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Robust aircraft sequencing and scheduling problem with arrival/departure delay using the min-max regret approach 

 

Abstract 

This study considers the aircraft sequencing and scheduling problem under the uncertainty of arrival and departure delays for 

multiple heterogeneous mixed-mode parallel runways. To enhance runway resilience, runway operations should remain robust to 

mitigate the effects of delay propagation. The main objective of this research was to identify an optimal schedule by evaluating the 

robustness of feasible solutions under its respective worst-case scenario. A novel artificial bee colony algorithm was developed and 

verified by experimental results. The proposed efficient artificial bee colony algorithm can obtain close-to-optimal results with less 

computational effort in regard to a one-hour flight traffic planning horizon.  

 

Keywords: Robust scheduling, Min-max regret approach, Mixed-mode parallel runways, Swarm Intelligence, Artificial bee colony 

algorithm 

 

1. Introduction 

1.1. Problem description 

With the introduction of low-cost carriers in Western countries and the remodelling of airport-airline relationships, air transport 

demand has been significantly increased due to the capacity bottlenecks (Francis et al., 2004; Gelhausen et al., 2013). The 

performance of the aircraft turnaround process and the airport-airline relationship affects the decision-making of the objective 

function in the aircraft sequencing and scheduling problem (ASSP) model. The common First-Come-First-Served (FCFS) approach 

creates unnecessary spare capacity in the ASSP model (Bennell et al., 2017; Ng and Lee, 2016a). The most relevant operational 

problem in the aircraft scheduling literature often considered the global optimality in practice within a reasonable computation time 

(Samà et al., 2015). It is frequently observed that real-time aircraft re-scheduling in runway operation occurs. Air Traffic Control 

(ATC) obtains the latest information on flights to determine a schedule. The ATC workload has dramatically increased due to rising 

air transport demand. The estimated time of arrival/departure may not be close to the true operation time, which may lead to 

disruption of planned flight schedules and subsequent ground operation schedules (Sinclair et al., 2014). In fact, the introduction of 

a robustness optimisation technique in the ASSP problem improves the resilience at busy airports and leverages the possible 

workload of re-scheduling effort. 

 

This paper aims to improve the runway operations by considering the solution quality, computation time, the resilience level of 

runway operation and the degree of robustness in makespan optimisation of aircraft scheduling in hedging uncertainties. In this 

model, we considered the aircraft sequencing and scheduling problem with multiple heterogeneous mixed-mode parallel runways. 

In mixed-mode runway operation, the runway is used for both aircraft landings and take-offs. The arrival and departure rate in an 

airport usually does not have a stationary distribution subjected to the landing/take-off demand patterns, which implies inefficient 

runway capacity usage, solely for landing or take-off in independent runway operation (Jacquillat and Odoni, 2015a, b; Jacquillat 

et al., 2017). Mixed-mode parallel runway operations further enhance the capacity to handle airborne and airport traffic, but also 

increase the degree of ATC workload. Uncontrollable delays also increase the vulnerability to disruptions. To enhance the robustness 

of a flight schedule and reduce the possibility of a re-scheduling effort by ATC, the objective of this research was to minimise the 

maximum makespan deviation from optimality over all worst-case scenarios using the min-max regret approach. 

 

The iterative relaxation framework is the standard procedure to solve the min-max regret problem (Aissi et al., 2009). Aissi et al. 

(2009) addressed that the computational complexity for min-max regret optimisation is a great challenge in the field. Meta-heuristics 

in min-max regret optimisation have been successfully applied to parallel machine scheduling, job shop scheduling and other related 



problems (Feng et al., 2016; Hu et al., 2016; Xu et al., 2013). Therefore, we propose the Efficient Artificial Bee Colony (EABC) 

algorithm to enhance the computational efficiency for obtaining a robust schedule with close-to-optimal condition. 

 

1.2. Literature review 

Runway capacity is the major bottleneck in air traffic management (Balakrishnan and Chandran, 2010; Ghoniem et al., 2014). In 

order to maintain a smooth airport operation, managing aircraft landing and take-off procedures has become a key component in air 

transport systems. Runway operation includes the flight approach operation/Aircraft Landing Problem (ALP) (see, e.g., Beasley et 

al. (2001); Bencheikh et al. (2009); Caprı̀ and Ignaccolo (2004); Hancerliogullari et al. (2013); Hansen (2004); Liu (2011); (Ng and 

Lee, 2017); Pinol and Beasley (2006); Salehipour et al. (2013); Vadlamani and Hosseini (2014)), departing operation/Aircraft Take-

off Problem (ATP) (see, e.g., Atkin et al. (2008); Hancerliogullari et al. (2013)) and mixed-mode parallel operation/ASSP (see, e.g., 

Bennell et al. (2011); Lieder and Stolletz (2016)). Mixed-mode parallel operation allows simultaneous runway operations for a pair 

of flights on different runways (Beasley et al., 2000). 

 

Regarding the objectives in formulating the ASSP model, various objective functions can be found in the literature. These include: 

minimising the makespan (Balakrishnan and Chandran, 2010; Harikiopoulo and Neogi, 2011; Ma et al., 2014; Ng and Lee, 2016a), 

minimising total/weighted tardiness of all flights (Ng and Lee, 2016b; Pinol and Beasley, 2006; Sabar and Kendall, 2015; Salehipour 

et al., 2013), and minimising total/average/weighted delay of all flights (Lieder and Stolletz, 2016; Liu, 2011; Samà et al., 2015). 

The FCFS approach is a policy that maintains fairness among flights in a schedule (Farhadi et al., 2014). Dear and Sherif (1989) 

revealed that the FCFS approach is undesirable as the ASSP solution must be updated promptly to cope with real-time needs. Beasley 

et al. (2004) proposed a displacement rule for ASSP to absorb the perturbations in a predefined schedule. Farhadi et al. (2014)  

introduced Constrained Position Shifting (CPS) based on the FCFS schedule in mixed-mode parallel runway operation. Soomer and 

Koole (2008) evaluated the trade-off between total cost, delay and fairness to obtain a schedule that compromises different 

stakeholders’ interests. 

 

Microscopic air traffic flow modelling enhances the level of practical usage and robustness of the solution, which provides detailed 

control of the practice of air traffic control, including air segments, holding patterns, runway operation and ground operation. 

Detailed characteristics of airport infrastructure and flight paths facilitate the modelling accuracy regarding the on-time coordinates, 

status and speed profile (Samà et al., 2017). Bianco et al. (1997) formulated microscopic modelling in runway scheduling with 

blocking and a no-wait version of job-shop scheduling using an alternative graph for managing the streaming of Terminal 

Manoeuvring Area (TMA) operations. Regarding airport layout and the structure of air segments, sophisticated characteristics and 

real-world constraints have been proposed in runway scheduling using the extensive versions of microscopic modelling (D'Ariano 

et al., 2015; D'Ariano et al., 2012; Samà et al., 2017; Samà et al., 2014; Samà et al., 2013). Artiouchine et al. (2008) and Eun et al. 

(2010) considered the discrete holding patterns and airborne delays to maintain a smooth landing schedules. Providing the latest 

information assists ATC to resolve the potential conflict detection and collusion-free guidance within the TMA. The current research 

progress is still mired in the static approach. The aforementioned literature is static in nature, which means that all variables and 

information are known in advance. 

 

Most international airports find that the associated financial costs caused by airborne delays are significant so they try to moderate 

the cost by reducing the flight delay times (Ball et al., 2010; Hansen and Zou, 2013; Ng and Lee, 2017; Zou and Hansen, 2012). 

The sensitivity of an airport network is remarkable as all the airport resources are highly linked (Beatty et al., 1999). The delay of a 

flight leads to delay propagation of various airport activities and scheduling (Campanelli et al., 2016; Churchill et al., 2010; Kafle 

and Zou, 2016; Pyrgiotis et al., 2013). It is known that aircraft approaching and take-off times are not precisely determined in 



advance due to the dynamic changes of the environment. Risk analysis in the ASSP model is lacking in the current literature. 

According to the decision theory of risk analysis, uncertainties are defined as the outcome of a decision remaining unknown when 

an alternative is selected (Bell, 1982). Various uncertainties, practical constraints and the changes in the dynamic environment are 

considered in the model, which leads to an increase in the practical complexities in the decision-making for ATC. There are two 

types of methods for handling uncertainty: stochastic and robust modelling. In the stochastic approach, the uncertain variables in a 

model are designed as a known probability distribution by the historical data. Nonetheless, the expected outcome may not be able 

to be derived from past records in certain situations. Therefore, robustness analysis has become of more interest under the risk-

adverse approach than optimal performance. Robustness analysis provides a paradigm supporting the decision-making considering 

imprecision so as to properly frame a decision based on any possible input data (Aissi et al., 2009). Robust schedule modelling 

develops a solution by hedging against the worst-case scenarios and is especially applicable to the potential huge loss of disruption 

afterwards. The possible scenarios in robustness analysis can be classified as interval and discrete scenarios (Kouvelis and Yu, 1997). 

 

There are three robustness criteria for robustness analysis: absolute robustness, robust deviation and relative deviation (Xu et al., 

2013). The min-max regret approach was considered in this research and is designed for developing a robust schedule that minimises 

the maximum makespan deviation from the optimal schedule under the worst-case scenario. The runway is considered as a 

bottleneck between the airborne and airport traffic. Any delay in air traffic causes significant delays among the airport activities if 

proper management in the ASSP model is omitted (Rodríguez-Díaz et al., 2017). The motivation for using the min-max regret 

approach is to neutralise the risk and avoid wrong decisions (e.g., delay/revision in airline schedule, poor gate assignment, customer 

dissatisfaction and overcharging for the congestion externality) (Basso, 2008). The major drawback of using Mixed Integer Linear 

Programming (MILP) in the min-max regret approach is that the computation time is significantly lengthened in resolving large-

sized instances, and high computational capacity is required. The computation using the exact algorithm in min-max regret 

optimisation is costly as the complexity of the computation increases along with the number of worst-case scenarios (Feng et al., 

2016). Also, the complexity of the computation increases dramatically with the size of the model due to the nature of the non-

deterministic polynomial hard (NP-hard) problem (Bianco et al., 1997). 

 

During the development of meta-heuristics in the current literature, the solution quality derived from the meta-heuristics regarding 

exploitation and exploration has greatly narrowed the research gap for the complex mathematical modelling in real-life applications, 

especially under the population-based meta-heuristics approach (Bianchi et al., 2009; Glover, 1986). The meta-heuristics approach 

is a high-level model-free framework to obtain a near optimal solution within a satisfactory calculation time and includes: Stochastic 

Search, evolutionary algorithms, physics-based algorithms and swarm intelligence. Several meta-heuristic approaches have been 

recently proposed in the ASSP model, including Simulated Annealing (SA) (Hancerliogullari et al., 2013; Salehipour et al., 2013), 

Variable Neighbourhood Search (VNS) (Ng and Lee, 2016b; Salehipour et al., 2013; Vadlamani and Hosseini, 2014), Iterative Local 

Search (ILS) (Sabar and Kendall, 2015), Genetic Algorithm (GA) (Beasley et al., 2001; Pinol and Beasley, 2006), Memetic 

Algorithm (MA) (Bencheikh et al., 2009), Biogeography-Based Optimisation (BBO) (Dastgerdi et al., 2015), Bat Algorithm (Xie 

et al., 2013) and Ant Colony Optimisation (ACO) (Jiang et al., 2014; Zhan et al., 2010). Among these four groups, swarm intelligence 

has been well studied in regard to scheduling problems and is regarded as a promising technique for resolving the NP-hard model 

(Karaboga and Akay, 2009; Karaboga et al., 2014). The mechanism of the SI algorithm aims to maintain the balance of exploitation 

and exploration to enhance the time for convergence and optimality (Zhang et al., 2015). The main feature of searching for an 

optimal value in swarm intelligence relies on the swarm behaviour of self-organisation, decentralisation and collective searching 

(Jeanne, 1986; Kube and Bonabeau, 2000; Trelea, 2003). 

 



1.3. Contribution of the research 

The contribution of the research can be summarised as follows: First, we address the mixed-mode parallel operation and the 

uncertain parameters in the scheduled time of operations in order to enhance the capacity and resilience level. In this research, 

minimising the maximum regret value in the robust ASSP system under the mixed-mode parallel operation was considered in the 

problem formulation. The arrival and departure delays fall into an interval case to represent a different level of delays. We believe 

that the design of robust scheduling considering uncontrollable delays enhances the resilience level of runways and reduces the ATC 

efforts in runway rescheduling. To achieve the practical applicability of mixed-mode parallel operation, we formulate the landing 

and take-off time of each arrival or departure flight in a time interval, which is affected by the possible scenarios of different levels 

of arrival and departure delays. To the best of our knowledge, this is the first attempt to adopt a decision theory for the robust ASSP, 

extending the model of the robust machine scheduling problem (Hu et al., 2016; Xu et al., 2013). Second, this paper presents a novel 

swarm intelligence algorithm, which significantly reduces the computational effort in iterative relaxation procedure for min-max 

regret optimisation. The proposed EABC algorithm enhances the convergence rate and reduces computation time. The proposed 

EABC algorithm is based on the following modified framework to solve the problem above. The initialisation phase in the EABC 

algorithm is computed by a proposed constructive heuristic to build a satisfactory solution. Inefficient neighbourhood search, 

crossover and reverse operators, are eliminated in the employed bee phase to enhance the searching quality, as these two operators 

work inefficiently during the exploitation phase. In addition, an objective-guided updating mechanism in the scout bee phase is 

considered. With these proposed improvements of the Artificial Bee Colony (ABC) algorithm, the robust solution is improved 

regarding the computation time as well as the solution quality in our experiments by comparing with the exact algorithm, biological 

evolution and swarm intelligence algorithms.  

 

1.4. Organisation of the paper 

The organisation of this paper is summarised as follows. After the introduction of the research and literature study on the ASSP 

model in Section 1, Section 2 describes robust ASSP modelling and problem formulation. Section 3 presents the solution procedure 

for the robust ASSP model using the exact method, meta-heuristics and proposed EABC algorithms. Computational experiments 

are reported in Section 4. Finally, the concluding remarks and future work are raised in Section 5. 

 

2. Problem formulation 

In this study, a robust ASSP with arrival and departure delays was considered in the system, aiming to enhance the robustness of the 

scheduling with the objectives of makespan minimisation, considering the limited number of runways, resource capacity constraints 

and ATC regulation. Due to the technological advancement and improvement of radar monitoring systems, air traffic controllers can 

apply simultaneous operations by following the particular rules and regulations to improve the effectiveness of runway control. The 

runway configuration of the formulated problem is denoted as a mixed-mode parallel operation, in which the runways are not 

exclusively for approach or departure only. Compared with independent parallel operation, the mixed-mode parallel operation 

reduces redundant runway capacity, and enhances the maximum capability of the aerodrome capacity to handle the air traffic 

incorporating the constraints of the separation requirements. For example, 196 seconds of separation time is required if an 

approaching large-sized flight is scheduled to land before a small-sized approaching aircraft in a segregated operation model. Under 

the mixed-mode operation, the trailing departure flight has a 75-second pause until completion of the landing process of a large-

sized aircraft. Other considerations may also affect the decision for the selection of parallel operation, such as the physical properties 

of runways, the minimum distance for parallel operation, the noise abatement procedures for residential areas and the capability of 

ATC. Other assumptions are considered below in constructing the robust ASSP model. 

 



2.1. Assumption of the robust ASSP 

Several assumptions were made before the formulation of the robust ASSP model. First, the robust ASSP schedules are limited to 

the runway decisions without the involvement of the TMA resources, such as ground operations, terminal air traffic control and 

queue length in the airborne traffic. Second, the length of all the runways is sufficient to perform the mixed-mode operation. 

Depending on the flight classes and size, adequate length of the runway is required to accommodate the speed reduction for landing 

operations. Moreover, the minimal length of the runway for landing and take-off are different even for the same classes of flights. 

Third, the separation requirement caused by the runway’s physical properties (i.e. near-parallel runways, the size of the no-

transgression zone (NTZ), the terrain constraints surrounding the airport and the noise abatement procedures) are minimal in the 

instrument landing system. For example, Hong Kong International Airport is not able to operate missed approaches and departure 

procedures for the south runway due to the terrain constraints of Lantau Island. Fourth, the probabilities of a missed approach and 

departure, the penetration of NTZ, pilot error, runway incursions and the abnormal operation are negligible. Emergency operations 

require clearance of deviation procedures and establishing an appropriate separation between flights before the recovery of cleared 

routes and normal operation. The emergency events in terminal air traffic are ignored in the robust ASSP model. Fifth, the parameters 

of approaching and departing delays are imprecise concerning interval values. The estimation of the arrival time is not precisely 

obtained even if flights have entered the near terminal area. The planned schedule may also be disrupted by any small disturbances, 

including the flight delay, the terminal weather and the level of wind speed, the airborne conflict and disruption on the turnaround 

procedures. The formulation of imprecision in robust optimisation assists schedulers to create a robust schedule by considering 

plausible values or time intervals of the operation time. 

 

2.2. The robust ASSP model 

In the robust ASSP model, the number of aircraft is defined as 𝑛, and each flight is denoted as 𝑖, 𝑖 = (1,2, … , 𝑛). Any pair of 

consecutive runway operations is regarded as 𝑗 and 𝑖 to denote a pair of arrival/arrival, departure/departure, arrival/departure and 

departure/arrival flights in a consecutive sequence. The maximum number of runways is 𝑚. Each approaching flight can only land 

after it reaches the tower control region, where the departing flight may execute take-off procedures once the pilot receives 

permission for take-off from the tower control. The scheduled landing/departing time represents the estimated landing/departing 

time for an aircraft to land on a corresponding runway under the planning horizon. The assigned time of operation between the two 

consecutive flights must be larger than the required separation time 𝑠𝑗𝑖  , according to the flight classes and runway operation 

(Balakrishnan and Chandran, 2010). The notation and decision variables are shown in Table 1.  

 

Table 1 

Notation and decision variable 

Notations Explanation 

𝑖 Aircraft ID 𝑖 ∈ 𝐼, (𝑖 = 1,2, … , 𝑛) 

𝑛 The maximum number of aircraft 

𝑟 Runway ID 𝑟 ∈ 𝑅, (𝑟 = 1,2, … , 𝑚), 𝑚 ≥ 2 

𝑚 The maximum number of runway 

𝑆𝑖𝑗 The runway operation based separation time between aircraft 𝑖 and 𝑗 scheduled on the same runway, 𝑆𝑖𝑗 ≥ 0 

𝑆𝑇𝑂𝑖𝑟  The scheduled landing/take-off time of aircraft i on runway 𝑟 

𝑆𝑇𝑂𝑖𝑟  The lower bound value of scheduled landing/take-off time of aircraft 𝑖 on runway 𝑟 

𝑆𝑇𝑂𝑖𝑟
̅̅ ̅̅ ̅̅ ̅ The upper bound value of scheduled landing/take-off time of aircraft 𝑖 on runway 𝑟 

𝑆𝑇𝑂𝑖𝑟
𝑠  The time interval of landing/take-off time of aircraft 𝑖 on runway 𝑟, 𝑆𝑇𝑂𝑖𝑟

𝑠 ∈ [𝑆𝑇𝑂𝑖𝑟, 𝑆𝑇𝑂𝑖𝑟
̅̅ ̅̅ ̅̅ ̅] 

𝜀𝑖𝑟 The possible deviation from the predetermined operation time with or without interruption 



𝑠 The possible realised operation time in a scenario, 𝑠 = (𝑆𝑇𝑂1𝑟
𝑠 , 𝑆𝑇𝑂2𝑟

𝑠 , … , 𝑆𝑇𝑂(𝑛−1)𝑟
𝑠 , 𝑆𝑇𝑂𝑛𝑟

𝑠 ), 𝑠 ∈ 𝛿 

ω The set of all feasible schedules 

𝑀 Large number associated with the artificial variable 

Decision variables Explanation 

𝑋 A schedule X is constructed by 𝑥𝑖𝑟, 𝑦𝑗𝑖𝑟 and 𝑇𝑖𝑟
𝑠 (𝑥). 

𝑥𝑖𝑟 1, if aircraft 𝑖 is assigned to runway 𝑟; 0, otherwise 

𝑦𝑗𝑖𝑟 1, if aircraft 𝑗 is before aircraft 𝑖 on the same runway 𝑟 (not necessarily immediately); 0, otherwise 

𝑇𝑖𝑟
𝑠 (𝑋) The assigned operation time for aircraft i on the runway r in schedule 𝑋 under scenario 𝑠, 𝑇𝑖𝑟 ≥ 0 

𝐶𝑟
𝑠(X) The makespan of schedule X under scenario 𝑠, 𝐶𝑟 ≥ 0 

 

𝑥𝑖𝑟  is the decision variable to identify the runway assignment of each flight 𝑖, while 𝑦𝑗𝑖𝑟  defines the landing/take-off sequence if 

flight 𝑗  lands before flight 𝑖  on runway 𝑟  (not necessarily immediately). Given that the scheduled operation times are 

heterogeneous on different runways for the same flight 𝑖, the scenario 𝑠 = (𝑆𝑇𝑂1𝑟
𝑠 , 𝑆𝑇𝑂2𝑟

𝑠 , … , 𝑆𝑇𝑂(𝑛−1)𝑟
𝑠 , 𝑆𝑇𝑂𝑛𝑟

𝑠 ), 𝑠 ∈ 𝛿 is a set of 

scheduled times of operation and 𝑆 denotes a set of all possible scenarios. A schedule is represented as 𝑋. 𝜀𝑖𝑟 is the deviation 

between the lower bound and upper bound value of scheduled landing/take-off time of flight 𝑖  on runway 𝑟  to represent the 

possible operation time given an unknown distribution. We assume that the possible operation time of all flights are different and 

follow into an interval case.  

 

2.3. The robust ASSP formulation 

The min-max regret approach seeks to undertake all the scenarios with uncertainties in the aircraft landing and take-off schedules 

to conduct the robust scheduling. Accordingly, the model aims to discover a robust ASSP schedule by minimising the maximum 

makespan deviation from the optimal schedule under the worst-case scenarios. 𝐶𝑟
𝑠  is the completion time of runway 𝑟  under 

scenario 𝑠. The makespan 𝐹(𝑋, 𝑠) of a schedule 𝑋 under scenario 𝑠 is determined as Equation (1), while the minimal makespan 

of a schedule is denoted as the optimal schedule 𝑋𝑠
∗ under scenario 𝑠 by Equation (2). Given a feasible solution 𝑋 ∈ 𝜔, its regret 

value 𝑅𝑒𝑔𝑟𝑒𝑡(𝑋, 𝑠)  under scenario 𝑠 ∈ 𝛿  is defined as the difference between the makespan of schedule 𝑋  and the optimal 

makespan under this scenario by Equation (3), while the maximal regret is interpreted as Equation (4). Feasible solution is defined 

as a solution that satisfies all the constraints from the mathematical formulation. Subsequently, the model establishes the robust 

scheduling by minimising the deviation from the optimal solution under the worst-case scenarios by Equation (5). 

 

𝐹(𝑋, 𝑠) = max
𝑟∈𝑅

(𝐶𝑟
𝑠(𝑋))                 (1) 

𝐹𝑠
∗ = 𝐹(𝑋𝑠

∗, 𝑠) = 𝑚𝑖𝑛
𝑋∈𝜔

𝐹(𝑋, 𝑠)                (2) 

𝑅𝑒𝑔𝑟𝑒𝑡(𝑋, 𝑠) = 𝐹(𝑋, 𝑠) − 𝐹𝑠
∗                (3) 

𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(𝑋) = max
𝑠∈𝛿

𝑅𝑒𝑔𝑟𝑒𝑡(𝑋, 𝑠)               (4) 

min
𝑋∈𝜔

𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(𝑋) = min
𝑋∈𝜔

max
𝑠∈𝛿

(𝐹(𝑋, 𝑠) − 𝐹𝑠
∗)              (5) 

 

The makespan of runway 𝑟 in schedule 𝑋 under scenario 𝑠 is calculated by Equation (6) and must be equal to the assigned 

landing time of the last flight on the runway system for a finite time horizon. Equations (7) and (8) compute the assigned 

landing/take-off time of each flight 𝑖 ∈ 𝐼, where 𝐼 is the set of flights, taking into account the separation time 𝑆𝑗𝑖  between two 

flights 𝑗 and 𝑖, and its scheduled operation time. The assigned operation time of all flights denotes the time of runway operation in 

TMA. ATC will assign an appropriate landing time based on the corresponding scheduled time of operation (STO), including the 

landing and take-off, with the consideration of the runway availability and the air traffic. The configuration and physical properties 

of the runways may vary, which leads to an unrelated STO. 



 

𝐶𝑟
𝑠 ≥ 𝑇𝑖𝑟

𝑠 (𝑋) − 𝑀(1 − 𝑥𝑖𝑟), ∀𝑖, 𝑟, 𝑠               (6) 

𝑇𝑖𝑟
𝑠 (X) − 𝑇𝑗𝑟

𝑠 (𝑋) ≥ 𝑆𝑗𝑖 − 𝑀(1 − 𝑦𝑗𝑖𝑟), ∀𝑖, 𝑗, 𝑖 ≠ 𝑗, 𝑟, 𝑠            (7) 

𝑇𝑖𝑟
𝑠 (X) ≥ 𝑆𝑇𝑂𝑖𝑟

𝑠 − 𝑀(1 − 𝑥𝑖𝑟), ∀𝑖, 𝑟, 𝑠              (8) 

 

The robust ASSP is a kind of scheduling problem that evaluates the optimal robust scheduling that can perform well under all the 

possible scenarios. The critical runway is defined as a runway with the longest completion time under scenario 𝑠 in an aircraft 

schedule 𝑋 . Equation (9) minimises the maximum deviation of makespan across all the scenarios 𝑠 ∈ 𝛿 . The completed 

mathematical formation of the robust ASSP model is shown below: 

 

(RobustASSP) min
𝑋

(max
𝑠∈𝛿

[𝐹(𝑋, 𝑠) − 𝐹𝑠
∗])              (9) 

𝑠. 𝑡. 

 𝑥𝑖𝑟 + 𝑥𝑗𝑟 ≤ 1 + 𝑦𝑖𝑗𝑟 + 𝑦𝑗𝑖𝑟 , ∀𝑖, 𝑗, 𝑖 ≠ 𝑗, 𝑟              (10) 

 𝑦𝑗𝑖𝑟 + 𝑦𝑖𝑗𝑟 ≤ 1, ∀𝑖, 𝑗, 𝑖 ≠ 𝑗, 𝑟                (11) 

 ∑ 𝑥𝑖𝑟 = 1, ∀𝑖𝑚
𝑟=1                   (12) 

𝑥𝑖𝑟 ∈ {0,1}, ∀𝑖, 𝑟                 (13) 

𝑦𝑗𝑖𝑟 ∈ {0,1}, ∀𝑖, 𝑗, 𝑟                 (14) 

and 

(6) - (8) 

 

Constraints (10) and (11) guarantee that 𝑦𝑗𝑖𝑟  is equal to 1 if flight 𝑖 is assigned after flight 𝑗 on the corresponding runway 𝑟 (not 

necessarily immediately). Otherwise, the 𝑦𝑗𝑖𝑟  takes a zero value. Each flight 𝑖 is restricted to being assigned to only one runway 𝑟 

for the landing/take-off schedule by constraint (12). Constraints (13) and (14) confirm that the decision variables 𝑥𝑖𝑟  and 𝑦𝑗𝑖𝑟  are 

binary numbers. 

 

In the iterative relaxation framework, each iteration determines the worst-case scenario of a given schedule in several extreme point 

scenarios by calculating the optimal makespan of each extreme point scenario to obtain the respective regret values of a given 

schedule as shown in Proposition 1. The extreme point scenario is defined in Definition 1. Under each extreme point scenario 𝑠, 

the scheduled operation time of each flight is equal to either its lower bound value 𝑆𝑇𝑂𝑖  for non-critical runways or its upper bound 

value 𝑆𝑇𝑂𝑖 for the critical runway in the min-max regret approach depending on the Definition 1.  

  

Definition 1. Given a makespan minimisation in the ASSP, the regret of a solution 𝑥 ∈ 𝑋 is maximised for the extreme point 

scenario 𝑠𝑘, which is defined as follows: 

 

𝑆𝑇𝑂𝑖
𝑠𝑘

= {
𝑆𝑇𝑂𝑖
̅̅ ̅̅ ̅̅ , 𝑖𝑓 𝑥𝑖𝑘 = 1
𝑆𝑇𝑂𝑖 , 𝑖𝑓 𝑥𝑖𝑘 = 0 , 𝑖 = 1,2, … , 𝑛            (15) 

or 

 𝑆𝑇𝑂𝑖
𝑠𝑘

= 𝑆𝑇𝑂𝑖
̅̅ ̅̅ ̅̅ 𝑥𝑖𝑘 + 𝑆𝑇𝑂𝑖(1 − 𝑥𝑖𝑘) , 𝑖 = 1,2, … , 𝑛            (16) 

 

 

Definition 2. A runway 𝜁 ∈ 𝑚 is declared to be critical in an aircraft schedule 𝑋 ∈ 𝜔 under scenario 𝑠 ∈ 𝛿 if the completion time 

of runway 𝑟 is the longest in schedule 𝑋 under scenario 𝑠.  



 

𝐶𝜁
𝑠(𝑋) = 𝑚𝑎𝑥

𝑟∈𝑅
{𝐶𝑟

𝑠(𝑋)} = 𝐹(𝑋, 𝑠)               (17) 

 

Proposition 1. For any schedule 𝑋 ∈ 𝜔, let 𝑠0 be a worst-case scenario under the flight landing and take-off schedule when runway 

𝜁 ∈ R is critical. There must be a scenario 𝑠𝜁  that meets the following conditions. First, runway 𝜁 is critical under scenario 𝑠𝜁 . 

Second, scenario 𝑠𝜁  is a worst-case scenario for flight schedule 𝑋. 

 

Proof. See Appendix A.  

 

3. Methodology 

The makespan minimisation under the deterministic situation and the robust optimisation are the two optimisation processes as in 

the iterative relaxation procedure. With respect to the objective of minimising runway makespan, the objective function in 

optimisation under the worst-case scenario is 𝐶𝑟
𝑠. The regret value of each runway can then be extracted by Equation (3), given that 

definitions 1 and 2 hold under the worst-case regret approach. As for robust optimisation, the objective value is the minimising of 

the maximum regret value by considering all the possible scenarios with Equation (5). The objective in robust optimisation is 

nonlinear and requires further modification of the objective function and constraints.  

 

3.1. Implementation of an exact algorithm 

The regret value 𝑅𝑒𝑔𝑟𝑒𝑡(𝑋, 𝑠) measures the difference between the makespan of a schedule and the optimal solution under scenario 

𝑠. The optimal makespan 𝐹𝑠
∗ under scenario s can be directly calculated by mixed-integer programming. However, finding the 

minimal-maximal regret cannot be solely solved as it involves an infinite number of scenarios |Ω| = ∞. Therefore, an iterative 

relaxation procedure is incorporated to obtain a robust solution in the min-max regret optimisation model (Inuiguchi and Sakawa, 

1995; Mausser and Laguna, 1998; Mausser and Laguna, 1999). The relaxation procedure for the min-max regret optimisation is a 

standard approach for developing a robust schedule from an initial solution under scenario 𝑠0 by adding regret cuts obtained from 

the worst-case scenarios in previous solutions iteratively. Since there is infinite number of possible realisation of scenarios, we can 

only consider the limited number of scenarios to confine the model by introducing regret cuts. Regret cut refers to the valid 

inequalities tightening the lower bound of the objective function of the robust optimisation during the search process. The lower 

bound of the objective function is tightened gradually during the iteration process, as more scenarios are taken into consideration. 

The initial solution is constructed by taking all the scheduled operation times of landing/take-offs as the lower bound values. The 

iterative process identifies the worst-case scenario of the latest solution, and further constructs a relaxed ASSP model by 

incorporating the newly identified worst-case scenario into the iterative relaxation procedure. Hence, the robust solution for the 

ASSP model can be determined using the iterative relaxation procedure.  

 

Proposition 2. The maximum regret value is denoted by comparing with each runway as critical 𝜁 ∈ R for the aircraft landing and 

take-off sequence 𝑋 for a multiple runways system (𝑚 ≥ 2), using the following equation. 

𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(𝑋) = max
ζ∈𝑅

(𝐶ζ
𝑠ζ

− 𝐹
𝑠ζ
∗ )               (18) 

 

Proof. See Appendix A.  

 

The maximum regret value is unknown if the critical runway 𝜁 is not defined in the robust ASSP. The critical runway 𝜁 can be 

calculated by defining runway 𝑟∗ as critical using the equation of 𝑟∗ = arg max
ζ∈𝑅

(𝐶ζ
𝑠ζ

− 𝐹
𝑠ζ
∗ ). The assigned time of operation of the 



flight 𝑇𝑖
𝑠  is associated with its scheduled time of operation 𝑆𝑇𝑂𝑖

𝑠  or the scheduled operation time of the leading flight with 

separation requirement 𝑇𝑗
𝑠 + 𝑆𝑗𝑖  by Equations (6) - (8) under scenario 𝑠, which further constitutes the formation of the completion 

time 𝐶𝑟
𝑠. The regret value 𝑅𝑉 cannot be solely solved as it involves two optimisation operators in Equation ( 5 ), resulting in the 

nonlinear objective function. The robust aircraft landing and take-off sequence can be resolved by reformulating the model as 

follows: 

 

𝑚𝑖𝑛 𝑅𝑉                   (19) 

𝑠. 𝑡. 

𝐶𝑟
𝑠𝑘

− 𝐹
𝑠𝑘
∗ ≤ 𝑅𝑉, ∀𝑠𝑘 ∈ 𝛺, 𝑟 = 1, 2, … , 𝑚              (20) 

and 

(6) - (8), (10) - (14) 

 

𝐹𝑠𝑟
∗  is the optimal makespan under scenario 𝑠, while the 𝐶𝑟

𝑠 is the completion time of runway 𝑟 under the worst-case scenario 𝑠𝑘. 

It is not appropriate to directly apply mixed-integer linear programming in solving the robust ASSP model. Therefore, an iterative 

process is required to consider each worst-case scenario by returning the constraints of the solution 𝑋 to the robust ASSP model. 

 

As in the aforementioned procedure of the min-max regret optimisation, the regret value cannot be obtained by a single optimisation 

method, and the number of worst-case scenarios is infinite. As we are seeking the optimal solution with minimal-maximal regret 

value across all the feasible solutions. The worst-case scenario of one solution can be used to confine the searching process of 

seeking a new incumbent solution. Specifically, once an incumbent solution found, its maximal regret value associated with its 

worst-case scenarios is recorded and presented in the form of cut for a subsequent iteration, implying that the new incumbent solution 

shall satisfy the prior identified worst-case scenario of the earlier found solutions. Proposition 2 develops and declares the worst-

case scenarios with a limited set of scenarios 𝛺 = (𝑠1, 𝑠2, … , 𝑠𝜔) . The near-optimal/optimal makespan of finite extreme point 

scenarios can be obtained by solving a MIP given a known scenario 𝑠𝑘 ∈ 𝛺. The constraint is a form of regret cut from the equation 

𝐶𝑟
𝑠𝜁

− 𝐹
𝑠𝜁
∗ ≤ 𝑅𝑉, 𝑟 = 1, 2, … , 𝑚. Assume that the minimal-maximal regret for the robust ASSP model is 𝑅�̂�. Given RV̌ ≤ 𝑅�̂�, the 

objective value 𝑅�̌� in the relaxed ASSP model is a non-decreasing value as the lower bound value 𝑅�̌� increases to satisfy the 

regret cuts. Afterwards, the robust model can be solved using an iterative process by revising the objective function (9). 

 

Given a schedule 𝑋 , the maximal regret 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(𝑋)  can be obtained in accordance with its worst-case scenario 𝑠 ∈ 𝛿  by 

proposition 1 and 2. First, the upper bound regret value 𝑅�̂� is set to be ∞ and the lower bound regret value 𝑅�̌� is set to be 0. Then, 

the model obtains the optimal makespan under the lower-bound scenario as an initial solution X̂. The maximal regret from an initial 

solution 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(�̂�) is defined as an upper bound regret value 𝑅�̂� for the robust ASSP model. If the current lower bound value 

is smaller than the upper bound value 𝑅�̌� < 𝑅�̂�, the following process continues. The worst-case scenario �̂� will be added in the 

set of scenarios 𝛿 in order to generate a new regret cut for the relaxed ASSP model. The objective value 𝑅𝑉 in the relaxed robust 

ASSP solution becomes the lower bound regret value 𝑅�̌�. The iteration is repeated until the lower bound regret value 𝑅�̌� is equal 

to or larger than the upper bound regret value 𝑅�̂�. Solution �̂� will then become the robust optimal solution. The pseudo code of 

the iterative relaxation procedure is shown in Table 2. 

 

 

Table 2 

The pseudo code of the iterative relaxation procedure 

The algorithm architecture of the iterative relaxation procedure 



Set lower bound regret value 𝑅�̌� = 0 and upper bound regret value 𝑅�̂� = ∞ 

Set the optimal makespan under lower-bound scenario as an initial solution �̂� 

Define the upper bound regret value under extreme point scenario 𝑅�̂� =  𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(�̂�) 

WHILE 𝑅�̌� < 𝑅�̂� 

      Identify the worst case scenario �̂� of the solution �̂� 

     IF 𝑅�̌� ≥ 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(�̂�) 

         THEN 𝑅�̂� = 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(�̂�) 

      Add regret cuts 𝐶𝑟
𝑠𝜁

− 𝐹
𝑠𝜁
∗ ≤ 𝑅𝑉, 𝑟 = 1, 2, … , 𝑚 to the relaxed robust model 

      Solving the relaxed ASSP model and obtain the best-known solution �̂� and set its 𝑅�̌� = 𝑅𝑉 

END 

 

3.2. Proposed efficient artificial bee colony algorithm 

The major drawback of using mixed integer programming (MIP) in the min-max regret approach is that the computation time is 

significantly lengthened in resolving large-sized instances, and high computational capacity is required. The computation using the 

exact algorithm in the min-max regret optimisation is costly as the complexity of the computation increases along with the number 

of worst-case scenarios (Feng et al., 2016). Also, the complexity of the computation increases dramatically with the size of the 

model due to the nature of the non-deterministic polynomial hard (NP-hard) problem (Bianco et al., 1997; Garey and Johnson, 1979). 

The relaxed ASSP model includes the makespan optimisation under each extreme point scenario and the robust optimisation in the 

iterative relaxation procedure. Meta-heuristics can be applied in these two optimisation problems. The ABC algorithm is a popular 

Swarm Intelligence-based algorithm which is able to balance the exploitation and exploration during the searching process. The 

conventional ABC algorithm adopts the division of labour strategy, self-organisation and collective behaviour of honey bees to 

explore and exploit the searching process efficiently. Although the basic ABC algorithm and the algorithm performance compared 

with other meta-heuristics have been well studied in regard to the general scheduling problem, customisation of the algorithm 

remains an important determinant to improve the algorithm’s performance for robust modelling. In our exploratory experiments, 

biological evolution and variants of ABC algorithms have been applied. Our preliminary analysis showed that the results were not 

satisfied, in terms of the objective value and the computation time. The solution quality of the robust schedule is determined by the 

accuracy of the set of regret cuts added into the iterative relaxation model. The quality of regret cuts depends on the deviation of the 

best-known makespan under the worst-case scenario derived by the meta-heuristics from the real optimal makespan value. 

Specifically, the regret cut is presented in the form of 𝐶𝑟
s − 𝐹s

∗ ≤ 𝑅𝑉, 𝑟 = 1, 2, … , 𝑚 in the mathematical model. For example, if 

𝐹𝑠
1 obtained by meta-heuristics is larger than the true optimal, the value on the left-hand side of regret cuts becomes smaller than 

the one determined by the true optimal 𝐹s
∗ in each round of the iterative relaxation procedure. In this connection, the quality of the 

regret cut tightening the lower bound of the objective function becomes weak. The best-known makespan under worst-case scenario 

𝐹𝑠 does not guarantee an optimal condition as meta-heuristics are approximation algorithms and limited computation time is required. 

Poor solution quality in the worst-case optimisation by meta-heuristics implies poor quality of the final min-max regret solution. In 

order to obtain close-to-optimal solution in reasonable computation time, a novel EABC algorithm is introduced in this section. 

 

To improve the convergence rate of the ABC algorithm for the robust ASSP model, two enhanced strategies and two novel 

algorithmic components are introduced. As the computation in the min-max regret optimisation is costly using the iterative relaxation 

procedure, simplification of the decision variables in the solution representation and elimination of inefficient neighbourhood 

searching are introduced in the EABC algorithm to reduce the computational burden in the employed bee phase. In addition, we 

propose two novel components in the EABC algorithm to improve the solution quality. First, a constructive heuristic specifically 

designed for the mixed-mode runway scheduling under uncertainty. The constructive heuristic provides a fairly good initial solution 



as an input and maintains a diversity of the population. The EABC algorithm will then continue to exploit better solution by an 

iterative process. Second, we adopt an objective-guided updating mechanism in scout bee phase. If a candidate solution 𝑐𝑖 is the 

worst solution in regards to the objective value 𝑓𝑢𝑛(𝑐𝑖) and reaches the maximum tolerance of unsuccessful update 𝑡𝑟𝑖𝑎𝑙(𝑐𝑖) >

𝑙𝑖𝑚𝑖𝑡, during the iterative process of the EABC algorithm, the local optimal solution will be replaced by a memorised solution. 

Otherwise, it will be restructured by the local search operators to formulate a new solution. In this regard, the objective-guided 

updating mechanism accelerates the convergence of the algorithm. In the robust optimisation using min-max regret criterion, each 

iterative relaxation procedures will generate a worst-case optimal or a robust optimal solution. Before the start of the iterative process 

of the EABC algorithm, the solution from the previous iteration (either a worst-case optimal or a robust optimal solution) will be 

recorded as memorised solution. The memorised solution in the robust optimisation is obtained from the worst-case optimal/near-

optimal solution in the previous iteration, while the memorised solution in the worst-case optimisation is produced from the robust 

optimal/near-optimal solution in the previous iteration. As a result, the proposed EABC algorithm yields better solutions than other 

well-known meta-heuristics. Following the description of the components of the EABC algorithm, the computational experiments 

and the robustness analysis of the algorithm are discussed. The notation of the EABC algorithm is presented in Table 3. 

 

Table 3 

Notation of the efficient artificial bee colony algorithm 

Notations Explanation 

𝐶𝑆 The size of bee colony 

𝑆𝑁 The number of candidate solutions 

𝑀𝑎𝑥𝐼𝑡𝑒𝑟 The maximum number of iterations 

𝑑𝑖𝑚 The dimension of an independent solution 

𝑐𝑖,𝑖 = 1,2, … , 𝑆𝑁 The position of each solution in bee colony 

𝑓𝑢𝑛(𝑐𝑖) The objective value of solution 𝑐𝑖 

𝑓𝑖𝑡(𝑐𝑖) The fitness value of solution 𝑐𝑖 

𝑃𝑟𝑜𝑏(𝑐𝑖) The probability of an individual solution 𝑐𝑖 among the entire colony in term of fitness value 

𝑐�̅� The neighbour solution of an individual solution 𝑐𝑖 

𝑐𝑚 The memorised solution obtained in previous robust optimisation  

𝑡𝑟𝑖𝑎𝑙(𝑐𝑖) The accumulated trial value of an individual solution 𝑐𝑖, which cannot be enhanced the quality of solution in 

terms of its objective value 

𝑙𝑖𝑚𝑖𝑡 The maximum tolerance of trial(𝑐𝑖) 

𝑝 Random number, 0 ≤ 𝑝 < 1 

 

The pseudo code of the proposed EABC algorithm is shown in Table 4. The EABC algorithm initially produces a set of candidate 

solutions 𝑐𝑖 , 𝑖 = 1,2, … , 𝑆𝑁. Each candidate solution will be replaced by a proposed constructive heuristic, as stated in Section 3.2.2, 

to formulate a “seed” for exploitation and exploration. The constructive heuristic provides a high-quality solution and leads to a fast 

convergence to close-to-optimal solutions by the EABC algorithm. Then, the EABC algorithm performs searching by the employed 

bee phase (as described in Section 3.2.3), onlooker bee phase (as described in Section 3.2.4) and scout bee phase (as described in 

Section 3.2.5) to improve the candidate solutions iteratively until the stopping criterion is met. After the completion of the iterative 

process, the EABC algorithm reports the best-known solution during the searching process. 

 

 

Table 4 



The pseudo code of the efficient artificial bee colony algorithm 

The algorithm architecture of the efficient artificial bee colony algorithm 

Initialization 

     Develop the First-come-first-serve sequence according to the scheduled operation time 

     Generate an initial solution using constructive heuristic 

     Compute the objective value 𝑓𝑢𝑛(𝑐𝑖) of each solution 𝑐𝑖 

     Initial the parameter 𝑙𝑜𝑜𝑝, and set 𝑀𝑎𝑥𝐼𝑡𝑒𝑟  

DO 

Employed Bee Phase 

     Apply neighbourhood search on each candidate solution 𝑐𝑖, ∀i to construct a neighbourhood solution 𝑐�̅� 

     Calculate the objective value 𝑓𝑢𝑛(𝑐𝑖) and 𝑓𝑢𝑛(𝑐�̅�) of candidate solution 𝑐𝑖 and neighbourhood solution 𝑐�̅� 

     Apply greedy selection to construct the new solution 

     IF the objective value 𝑓𝑢𝑛(𝑐�̅�) is better than 𝑓𝑢𝑛(𝑐𝑖) 

          THEN 

               Replace candidate solution 𝑐𝑖 by neighbourhood solution 𝑐�̅� 

          ELSE 

               trial(𝑐𝑖) = 𝑡𝑟𝑖𝑎𝑙(𝑐𝑖) + 1 

Onlooker Bee Phase 

     Calculate the fitness value 𝑓𝑖𝑡(𝑐𝑖) of candidate solution 𝑐𝑖 using the equation (28) 

     Generate a uniform random number 𝑝 and select one candidate solution under roulette wheel selection scheme 

     Apply neighbourhood search to the corresponding candidate solution 

Scout Bee Phase 

     IF the trial of a candidate solution 𝑙𝑖𝑚𝑖𝑡(𝑐𝑖) is over the maximum tolerance of unsuccessful updates 𝑙𝑖𝑚𝑖𝑡 

          THEN 

               IF the candidate solution 𝑐𝑖 is the worst solution among the population 

                    THEN 

                         Replace candidate solution 𝑐𝑖 by the memorised solution 𝑐𝑚 

                    ELSE 

                         Perform non-objective guided neighbourhood search to restructure the candidate solution 𝑐𝑖 

Stopping criterion 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑡𝑒𝑟 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑡𝑒𝑟 + 1 

WHILE 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑡𝑒𝑟 < 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 

Return the best-known solution 

 

3.2.1. Solution representation 

The binary decision variables in the MIP model are inefficient when the model is resolved by meta-heuristics, particularly in 

population-based meta-heuristics, since extra memory and computation time are required for binary searching in such cases. 

Therefore, the transformation is an essential step to reduce the computational effort in the meta-heuristics formulation. In the robust 

ASSP model, aircraft assignment and sequencing are conducted by the decision variables 𝑥𝑖𝑟   and 𝑦𝑗𝑖𝑟 . The assignment and 

sequencing are determined with regard to the position on the array under the meta-heuristics approach. Assuming that there are three 

aircraft in the landing system, aircraft 0 is assigned to land immediately before aircraft 1 on runway 0, while aircraft 2 is assigned 

to land on runway 1. Aircraft 0 and 2 are in the first position of the landing sequence on the corresponding runways. Therefore, the 



decision variables 𝑥00, 𝑥10 and 𝑥21 are equal to 1 in the aircraft assignment problem. As for the aircraft-sequencing problem, the 

decision variable 𝑦010 is equal to 1. In order to reduce unnecessary solution space during searching, the solution is represented as 

a single array with the dimension 𝑑𝑖𝑚, where 𝑑𝑖𝑚 = 𝑛 × 𝑚. The value of -1 in the solution denotes an empty position in the ASSP 

solution. The solution representation is shown in Fig. 2. 

 

Fig. 2. Solution representation under the meta-heuristics approach 

 

The design of the min-max regret approach aims to obtain a robust ASSP schedule to minimise the maximal regret value by 

considering a set of worst-case scenarios. The two main stages require optimisation techniques in the solution. They are robust 

scheduling and makespan optimisation under the worst-case scenario. The process workflow using the ABC algorithm in deriving 

the worst-case optimal makespan and the robust makespan are the same, except for the computation of objective value and fitness 

value. The objective function in the optimal makespan under the worst-case scenario is 𝐹(𝑋, 𝑠𝜁), while the objective function in 

the robust ASSP considering all the worst-case scenario follows Equations (19) and (20). 

 

 

3.2.2. Initialisation using constructive heuristic 

Randomised initialisation in the SI algorithms causes a lengthy convergence time, as a randomised procedure does not guarantee 

that the searching process started from a promising solution region. SI algorithms perform exploitation and exploration procedures 

through trial-and-error interaction to obtain close-to-optimal value. The algorithm requires extra effort in searching from an 

unpromising solution region to a satisfactory solution, which leads to extensive exploitation. To a certain extent, the algorithm 

undertakes considerable unsuccessful searching and results in frequent termination searching in the exploration phase. With the 

purpose of minimising the adverse effect in the SI algorithm, a constructive heuristic is a successive approximation scheme to 

generate a satisfactory initial solution with high quality. A simple constructive heuristic approach is introduced in this section.  

 

The design of the constructive heuristic approach takes a similar perspective of an objective function and the FCFS scheme. The 

maximum number of flights is equal to 𝑛. Flights 𝑖 = (1,2, … , 𝑛) are sorted in ascending order as an FCFS scheme using an 

insertion operator according to its scheduled operation time 𝑆𝑇𝑂𝑖 = (𝑆𝑇𝑂1, 𝑆𝑇𝑂2 , … , 𝑆𝑇𝑂𝑛−1, 𝑆𝑇𝑂𝑛). The constructive heuristic 

takes 𝑛 steps (1 ≤ 𝑖 ≤ 𝑛) to complete the initial solution. After creating the sequential order of the scheduled operation, each 

flight is assigned a runway by the greedy method. The first flight is assigned a random runway as a seed. For the remaining flights 

on the sorted list, the algorithm measures the assigned time of operation 𝑇𝑖𝑟  if flight 𝑖 is assigned after the last assigned flight on 

runway 𝑟 = (1 ≤ 𝑟 ≤ 𝑚) in a consecutive sequence, including the separation time requirement. If the assigned time of operation 

𝑇𝑖𝑟  is equal to the scheduled time of operation 𝑆𝑇𝑂𝑖𝑟 , then flight 𝑖 is successively scheduled on runway 𝑟 without any delays. 

Otherwise, the calculation will be repeated and 𝑟 = 𝑟 + 1  until flight 𝑖  is assigned or 𝑟 = 𝑚 . The iterative process will be 

complete when 𝑟  is equal to 𝑚 , which refers to the situation in which flight 𝑖  requires extra time to perform the operation 

compared to its preferred time of operation due to limited resources. Two approaches can be applied to resolve this solution – the 

least completion time method or by random assignment. The runway assignment is selected by measuring the completion time of 

the runway for 𝑚 scenarios when flight 𝑖 is assigned to the latest position of each runway using the least completion time method. 

Random assignment refers to a situation in which flight 𝑖 is randomly assigned to a runway. According to our preliminary study, 

the random assignment approach ensures the diversity of the initial solution, and is able to achieve better optimality in the iterative 



relaxation procedure. In our model, the random assignment approach is considered in the constructive heuristic, and the operation 

performs the next iteration until all flights are assigned. 

 

3.2.3. Employed bee phase  

The EABC algorithm is a population-based algorithm and involves searching a set of candidate solutions 𝑐𝑖 = 1,2, … , 𝑆𝑁. The 

employed bee phase aims to generate a neighbourhood solution 𝑐�̅� from a known solution 𝑐𝑖 by exploitation operators so as to 

obtain a search of the robust ASSP model for all the solutions c𝑖. Neighbourhood searching includes local search operators and 

crossover operators. Local search operators are simple operators to randomly select element(s) in a known solution and revise the 

structure of a solution. Insert, swap and reverse operators are commonly applied in the employed bee phase in job-shop scheduling 

and vehicle routing problems (Pan et al., 2013; Schiavinotto and Stützle, 2007; Szeto et al., 2011). The insert operator randomly 

removes a flight at the 𝑖th position and reinserts it into the 𝑗th position. The swap operator randomly exchanges two elements at the 

𝑖 th position and 𝑗 th position. The reverse operator randomly selects a subsequence of flights and reverses the order of the 

corresponding subsequence. Crossover operators are combining two different candidate solutions to construct a neighbourhood 

solution (Vallada and Ruiz, 2011). The random element selection falls into the range of 1 ≤ 𝑖𝑡ℎ, 𝑗𝑡ℎ ≤ 𝑑𝑖𝑚.  

 

The reverse operator and crossover operator are common local search operators in hybrid meta-heuristics. Crossover is a genetic 

operator and usually hybridised with other metaheuristics (Gandomi and Alavi, 2012; Pant et al., 2007; Zhang et al., 2016; Zhang 

et al., 2014). However, these two operators are suggested to be removed if the model requires timely decision-making. In the robust 

modelling, the iterative relaxation procedure takes several rounds of the optimisation process. The number of iterations in the 

iterative relaxation procedure is subjected to the number of the worst-case scenarios. To enhance the efficiency of the optimisation 

process, inefficient operators should be removed. In our prior study, the reverse operator was found to be less effective in improving 

the solution as the order of a solution represents the sequential time of operation. The neighbourhood solution obtained by reverse 

operators usually has a higher makespan value. Also, the computation to obtain the neighbourhood solution using a crossover 

operator requires the measurement of the fitness value on the population and formulates the probabilistic distribution in the wheel 

roulette selection (Zhang et al., 2014). The computation time of crossover is significant in each iteration. Comparatively, swap and 

insert operators are simple and effective in obtaining satisfactory neighbourhood solutions.  

 

Four operators are considered in the employed bee phase shown as follows: 

• Select a flight and use the insert operator on the same runway for schedule 𝑋 

• Select a flight and use the insert operator on different runways for schedule 𝑋 

• Select two flights and use the swap operator on the same runway for schedule 𝑋 

• Select two flights and use the swap operator on different runways for schedule 𝑋 

 

After generating a neighbourhood solution, the objective-guided greedy method is considered in comparing the solution quality 

between candidate solution 𝑐𝑖 and neighbourhood solution 𝑐�̅�. The quality of both solutions is evaluated by the objective function 

fun(𝑐𝑖). If the solution quality of the neighbourhood solution fun(𝑐�̅�) is better than the original one fun(𝑐𝑖), the candidate solution 

will be updated by the neighbourhood solution. Any unsuccessful update using each operator will be counted for each candidate 

solution 𝑐𝑖 by the parameter 𝑡𝑟𝑖𝑎𝑙(𝑐𝑖).  

 

3.2.4. Onlooker bee phase 

The Onlooker bee phase enhances the exploitation process by utilising the fitness probability distribution to improve the overall 

solution quality. The onlooker bee utilises the information, shared by the employed bee, to further exploit the selected food source. 



The selection criterion of high-quality candidate among the candidate solutions depends on the winning probability value 𝑝𝑖 . The 

fitness approximation 𝑓𝑖𝑡(𝑐𝑖)  is a measurement to identify the quality of each solution according to a cumulative probability 

distribution of a population set, which deviates from the objective value fun(𝑐𝑖)  using Equation (21) (Pan et al., 2013). The 

objective value 𝑓𝑢𝑛(𝑐𝑖)  in the worst-case optimisation is determined by the makespan value 𝐹(𝑋, 𝑠)  of a schedule under an 

extreme scenario 𝑠 , while the objective value 𝑓𝑢𝑛(𝑐𝑖)  in the robust optimisation is computed by the regret value 𝑅𝑉 . The 

proposed Equation (21) is able to handle zero and positive values, as the regret value can be a non-negative value in Equation (3). 

The larger fitness value 𝑓𝑖𝑡(𝑐𝑖) implies a better solution quality across the population. The selective probability of each solution 

𝑝𝑟𝑜𝑏(𝑐𝑖) is derived by Equation (22).  

 

𝑓𝑖𝑡(𝑐𝑖) =
1

1+𝑓𝑢𝑛(𝑐𝑖)
, ∀𝑖                 (21) 

𝑝𝑟𝑜𝑏(𝑐𝑖) =
𝑓𝑖𝑡(𝑐𝑖)

∑ 𝑓𝑖𝑡(𝑐𝑖)𝑆𝑁
𝑖=1

, ∀𝑖                (22) 

Due to the simplicity, the selection process in Equation (22) is used in the ABC algorithm (Tasgetiren et al., 2011). Each onlooker 

bee generates a uniform random number 𝑝  ranging from [0,1) under the roulette wheel selection scheme, and carries out a 

neighbourhood search on the selected candidate solution, as stated in Section 3.2.3. The greedy approach is also applied to measure 

the solution quality between 𝑐𝑖 and 𝑐�̅�. Satisfactory solutions are selected several times in the neighbourhood search procedure, 

and speeds up the time to convergence in the onlooker bee phase.  

 

3.2.5. Scout bee phase 

Candidate solutions will be trapped in local optimum under the intensive neighbourhood searching process, which refers to the 

degraded searching scenario. The algorithm is not able to obtain a superior neighbourhood solution from the preceding solution in 

such case. To escape from the local optimum trap in the scout bee phase, the trapped solution is abandoned, and a certain level of 

solution diversity remains in the population. The selection criteria of the trapped solution are based on the negative feedback 

mechanism using the parameter 𝑡𝑟𝑖𝑎𝑙, as mentioned in Section 3.2.3. If the number of unsuccessful updates of a solution 𝑡𝑟𝑖𝑎𝑙(𝑐𝑖) 

exceeds the maximum tolerance of an unsuccessful update, the solution will then be updated by a new solution to maintain diversity 

among the candidate solutions.  

 

The proposed updating mechanism utilises the information from the prior optimised solution by an iterative relaxation procedure. 

The design of the updating mechanism insists on enhancing the convergence rate by information exchange (Su et al., 2017). To 

reduce the computational effort for optimisation in the iterative relaxation procedure, a robust solution in each round of iterations is 

memorised as a source for a promising search start point, except for the initial solution in the iterative relaxation procedure. Since 

the optimal solution for the worst-case scenario and the robust optimal solution in the next iteration shares the same sequential 

elements and structure, the preceding solution can be regarded as a promising and new intermediate solution in the worst-case 

scenario optimisation and the robust optimisation. The updating mechanism is explained as follows. If one solution is considered as 

a trapped candidate solution, the algorithm will further evaluate the solution quality regarding the objective value 𝑓𝑖𝑡(𝑐𝑖) among 

the population. If the trapped candidate solution is the worst-observed objective value compared with other candidates, the solution 

will be replaced by the memorised solution in the previous iteration. Otherwise, non-objective guided insert and swap operators will 

revise the solution sequence of the trapped candidate solution to restructure the trapped solution. The proposed scout bee phase 

helps to catalyse the process of intensification and diversification to obtain a preferable or optimal solution until the stopping criteria 

are satisfied. 

 



4. Result of experiment 

4.1. Description of test instances 

Since there are no benchmark instance sets of the robust ASSP model in the literature, randomly generated instance sets were adopted 

in this research. Test instances were generated for the evaluation of the proposed algorithm following the below criteria. The uniform 

distributions of the scheduled time of operation 𝑆𝑇𝑂𝑖𝑟
𝑠  fell into an interval [𝑆𝑇𝑂𝑖𝑟 , 𝑆𝑇𝑂𝑖𝑟]. The lower bound value of scheduled 

time of operation 𝑆𝑇𝑂𝑖𝑟  was randomly assigned from an interval of [0, 60𝑚
𝑛⁄ ] to represent an arrival/departure rate of flights for 

a runway. The upper bound value of scheduled time of operation 𝑆𝑇𝑂𝑖𝑟  is constructed by the lower bound value of scheduled time 

of operation 𝑆𝑇𝑂𝑖𝑟  with a time length of runway dependent arrival or departure delay for each flight 𝜀𝑖𝑟, where 𝜀𝑖𝑟 ∈ (0, 𝛽]. The 

description of the test instance is shown in Table 5 with 𝑛 = (6,12,18,24,30) for two runways – mixed-mode parallel operation, 

and 𝑛 = (10,18,28,36,46) for three runways – mixed-mode parallel operation. Flight classes SSF, MSF and LSF represent small-

size, medium size and large size flights correspondingly. The distribution of the flight classes for both sets of the test instances are 

(50% LSF and 50% MSF) and (50% LSF, 33.3% MSF and 16.7% SSF). (60, 120) are used for beta value 𝛽, resulting in a total of 

40 test instances. 𝛽 is the maximum deviation of possible operation time 𝜀𝑖𝑟  in the computational experiment. 

 

Table 5  

Instance description of the robust ASSP model 

ASSP model 

%LSF=50%, % MSF=50% %LSF=50%,%MSF=33.3%,%SSF=16.7% 

Instance ID 𝑛 Instance ID 𝑛 

Two runways - 

mixed mode 

parallel 

operation 

1001 6 2001 6 

1002 12 2002 12 

1003 18 2003 18 

1004 24 2004 24 

1005 30 2005 30 

Three runways - 

mixed mode 

parallel 

operation 

3001 10 4001 10 

3002 18 4002 18 

3003 28 4003 28 

3004 36 4004 36 

3005 46 4005 46 

SSF=Small size flight; MSF= Medium size flight; LSF=Large size flight 

 

The configuration of the computational environment was an Intel Core i7 3.60 GHz CPU and 16 GB random-access memory under 

the Windows 7 Enterprise 64-bit operating system. The performance of the EABC algorithm was evaluated by randomly generated 

ASSP instances and compared to other meta-heuristics and modified ABC algorithms. These included the Branch-and-Bound (B-B) 

algorithm, Genetic Local Search (GLS) (Liu, 2011), Original Artificial Bee Colony (ABC) algorithm (Karaboga and Basturk, 2008), 

Modified Artificial Bee Colony (MABC) Algorithm and Hybrid Artificial Bee Colony (HABC) algorithm (Zhang et al., 2014). 

 

Table 6  

Algorithm design for comparison 

Algorithm design GLS ABC MABC HABC EABC 

Initialization Randomized Randomized Constructive heuristic Constructive heuristic 
Constructive 

heuristic 

Exploitation 
Local search 

Crossover 
Local search Local search 

Local search 

Crossover 
Local search 



Exploration NULL Scout Bee Scout bee Scout bee Efficient scout bee  

 

The exact method was also applied for baseline results by IBM ILOG CPLEX Optimization Studio 12.6.3 so as to evaluate the 

performance of the proposed algorithm. All the algorithms are written in C# language with visual studio 2015. The parameter setting 

was conducted in the preliminary study for parameter tuning (the detailed parameter analysis is described in Appendix B). The final 

parameters of the proposed EABC algorithm for the worst-case optimisation and the robust optimisation are set as follows: 

 

• 𝐶𝑆 = 40, 𝑆𝑁 = 𝐶𝑆
2⁄  

• 𝑙𝑖𝑚𝑖𝑡 = 2 × 𝑆𝑁 × 𝑚 × 𝑛 

• 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 1000 × m × 𝑛 

 

4.2. Effectiveness of meta-heuristics 

Each algorithm was given a maximum computation time of 3,600 seconds to resolve the test instance. The time limit was chosen in 

accordance with the characteristic of the instance. The number of flights in the large-sized instances is the approximate number of 

air traffic scenarios during the peak hours in the Hong Kong International Airport. The runway schedule was designed for an hour 

of traffic. Therefore, the computation time of the schedule must be less than 3,600 seconds to maintain a continuity of runway 

scheduling in the time horizon. In order to evaluate the algorithm performance, optimality gap 𝑅𝑒𝑔𝑟𝑒𝑡 𝐺𝑎𝑝 %, average robust cost 

A𝑅𝐶, relative percentage increase 𝑅𝑃𝐼(𝐴𝑅𝐶), least significant difference LSD and the number of best value #𝑏𝑒𝑠𝑡 are reported.  

 

The robust optimisation in the iterative relaxation procedure measures the regret deviation between 𝑅�̂� and 𝑅�̌� as a termination 

criterion. The optimisation process is not guaranteed to produce a robust solution with the situation of 𝑅�̂� = 𝑅�̌�  given a limited 

computation time. Therefore, the optimality gap is reported for the performance of the exact method by Equation (23) (Pereira and 

Averbakh, 2011). 

𝑅𝑒𝑔𝑟𝑒𝑡 𝐺𝑎𝑝 % =
𝑅�̂�−𝑅�̌�

𝑅�̂�
              (23) 

 

The robustness cost 𝑅𝐶(𝑋) of schedule X is defined as its maximum regret value among all possible scenarios in the set S by 

Equation (24). 0 value in 𝑅𝑒𝑔𝑎𝑟𝑑 𝐺𝑎𝑝 % implies a robust optimal solution and the worst-case scenarios are obtained (Lu et al., 

2014). Otherwise, the near-optimal robust solution is obtained. The maximum regret value 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(𝑋𝐹𝐶𝐹𝑆)  using FCFS 

sequencing policy with mixed-mode runways (FCFS-MIX) was also included in the experiment for comparison. The heuristic of 

FCFS-MIX sequencing policy followed the rules proposed by Farhadi et al. (2014). The construction of a FCFS-MIX schedule 

considers the lower bound value of scheduled time of operation 𝑆𝑇𝑂𝑖𝑟  as an input source. 

 

𝑅𝐶(𝑋) = 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(𝑋) = max
𝑠∈𝛿

𝑅𝑒𝑔𝑟𝑒𝑡(𝑋, 𝑠) = max
𝑠∈𝛿

(𝐹(𝑋, 𝑠) − 𝐹𝑠
∗)         (24) 

 

Repeatability testing was adopted to measure the effectiveness of the proposed algorithm under the same condition as the selected 

instances, such as delay time, and scheduled operation time of each flight. The RC obtained by the exact method provides a reference 

point for the evaluation of the meta-heuristics algorithms, comparing the deviation of the maximum regret value with the average 

regret value. The meta-heuristics approaches generate a robust near optimal solution with less computation effort. In each iteration, 

the 𝐹𝑠
∗  obtained is not guaranteed to be an optimal condition under worst-case scenario 𝑠 . Thus, the maximum regret value 

 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(𝑋) constructed by meta-heuristics is an approximate value. The performance of the proposed algorithm was measured 

by the 𝑅𝑃𝐼(𝐴𝑅𝐶), as shown in Equation (25), given that the 𝑅𝐶∗ is the maximum regret value obtained by the exact method with 



limited computational power. The average Robustness cost 𝐴𝑅𝐶 is the average performance of the maximum regret value obtained 

by the meta-heuristics approach in ten repeated experiments.  

 

𝑅𝑃𝐼(𝐴𝑅𝐶) =
𝐴𝑅𝐶−𝑅𝐶∗

𝑅𝐶∗ × 100                (25) 

 

The LSD intervals for the mean estimation of the “noise” in the computational results is needed to provide valid mean comparisons. 

Equation (26) measures the LSD intervals at a 95% confidence level for estimating the statistically significant difference of the RPI 

among the test instances (Pan et al., 2013). Since the computation time for optimisation is limited to 3,600 seconds, the 𝑅𝐶∗ is not 

guaranteed to be an optimal condition. If A𝑅𝐶  is better than the 𝑅𝐶∗ , 𝑅𝑃𝐼(𝐴𝑅𝐶)  will be a negative value to indicate better 

algorithm performance. In this regard, the lower bound value of LSD may also be negative.  

 

𝐿𝑆𝐷 ∈ [𝑅𝑃𝐼(𝐴𝑅𝐶) − 1.96
𝜎𝑅𝑃𝐼(𝑅𝐶)

√𝑛
, 𝑅𝑃𝐼(𝐴𝑅𝐶) + 1.96

𝜎𝑅𝑃𝐼(𝑅𝐶)

√𝑛
]          (26) 

 

With the purpose of measuring the robustness of the proposed algorithm, the #𝑏𝑒𝑠𝑡 reports the best number of 𝑅𝐶(𝑋) values out 

of the solutions obtained by the exact method, given 10 repeated experiments. 

 

4.3. Computational results with meta-heuristics 

With the aim of evaluating the effectiveness of the proposed algorithm and other meta-heuristics, the computational results by the 

exact method is a reference or baseline for comparison of the deviation of 𝑅𝐶(𝑋) and computation time. The computational results 

by the exact method using CPLEX are presented in Table 7. CPLEX failed to obtain the robustness cost for the instances with less 

than or equal to 18 flights, given a 3,600-second computational limit. Except the InstanceID-1005-𝛽-60 and InstanceID-2004-𝛽-60, 

the 𝑅𝑒𝑔𝑟𝑒𝑡 𝐺𝑎𝑝 % is at least 20% from the regret lower bound.  

 

Table 7  

Computational performance by the exact method 

In
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an
ce

 I
D

 

𝛽 CPU (s) 𝑅�̂� Regret Gap % 

In
st

an
ce

 I
D

 

𝛽 CPU (s) 𝑅�̂� Regret Gap % 

1001 
60 3.38 30 Opt 

3001 
60 108.08 0 Opt 

120 3.24 55 Opt 120 31.23 14 Opt 

1002 
60 14.54 9 Opt 

3002 
60 >3600 9 Opt 

120 1166.73 18 Opt 120 >3600 9 Opt 

1003 
60 >3600 2 100% 

3003 
60 >3600 36 Opt 

120 >3600 123 96.75% 120 >3600 66 71.21% 

1004 
60 >3600 108 67.59% 

3004 
60 >3600 79 88.61% 

120 >3600 102 65.69% 120 >3600 68 91.18% 

1005 
60 >3600 12 Opt 

3005 
60 >3600 61 90.16% 

120 >3600 183 62.84% 120 >3600 98 74.49% 

2001 
60 1.31 0 Opt 

4001 
60 37.89 23 Opt 

120 4.04 13 Opt 120 158.03 59 Opt 

2002 
60 1312.40 19 Opt 

4002 
60 >3600 25 96.00% 

120 2636.59 28 Opt 120 >3600 62 91.94% 



2003 
60 >3600 14 64.29% 

4003 
60 >3600 31 41.94% 

120 >3600 65 92.31% 120 >3600 88 100.00% 

2004 
60 >3600 67 47.76% 

4004 
60 >3600 16 Opt 

120 >3600 87 62.07% 120 >3600 77 66.23% 

2005 
60 >3600 48 50.00% 

4005 
60 >3600 94 21.28% 

120 >3600 130 40.77% 120 >3600 220 39.09% 

Opt: Optimal condition 

 

We then investigated the effectiveness of the meta-heuristics in contrast with the performance of the exact method. Table 8 shows 

the computational performance of the meta-heuristics for the instances of two and three runways’ mixed-mode parallel operations 

respectively. A total of ten replications for each instance were conducted to calculate the average performance of the algorithm. The 

average robustness cost 𝐴𝑅𝐶 and the deviation between the average value and optimal 𝑅𝑃𝐼(𝐴𝑅𝐶) are reported. The closer value 

of 𝑅𝑃𝐼(𝐴𝑅𝐶) indicates less deviation from the optimal value. If 𝑅𝐶∗ is in an optimal condition, the value of 𝑅𝑃𝐼(𝐴𝑅𝐶) must be 

larger than or equal to 0.00%. Negative values in 𝑅𝑃𝐼(𝐴𝑅𝐶) indicate that meta-heuristics obtain a better solution than the exact 

method. Concurrently, 𝑅𝐶∗ was not in the optimal condition. The bold values in 𝑅𝑃𝐼(𝐴𝑅𝐶) are the best values or have the smallest 

gap from the optimal compared to other meta-heuristics. It can be seen that the EABC algorithm achieved the best performance in 

𝑅𝑃𝐼(𝐴𝑅𝐶) generally. It can be observed that the smallest 𝑅𝑃𝐼(𝐴𝑅𝐶) compared with other meta-heuristic approaches was counted 

as 24 out of the 40 instances. The average 𝑅𝑃𝐼(𝐴𝑅𝐶) of EBAC algorithm is equal to 3.40%, which is smaller than others. The 

result presents that the 𝑅𝑃𝐼(𝐴𝑅𝐶)  of the proposed EABC algorithm achieved the best value over the other meta-heuristics 

approaches. 

 

Table 8  

Comparison of FCFS-MIX heuristic and meta-heuristics for the instances of two / three runways’ mixed-mode parallel operation 

𝛽 
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Average RC gap 𝑅𝑃𝐼(𝐴𝑅𝐶) for two runways system (in 

percentage) 
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Average RC gap 𝑅𝑃𝐼(𝐴𝑅𝐶) for three runways system (in 

percentage) 

FCFS GLS ABC MABC HABC EABC FCFS GLS ABC MABC HABC EABC 

60 
1001 

236.67 10.50 7.39 0.00 0.00 1.42 
3001 

15500.00 29.24 7.04 6.71 4.80 7.04 

120 76.36 37.77 7.70 3.00 1.59 5.73 1064.29 28.11 8.18 6.76 5.84 5.54 

60 
1002 

2755.56 13.05 1.59 4.44 4.03 3.98 
3002 

2088.89 14.37 7.81 10.91 7.48 6.00 

120 1355.56 14.01 8.98 1.73 1.01 0.88 2133.33 25.85 12.08 9.81 6.32 8.68 

60 
1003 

25300.00 9.79 11.83 4.84 3.74 1.03 

3003 
1144.44 14.86 8.20 4.09 3.09 1.65 

120 323.58 18.86 10.83 7.60 7.82 5.16 562.12 16.82 7.71 3.88 2.37 2.36 

60 
1004 

538.89 13.83 4.19 4.80 4.98 4.19 

3004 
677.22 10.28 -1.35 3.18 2.49 -1.35 

120 609.80 12.12 7.96 7.14 7.82 6.18 777.94 16.62 0.78 1.04 0.14 -0.70 

60 
1005 

6675.00 5.26 0.38 0.38 1.52 0.00 

3005 
845.90 3.97 1.60 1.78 0.89 0.54 

120 340.98 11.27 3.13 4.35 3.92 2.55 552.04 4.01 6.53 -0.38 -0.38 0.62 

60 
2001 

2600.00 12.05 0.52 0.00 0.00 0.00 

4001 
486.96 22.10 8.12 8.02 8.67 7.73 

120 223.08 23.26 4.82 5.42 2.17 5.39 164.41 34.98 13.88 13.54 13.46 11.83 

60 
2002 

547.37 3.97 8.32 1.04 3.37 3.37 
4002 

1252.00 10.64 4.11 4.11 7.52 4.11 

120 357.14 16.75 6.53 6.03 6.82 7.48 493.55 16.01 9.40 4.15 3.68 5.25 

60 2003 3421.43 4.25 0.48 4.21 1.67 0.48 4003 1058.06 9.71 1.93 2.67 2.86 4.33 



120 676.92 11.45 21.60 4.89 5.45 4.16 368.18 18.96 11.49 6.13 3.83 5.11 

60 
2004 

568.66 3.84 1.13 6.18 3.14 1.13 

4004 
3987.50 5.18 0.09 1.58 0.76 0.26 

120 414.94 0.49 -0.84 1.42 5.14 0.64 707.79 12.49 4.39 1.84 0.33 -1.29 

60 
2005 

1356.25 15.48 10.94 4.05 1.97 1.28 

4005 
824.47 12.05 8.72 0.85 0.01 0.09 

120 464.62 6.55 14.20 7.56 5.56 4.43 275.00 6.09 7.73 0.09 -0.20 0.25 

Average 2442.14 12.23 6.59 3.95 3.59 2.98  1748.20 15.62 6.42 4.54 3.70 3.40 

Bold value: The minimum RPI(ARC) across the same instance 

 

To demonstrate the statistical difference between the meta-heuristics regarding solution quality 𝑅𝑃𝐼(𝐴𝑅𝐶), the LSD intervals for 

different algorithms are presented in Table 9. Fig. 3 shows the LSD intervals at a 95% confidence level with the LSD factors and 

algorithm type. The results show that the LSD intervals of the GLS and ABC algorithms have a wide range, which implies that the 

algorithms fail to obtain satisfactory and steady performance across the selected instances. It is clear from Fig. 3 that the HABC and 

EABC are significantly better than other meta-heuristics approaches. HABC and EABC algorithms perform similarly using the 

measurement of LSD intervals. Besides the solution quality of the proposed algorithm, the computational burden is also a major 

indicator in determining the efficiency of the algorithm. The average computation time of the HABC algorithm is around triple the 

results for the EABC algorithm. Considering the computational effort as well as the algorithm performance, the performance of the 

EABC algorithm surpassed the other types of ABC approaches. Detailed information on the computation time is given in Appendix 

A. It can be concluded that the EBC algorithm improved the average 𝑅𝑃𝐼(𝐴𝑅𝐶) and computation time. 

 

Table 9  

Comparison of the least significant difference 

LSD interval at a 95% confidence level GLS ABC MABC HABC EABC 

Maximum max 𝑅𝑃𝐼(𝐴𝑅𝐶) 37.77% 21.60% 13.54% 13.46% 11.83% 

Minimum min 𝑅𝑃𝐼(𝐴𝑅𝐶) 0.49% -1.35% -0.38% -0.38% -1.35% 

Mean 𝑅𝑃𝐼(𝐴𝑅𝐶) 13.92% 6.50% 4.25% 3.64% 3.19% 

Standard deviation 𝜎𝑅𝑃𝐼(𝑅𝐶) 8.57% 4.89% 3.17% 3.04% 3.06% 

Upper bound of Least Significant Different LSD 30.71% 16.08% 10.46% 9.59% 9.19% 

Lower bound of Least Significant Different LSD -2.87% -3.07% -1.97% -2.31% -2.82% 

Average CPU (sec) 153.32 25.92 103.00 188.39 56.61 

 

 

Fig. 3. Means and 95% LSD intervals for different meta-heuristics approaches 



 

The number of best solutions out of the optimal performance are also important factors in the replication testing. Each algorithm 

was repeated ten times for each instance. The #𝑏𝑒𝑠𝑡 performance is shown in Table 10. The # 𝑏𝑒𝑠𝑡 parameter counts the number 

reaching optimal or better than the 𝑅𝐶∗ under limited computational power, if the 𝑅𝐶(𝑋) outperformed the result by the exact 

method. The average values of # 𝑏𝑒𝑠𝑡 for the GLS, ABC, MABC, HABC and EABC algorithms are 0.70, 0.75, 1.65, 1.70 and 2.55 

respectively. The results indicate that the EABC algorithm is a fairly good approximation algorithm for the robust ASSP model. 

 

Table 10  

The number of best solutions out of the optimal performance 

In
st

an
ce

 I
D

 

𝛽 

#𝑏𝑒𝑠𝑡 

In
st

an
ce

 I
D

 

𝛽 

#𝑏𝑒𝑠𝑡 

GLS ABC MABC HABC EABC GLS ABC MABC HABC EABC 

1001 
60 0 0 10 10 9 

3001 
60 0 0 1 1 1 

120 0 0 6 9 3 120 0 0 0 0 0 

1002 
60 0 0 0 0 0 

3002 
60 0 0 0 0 0 

120 0 0 2 2 5 120 0 0 0 0 0 

1003 
60 1 0 0 0 0 

3003 
60 0 0 0 0 3 

120 0 0 0 0 0 120 0 0 1 0 0 

1004 
60 0 0 0 0 0 

3004 
60 0 10 0 0 10 

120 0 0 0 0 0 120 0 0 1 6 6 

1005 
60 0 0 0 0 5 

3005 
60 0 0 0 1 5 

120 0 0 0 0 0 120 1 0 8 6 4 

2001 
60 2 9 10 10 10 

4001 
60 1 0 1 0 1 

120 1 1 1 4 0 120 0 0 0 0 1 

2002 
60 2 0 7 0 0 

4002 
60 0 0 0 0 0 

120 1 0 0 0 0 120 1 0 0 0 1 

2003 
60 0 0 0 0 0 

4003 
60 0 0 0 0 0 

120 8 0 0 0 2 120 0 0 0 0 0 

2004 
60 0 0 0 0 0 

4004 
60 0 0 3 4 7 

120 9 10 4 0 6 120 0 0 1 3 9 

2005 
60 0 0 0 0 0 

4005 
60 0 0 3 4 9 

120 0 0 0 0 0 120 1 0 7 8 5 

Average 1.20 1.00 2.00 1.75 2.00 Average 0.20 0.50 1.30 1.65 3.10 

Bold value: The maximum number of #best across the same instance 

 

In the computational experiment, we evaluated the proposed algorithm using the measurement of 𝑅𝑃𝐼(𝐴𝑅𝐶), LSD intervals at a 

95% confidence level, average CPU and #𝑏𝑒𝑠𝑡. The EABC algorithm was able to obtain a robust solution with 3.40% deviation 

from optimal with a minute of computation time on average. Our results suggested that the proposed algorithm is overall beneficial 

for practical usage and provides close-to-optimal results in a one-hour air traffic situation.  

 

4.4. Discussion on the computational results 

The conclusions are restricted to the setting of the test instances. In accordance with the algorithm design, the enhanced strategies 



and novel algorithmic components contribute to the algorithm efficiency. The constructive heuristic contributes a 2.25% 

improvement on average RC gap by comparing the mean 𝑅𝑃𝐼(𝐴𝑅𝐶) of ABC and MABC algorithms. Regarding the hybridisation 

of GA and MABC algorithm, there is a 0.61% improvement of the mean 𝑅𝑃𝐼(𝐴𝑅𝐶) with extra-computation time significantly. We 

notice that the computation time in GLS and HABC algorithms is costly when crossover operator is applied. In order to simplify 

the computational burden and remain the same searching capability, an objective-guided updating mechanism is introduced in the 

scout bee phase and crossover operator is eliminated. Although there is no statistical different between the HABC and the EABC 

regarding the solution quality, the computation time of the EABC algorithm is 232% improvement than the HABC algorithm.  

 

In general, the proposed EABC algorithm outperforms other meta-heuristic algorithms to achieve better solution quality and 

satisfactory computation time. Particularly, the EABC algorithm yields close-to-optimal solutions with average one minute 

computation time comparing to the benchmarking solutions obtained by an exact method with one hour computational limit. As for 

the test instances with more than 18 flights (𝑛 ≥ 18), exact algorithm is not able to obtain global optimal results within one hour. 

The computational results suggest that exact algorithm would be more preferable when the number of flights is below 12 in two/three 

runways system. Otherwise, the proposed EABC algorithm is recommended for practical usage. The average values of RC gap 

obtained by the EABC algorithm for two and three runways system are 2.98% and 3.40%. Among 24 out of the 40 test instances, 

the EABC algorithm computes the best average RC gap over ten runtimes compared to the results obtained by FCFS policy, GLS 

and variants of ABC algorithms. Therefore, we can conclude that the performance of EABC algorithm surpasses the meta-heuristics 

and commercial MILP solver.   

 

5. Concluding remarks 

This paper investigates the potential of using the min-max regret approach for the mixed-mode parallel runway operation with 

arrival and departure delays using the swarm intelligence-based algorithm. Compared to solely landing or take-off runways, mixed-

mode parallel operation enhances the runway capacity given that the arrival and departure rates per hour in an airport are not equal 

and both operations can be performed for all the runways. The capacity of the runways can be enhanced by allowing landing and 

take-off on the same runway schedule, but the conservatism in handling airborne and airport traffic in such operations should be 

increased, as any accident due to the improper runway usage causes dramatic loss and disruption to the airport management. Arrival 

and departure delays in the aircraft sequencing and scheduling problem are common phenomena in air traffic control and operation. 

Current research still focuses on the reassignment method or ground delay programs to alleviate and partially absorb the effect of 

disrupted scheduling and passenger unease. However, the effect of aggregate delays should not be underestimated with the rising 

air traffic demand. In practice, the arrival/departure time of flights is uncertain and cannot be estimated in advance by a satisfactory 

probability distribution. The delay costs caused by rising air traffic demands includes administration costs for ASSP reassignment, 

the ripple effect on subsequent flight scheduling, the financial cost of delayed management and passenger dissatisfaction. The 

approaching and leaving time of an aircraft may deviate from the scheduled operation time due to bad weather conditions, congested 

terminal airspace and aviation system delays. We believe that enhancing the robustness of a schedule can offset the uncontrollable 

factors and schedule disruption. The Min-max regret approach is a risk-neutral decision, whereby flight scheduling can be performed 

under uncertain environments. Robust ASSP scheduling with the min-max regret criteria is introduced herein to obtain a robust 

schedule that considers the worst-case scenarios. 

 

Regarding the solution procedure of the robust optimisation using the min-max regret approach, the proposed efficient artificial bee 

colony algorithm can be a benefit to ATC to obtain the close-to-optimal schedules within a reasonable computation time for practical 

usage. It is difficult to obtain a solution from large-sized instances by an exact algorithm, and therefore an efficient artificial bee 

colony algorithm is proposed to solve the robust aircraft sequencing and scheduling problem with arrival and departure delays for 



daily operation. The computational results demonstrated the effectiveness of the proposed algorithm by comparison with other meta-

heuristic approaches on generated instances. The proposed algorithm outperformed other meta-heuristic approaches regarding 

objective function and computation time.  

 

Several interesting aspects can be considered for future work. First, the uncertainty environment and the level of resilience of the 

robust model can be extended. For instance, flight cancellation and emergency landing can be investigated to enhance the robustness 

of the model under the extreme weather. Second, the definition of the robust criteria or worst-case scenario can cover other 

stakeholders’ interests. For example, fairness in developing a robust ASSP schedule from the viewpoint of airlines can be considered. 

Third, investigation of other meta-heuristics in robust optimisation can be studied. 

 

  



Appendix A. Mathematical proof 

 

Proof of Proposition 1. To obtain a regret value under the worst-case scenario by the equation of 𝑅𝑒𝑔𝑟𝑒𝑡(𝑋, 𝑠𝜁) = 𝐹(𝑋, 𝑠𝜁) − 𝐹𝑠
∗, 

a feasible solution under the worst-case scenario must satisfy the above two conditions. Denoting that all the aircraft are scheduled 

on runway 𝑟 in a landing/take-off sequence X as 𝑃(𝑋, 𝑟), 𝑟 ∈ 𝑅, the worst-case scenario 𝑠𝜁  can be derived from a scenario 𝑠0 by 

modifying the scheduled operation time of each flight 𝑆𝑇𝑂𝑖
0 under scenario 𝑠𝑜. The regret value is measured as follows:  

 

𝐹
𝑠𝜁
∗ − 𝐹𝑠0

∗ ≤ 𝐹(𝑋𝑠0
∗ , 𝑠𝜁) − 𝐹(𝑋𝑠0

∗ , 𝑠0) ≤ 𝛥 = 𝐹(𝑋, 𝑠𝜁) − 𝐹(𝑋, 𝑠0)          (27) 

 

The scheduled operation time for the flight 𝑆𝑇𝑂𝑖
𝑠0

 scheduled on critical runway ζ are set to be the upper bound operation time 

𝑆𝑇𝑂𝑖  for all 𝑖 ∈ 𝑃(𝑋, 𝜁), 𝜁 ∈ 𝑅, while the scheduled operation time for the flight 𝑆𝑇𝑂𝑖
𝑠0

 scheduled on non-critical runway 𝑟 is 

equal to the corresponding lower bound operation times 𝑆𝑇𝑂𝑖 , 𝑖 ∈ 𝑃(𝑋, 𝑟), 𝑟 ∈ 𝑅. The deviation of the objective value or makespan 

∆ between the worst-case scenario 𝐹(𝑋, 𝑠𝜁) and optimal solution under scenario 𝐹𝑠
∗, 𝑠 ∈ 𝛿 becomes maximal by the transformation 

of scheduled operation time of all the flights on the critical runway 𝑃(𝑋, 𝜁). Hence, the regret value is maximised by manipulating 

the scheduled operation time 𝑆𝑇𝑂𝑖
𝑠  in the solution of the worst-case scenario 𝑋

𝑠𝜁
∗   compared with the optimal solution under 

scenario 𝑋𝑠0
∗  using 𝐹(𝑋, 𝑠𝜁) − 𝐹(𝑋, 𝑠0). □ 

 

Proof of Proposition 2. The maximum regret value must be a positive real number in Equation (20). Assume that there exists a 

runway 𝑟 ∈ 𝑅 , 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(𝑋) ≤ max
𝜁∈𝑅

(𝐶𝜁
𝑠𝜁

− 𝐹
𝑠𝜁
∗ ) . There exists a runway 𝑢 ∈ 𝑅  by contraction such that 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(𝑋) <

max
𝑢∈𝑅

(𝐶𝑢
𝑠𝑢

− 𝐹𝑠𝑢
∗ ). Since 𝐹(𝑋, 𝑠𝑢) ≥  𝐶𝑢

𝑠𝑢
, 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(𝑋) < 𝐹(𝑋, 𝑠𝑢) − 𝐹𝑠𝑢

∗ , the maximum regret value will be less than 0, which 

is not feasible in accordance with the definition of 𝑅𝑒𝑔𝑟𝑒𝑡𝑚𝑎𝑥(𝑋). Therefore, Equation (20) holds. □ 

 

  



Appendix B. Parameter analysis of the EABC algorithm 

 

The ABC algorithm, proposed by (Karaboga, 2005), is a swarm intelligence based on the behaviour of natural honeybee swarms. 

Karaboga and Basturk (2007) compared the ABC algorithm with other meta-heuristics for numerical function optimisation. The 

discrete ABC algorithm with modifications was applied in jobs-shop scheduling, machine scheduling and aircraft landing problems 

(Lin and Ying, 2014; Ng and Lee, 2016a; Pan et al., 2013; Tasgetiren et al., 2011; Zhang et al., 2013). The parameters in the ABC 

algorithm include 𝐶𝑆, 𝑙𝑖𝑚𝑖𝑡 and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟. The parameter tuning process is similar to the process in Akay and Karaboga (2009). 

 

The experiments of parameter analysis were conducted by optimising a schedule 𝐹(𝑋𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑠), and the scheduled operation time 

for all the flights 𝑆𝑇𝑂𝑖𝑟   is equal to the corresponding lower bound operation times 𝑆𝑇𝑂𝑖𝑟  . The computations by the EABC 

algorithm were repeated in ten runtimes to obtain the average 𝐹(𝑋𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑠). The solution gap is calculated by Equation (25). Eight 

large-sized instances were selected in the parameter evaluation for simplicity. 

 

The 𝐶𝑆 parameter controls the size of the population in the ABC algorithm. The 𝐶𝑆 incrementally increased by 5 units until there 

were no significant changes to the solution gap. Fig. 4. presents the computational result by fixing the 𝑙𝑖𝑚𝑖𝑡 as 2 and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 as 

1000 × 𝑚 × 𝑛. After the 𝐶𝑆 reached 40, the improvement of the solution was less significant along with the increase of 𝐶𝑆 by 

calculating the solution gaps for each instance. Therefore, the tuned 𝐶𝑆 parameter was equal to 40 in our experiments. 

 

 

Fig. 4. Effect of colony size parameter 

 

The 𝑙𝑖𝑚𝑖𝑡 parameter restricted the maximum number of unsuccessful updates by neighbourhood searching. A low value in the 

𝑙𝑖𝑚𝑖𝑡 parameter causes an insufficient tolerance of neighbourhood searching, while a large value in the 𝑙𝑖𝑚𝑖𝑡 parameter affects the 

ability of escaping local optima. Therefore, balancing the exploitation and exploration using the 𝑙𝑖𝑚𝑖𝑡 parameter is able to facilitate 

the convergence of the searching. The changing of the 𝑙𝑖𝑚𝑖𝑡 parameter is suggested to be around 𝑆𝑁 × 𝐷𝑖𝑚, where 𝐷𝑖𝑚 is equal 

to 𝑚 × 𝑛 (Akay and Karaboga, 2009). In our experiment, we considered 𝑙𝑖𝑚𝑖𝑡 as 𝛽 × 𝑚 × 𝑛, where 𝛽 is the coefficient of 𝑙𝑖𝑚𝑖𝑡 

parameter and 𝛽 = 0.5, 1, 2, 3, 5, 10 . Fig. 5. indicates that when the 𝑙𝑖𝑚𝑖𝑡  parameter is equal to 2, and the selected instances 

obtained the low solution gap from the optimal. Therefore, the tuned coefficient of 𝑙𝑖𝑚𝑖𝑡  parameter 𝛽  was equal to 2 in our 

experiments. 



 

Fig. 5. Effect of limit parameter 

 

The maximum iteration 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 parameter affects the computation time in the optimisation. Designing an appropriate 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 

parameter provides an efficient convergence process in practical usage. The cycle time is equal to 𝛼 × 𝑚 × 𝑛, where 𝛼 is the 

coefficient of 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 parameter and 𝛼 = 10, 100, 250, 500, 750, 1000, 1250, 1500, 1750, 2000. As shown in Fig.6., the result 

shows that the solution gap has no significant changes after 𝑚𝑎𝑥𝐼𝑡𝑒𝑟  parameter = 1,000. Therefore, the tuned coefficient of 

𝑚𝑎𝑥𝐼𝑡𝑒𝑟 parameter 𝛼 was set to be 1,000. 

 

 

Fig.6. The effect of cycle parameter 

 

In conclusion, the fine-tuned parameters (𝐶𝑆 = 40, 𝑙𝑖𝑚𝑖𝑡 = 2 × 𝑚 × 𝑛, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 1000 × 𝑚 × 𝑛) were obtained by the above 

parameter analysis. 

 

  



Appendix C. Detailed iteration and average computation time 

 

Table 11 

Average iteration and for the instances of two runways’ mixed-mode parallel operation 

In
st

an
ce

 I
D

 

𝛽 

Itr Average CPU (sec) 

GLS ABC MABC HABC EABC GLS ABC MABC HABC EABC 

1001 
60 1.00 2.30 2.20 2.20 2.10 6.04 4.26 4.06 8.40 5.09 

120 1.90 2.80 2.30 2.10 2.40 9.37 5.40 4.22 6.60 3.77 

1002 
60 0.70 0.00 0.30 1.30 0.40 16.76 2.66 3.75 13.45 4.63 

120 1.80 0.70 3.20 3.10 3.50 30.68 5.23 16.30 27.83 24.91 

1003 
60 1.20 0.10 0.40 0.40 0.80 41.74 6.42 11.36 12.39 10.63 

120 2.10 0.00 3.20 3.30 2.40 70.75 6.93 48.86 53.93 24.41 

1004 
60 1.20 0.00 0.20 0.20 0.00 67.45 11.49 10.82 16.31 8.93 

120 2.40 0.00 1.20 2.40 2.20 120.88 11.29 26.07 70.73 39.59 

1005 
60 0.40 0.00 0.00 0.00 0.30 56.88 17.17 11.99 17.55 17.83 

120 2.30 0.00 0.40 0.00 0.10 170.45 15.64 20.42 137.54 15.65 

2001 
60 1.30 2.50 2.30 2.60 2.20 7.02 4.79 4.35 9.38 5.17 

120 3.00 2.80 2.90 2.90 2.10 16.97 5.46 5.66 9.20 4.49 

2002 
60 0.20 0.50 0.00 0.00 0.00 11.28 4.73 2.87 4.68 3.42 

120 2.40 1.90 2.40 3.10 1.20 38.77 10.24 16.62 29.05 11.59 

2003 
60 0.10 0.00 0.10 0.00 0.30 16.98 6.30 8.34 6.90 8.52 

120 1.30 0.00 2.60 2.60 2.00 40.41 10.53 44.42 44.56 27.48 

2004 
60 0.20 0.00 0.10 0.10 0.00 30.67 9.15 12.93 14.05 9.15 

120 0.40 0.00 0.40 1.30 0.50 28.61 11.25 16.59 42.97 17.38 

2005 
60 0.60 0.10 0.10 0.00 0.00 70.45 17.79 15.56 17.60 12.81 

120 3.00 0.10 1.60 3.10 2.30 222.35 17.97 40.24 150.62 56.14 

Average 1.38 0.69 1.30 1.54 1.24 53.73 9.24 16.27 34.69 15.58 

Itr: Iteration 

 

Table 12  

Average iteration and computation time for the instances of three runways’ mixed-mode parallel operation 

In
st

an
ce

 I
D

 

𝛽 

Itr Average CPU (sec) 

GLS ABC MABC HABC EABC GLS ABC MABC HABC EABC 

3001 
60 1.10 3.00 2.80 3.60 2.60 32.89 32.32 18.00 40.17 14.56 

120 1.50 4.20 3.80 3.50 3.00 32.37 36.78 23.29 39.92 16.46 

3002 
60 1.30 0.50 1.10 3.10 1.80 86.30 17.01 23.47 101.51 27.55 

120 2.20 4.20 4.30 5.00 4.40 127.90 83.84 73.92 160.54 63.80 

3003 
60 1.20 0.10 0.50 3.40 0.30 162.10 18.37 29.99 227.71 21.48 

120 2.80 3.50 4.20 4.50 4.40 304.53 154.89 136.56 324.84 124.71 

3004 60 0.60 0.00 0.50 1.40 0.00 154.21 27.42 36.93 171.84 22.06 



120 2.00 0.00 4.70 3.60 3.90 361.79 27.64 253.86 417.25 229.42 

3005 
60 0.60 0.00 4.40 3.90 1.30 249.55 40.90 537.98 768.33 165.63 

120 2.70 0.10 6.40 5.10 4.60 741.68 48.61 806.27 989.57 309.24 

4001 
60 1.60 3.50 2.50 3.50 2.70 40.74 33.88 15.67 40.56 14.34 

120 2.00 4.90 5.20 4.30 4.30 45.39 38.22 31.86 49.12 25.48 

4002 
60 0.30 0.00 0.00 0.00 0.00 158.52 9.64 7.81 14.02 7.01 

120 1.20 0.30 2.20 3.20 1.70 73.49 14.21 41.16 107.83 29.15 

4003 
60 1.40 0.00 0.30 2.30 0.90 193.71 18.06 24.32 183.22 37.47 

120 2.30 1.50 5.80 6.40 6.00 251.88 86.45 194.03 460.31 212.68 

4004 
60 1.20 0.00 2.40 2.40 2.00 230.59 27.37 225.74 297.14 88.55 

120 2.90 0.00 4.40 4.60 4.60 632.91 27.44 255.14 553.03 258.44 

4005 
60 1.90 0.10 3.90 3.40 0.10 548.32 50.90 420.01 681.81 36.70 

120 2.20 0.20 6.10 6.10 4.60 629.59 58.08 638.54 1213.12 248.25 

Average 1.65 1.31 3.28 3.67 2.66 252.92 42.60 189.73 342.09 97.65 

Itr: Iteration 
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