., Wilken, D., 2013. Do airport capacity constraints have a serious impact on the future development of

air traffic? Journal of Air Transport Management 28, 3-13.

Ghoniem, A., Sherali, H.D., Baik, H., 2014. Enhanced Models for a Mixed Arrival-Departure Aircraft Sequencing Problem.

INFORMS Journal on Computing 26(3), 514-530.

Glover, F., 1986. Future paths for integer programming and links to artificial intelligence. Computers & Operations Research 13(5),

533-549.

Hancerliogullari, G., Rabadi, G., Al-Salem, A.H., Kharbeche, M., 2013. Greedy algorithms and metaheuristics for a multiple runway

combined arrival-departure aircraft sequencing problem. Journal of Air Transport Management 32, 39-48.

Hansen, J.V., 2004. Genetic search methods in air traffic control. Computers & Operations Research 31(3), 445-459.

Hansen, M., Zou, B., 2013. Airport Operational Performance and Its Impact on Airline Cost, Modelling and Managing Airport

Performance. John Wiley & Sons, pp. 119-143.

Harikiopoulo, D., Neogi, N., 2011. Polynomial-Time Feasibility Condition for Multiclass Aircraft Sequencing on a Single-Runway

Airport. IEEE Transactions on Intelligent Transportation Systems 12(1), 2-14.

Hu, H., Ng, K.K.H., Qin, Y., 2016. Robust Parallel Machine Scheduling Problem with Uncertainties and Sequence-Dependent Setup

Time. Scientific Programming 2016, 13.

Inuiguchi, M., Sakawa, M., 1995. Minimax regret solution to linear programming problems with an interval objective function.

European Journal of Operational Research 86(3), 526-536.

Jacquillat, A., Odoni, A.R., 2015a. Endogenous control of service rates in stochastic and dynamic queuing models of airport

congestion. Transportation Research Part E: Logistics and Transportation Review 73, 133-151.

Jacquillat, A., Odoni, A.R., 2015b. An Integrated Scheduling and Operations Approach to Airport Congestion Mitigation.

Operations Research 63(6), 1390-1410.

Jacquillat, A., Odoni, A.R., Webster, M.D., 2017. Dynamic Control of Runway Configurations and of Arrival and Departure Service

Rates at JFK Airport Under Stochastic Queue Conditions. Transportation Science 51(1), 155-176.

Jeanne, R.L., 1986. THE EVOLUTION OF THE ORGANIZATION OF WORK IN SOCIAL INSECTS. Monitore Zoologico

Italiano - Italian Journal of Zoology 20(2), 119-133.

Jiang, Y., Xu, Z., Xu, X., Liao, Z., Luo, Y., 2014. A Schedule Optimization Model on Multirunway Based on Ant Colony Algorithm.

Mathematical Problems in Engineering 2014, 11.

Kafle, N., Zou, B., 2016. Modeling flight delay propagation: A new analytical-econometric approach. Transportation Research Part

B: Methodological 93, 520-542.

Karaboga, D., 2005. An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Erciyes University,

Erciyes University, Kayseri, Turkey, p. 200.

Karaboga, D., Akay, B., 2009. A survey: algorithms simulating bee swarm intelligence. Artif. Intell. Rev. 31(1-4), 61-85.

Karaboga, D., Basturk, B., 2007. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC)

algorithm. Journal of Global Optimization 39(3), 459-471.

Karaboga, D., Basturk, B., 2008. On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing 8(1), 687-

697.

Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N., 2014. A comprehensive survey: artificial bee colony (ABC) algorithm and

applications. Artificial Intelligence Review 42(1), 21-57.

Kouvelis, P., Yu, G., 1997. Robust Scheduling Problems, Robust Discrete Optimization and Its Applications. Springer US, Boston,

MA, pp. 241-289.

Kube, C.R., Bonabeau, E., 2000. Cooperative transport by ants and robots. Robotics and Autonomous Systems 30(1), 85-101.

Lieder, A., Stolletz, R., 2016. Scheduling aircraft take-offs and landings on interdependent and heterogeneous runways.

Transportation Research Part E: Logistics and Transportation Review 88, 167-188.

Lin, S.-W., Ying, K.-C., 2014. ABC-based manufacturing scheduling for unrelated parallel machines with machine-dependent and

job sequence-dependent setup times. Computers & Operations Research 51, 172-181.

Liu, Y.-H., 2011. A genetic local search algorithm with a threshold accepting mechanism for solving the runway dependent aircraft

landing problem. Optimization Letters 5(2), 229-245.

Lu, C.-C., Ying, K.-C., Lin, S.-W., 2014. Robust single machine scheduling for minimizing total flow time in the presence of

uncertain processing times. Computers & Industrial Engineering 74, 102-110.

Ma, W., Xu, B., Liu, M., Huang, H., 2014. An Efficient Approximation Algorithm for Aircraft Arrival Sequencing and Scheduling

Problem. Mathematical Problems in Engineering 2014, 8.

Mausser, H.E., Laguna, M., 1998. A New Mixed Integer Formulation for the Maximum Regret Problem. International Transactions

in Operational Research 5(5), 389-403.

Mausser, H.E., Laguna, M., 1999. A heuristic to minimax absolute regret for linear programs with interval objective function

coefficients. European Journal of Operational Research 117(1), 157-174.

Ng, K.K.H., Lee, C.K.M., 2016a. Makespan minimization in aircraft landing problem under congested traffic situation using

modified artificial bee colony algorithm, 2016 IEEE International Conference on Industrial Engineering and Engineering

Management (IEEM). IEEE, Bali, Indonesia, pp. 750-754.

Ng, K.K.H., Lee, C.K.M., 2016b. A modified Variable Neighborhood Search for aircraft Landing Problem, 2016 IEEE International

Conference on Management of Innovation and Technology (ICMIT). IEEE, Bangkok, Thailand, pp. 127-132.

Ng, K.K.H., Lee, C.K.M., 2017. Aircraft Scheduling Considering Discrete Airborne Delay and Holding Pattern in the Near Terminal

Area, Intelligent Computing Theories and Application: 13th International Conference, ICIC 2017, Liverpool, UK, pp. 567-576.

Pan, Q.K., Wang, L., Mao, K., Zhao, J.H., Zhang, M., 2013. An Effective Artificial Bee Colony Algorithm for a Real-World Hybrid

Flowshop Problem in Steelmaking Process. IEEE Transactions on Automation Science and Engineering 10(2), 307-322.

Pant, M., Thangaraj, R., Abraham, A., 2007. A New PSO Algorithm with Crossover Operator for Global Optimization Problems, In:

Corchado, E., Corchado, J.M., Abraham, A. (Eds.), Innovations in Hybrid Intelligent Systems. Springer Berlin Heidelberg, Berlin,

Heidelberg, pp. 215-222.

Pereira, J., Averbakh, I., 2011. Exact and heuristic algorithms for the interval data robust assignment problem. Computers &

Operations Research 38(8), 1153-1163.

Pinol, H., Beasley, J.E., 2006. Scatter Search and Bionomic Algorithms for the aircraft landing problem. European Journal of

Operational Research 171(2), 439-462.

Pyrgiotis, N., Malone, K.M., Odoni, A., 2013. Modelling delay propagation within an airport network. Transportation Research

Part C: Emerging Technologies 27, 60-75.

Rodríguez-Díaz, A., Adenso-Díaz, B., González-Torre, P.L., 2017. Minimizing deviation from scheduled times in a single mixed-

operation runway. Computers & Operations Research 78, 193-202.

Sabar, N.R., Kendall, G., 2015. An iterated local search with multiple perturbation operators and time varying perturbation strength

for the aircraft landing problem. Omega 56, 88-98.

Salehipour, A., Modarres, M., Moslemi Naeni, L., 2013. An efficient hybrid meta-heuristic for aircraft landing problem. Computers

& Operations Research 40(1), 207-213.

Samà, M., D’Ariano, A., Corman, F., Pacciarelli, D., 2017. Metaheuristics for efficient aircraft scheduling and re-routing at busy

terminal control areas. Transportation Research Part C: Emerging Technologies 80, 485-511.

Samà, M., D’Ariano, A., D’Ariano, P., Pacciarelli, D., 2014. Optimal aircraft scheduling and routing at a terminal control area during

disturbances. Transportation Research Part C: Emerging Technologies 47, 61-85.

Samà, M., D’Ariano, A., D’Ariano, P., Pacciarelli, D., 2015. Air traffic optimization models for aircraft delay and travel time

minimization in terminal control areas. Public Transport 7(3), 321-337.

Samà, M., D’Ariano, A., Pacciarelli, D., 2013. Rolling Horizon Approach for Aircraft Scheduling in the Terminal Control Area of

Busy Airports. Procedia - Social and Behavioral Sciences 80, 531-552.

Schiavinotto, T., Stützle, T., 2007. A review of metrics on permutations for search landscape analysis. Computers & Operations

Research 34(10), 3143-3153.

Sinclair, K., Cordeau, J.-F., Laporte, G., 2014. Improvements to a large neighborhood search heuristic for an integrated aircraft and

passenger recovery problem. European Journal of Operational Research 233(1), 234-245.

Soomer, M., Koole, G., 2008. Fairness in the aircraft landing problem. Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Su, W., Chen, H., Liu, F., Lin, N., Jing, S., Liang, X., Liu, W., 2017. A novel comprehensive learning artificial bee colony optimizer

for dynamic optimization biological problems. Saudi Journal of Biological Sciences 24(3), 695-702.

Szeto, W.Y., Wu, Y., Ho, S.C., 2011. An artificial bee colony algorithm for the capacitated vehicle routing problem. European

Journal of Operational Research 215(1), 126-135.

Tasgetiren, M.F., Pan, Q.-K., Suganthan, P.N., Chen, A.H.L., 2011. A discrete artificial bee colony algorithm for the total flowtime

minimization in permutation flow shops. Information Sciences 181(16), 3459-3475.

Trelea, I.C., 2003. The particle swarm optimization algorithm: convergence analysis and parameter selection. Information

Processing Letters 85(6), 317-325.

Vadlamani, S., Hosseini, S., 2014. A novel heuristic approach for solving aircraft landing problem with single runway. Journal of

Air Transport Management 40, 144-148.

Vallada, E., Ruiz, R., 2011. A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent

setup times. European Journal of Operational Research 211(3), 612-622.

Xie, J., Zhou, Y., Zheng, H., 2013. A Hybrid Metaheuristic for Multiple Runways Aircraft Landing Problem Based on Bat Algorithm.

Journal of Applied Mathematics 2013, 8.

Xu, X., Cui, W., Lin, J., Qian, Y., 2013. Robust makespan minimisation in identical parallel machine scheduling problem with

interval data. International Journal of Production Research 51(12), 3532-3548.

Zhan, Z.H., Zhang, J., Li, Y., Liu, O., Kwok, S.K., Ip, W.H., Kaynak, O., 2010. An Efficient Ant Colony System Based on Receding

Horizon Control for the Aircraft Arrival Sequencing and Scheduling Problem. IEEE Transactions on Intelligent Transportation

Systems 11(2), 399-412.

Zhang, L.L., Lee, C., Zhang, S., 2016. An integrated model for strategic supply chain design: Formulation and ABC-based solution

approach. Expert Systems with Applications 52, 39-49.

Zhang, R., Song, S., Wu, C., 2013. A hybrid artificial bee colony algorithm for the job shop scheduling problem. International

Journal of Production Economics 141(1), 167-178.

Zhang, S., Lee, C.K.M., Chan, H.K., Choy, K.L., Wu, Z., 2015. Swarm intelligence applied in green logistics: A literature review.

Engineering Applications of Artificial Intelligence 37, 154-169.

Zhang, S., Lee, C.K.M., Choy, K.L., Ho, W., Ip, W.H., 2014. Design and development of a hybrid artificial bee colony algorithm

for the environmental vehicle routing problem. Transportation Research Part D: Transport and Environment 31, 85-99.

Zou, B., Hansen, M., 2012. Impact of operational performance on air carrier cost structure: Evidence from US airlines.

Transportation Research Part E: Logistics and Transportation Review 48(5), 1032-1048.

