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Abstract—The construction of fuzzy logic systems (FLSs) using 

data-driven techniques has become the most popular modeling 

approach. However, this approach still faces critical challenges, 

including the difficulty in obtaining concise models for 

high-dimensional data and generating accurate fuzzy rules to 

simulate human inference mechanism. To tackle these issues, a 

new FLS modeling framework called data-driven elastic FLS 

(DD-EFLS) is proposed in this paper. The DD-EFLS has two key 

characteristics. First, the fuzzy rules in the rule base can use 

different feature subspaces that are extracted from the original 

high-dimensional space to yield simple and accurate rules in 

feature spaces of lower dimensionality. Second, fuzzy inferences 

from various views are implemented by embedding different 

rules in the corresponding subspaces to imitate human inference 

mechanism. Based on the DD-EFLS framework, an elastic 

Takagi-Sugeno-Kang (TSK) FLS modeling method (ETSK-FLS) 

is proposed to train the elastic TSK FLS using the concise rules 

and a more human-like inference mechanism for modeling tasks 

based on high-dimensional datasets. The characteristics and 

advantages of the proposed framework and the ETSK-FLS 

method are validated experimentally using both synthetic and 

real-world datasets. 

 

Index Terms—Elastic fuzzy logic systems, high-dimensional 

data, concise and interpretable model, TSK fuzzy logic system. 

I. INTRODUCTION 

uzzy logic systems (FLSs) are intelligent models based on 

fuzzy sets and fuzzy logic [1], which have a wide range of 

applications, e.g. pattern recognition, intelligent control, data 

mining and image processing [2-5, 28-41]. Different from 

conventional intelligent models, such as neural networks, 

FLSs can be interpreted easily with rules described in 

linguistic terms. Meanwhile, FLSs also demonstrate strong 

learnability when different data-driven (DD) learning 

techniques are introduced to optimize the parameters of the 

models [49]. 
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The introduction of DD learning techniques has made FLSs 

a very powerful modeling approach for different tasks, e.g. 

time series predictions, medical diagnosis, pattern 

classification and so on. Indeed, data-driven FLS (DD-FLS) 

modeling methods have become the most popular approach 

for constructing FLSs. Many classical DD-FLS construction 

methods have been proposed in the past two decades, 

including Singular Value Decomposition-QR decomposition 

(SVD-QR) method [6], dynamic optimal training method [7], 

support vector learning-based method [8, 46-48], 

self-organizing evolving-based methods [9], hybrid learning 

algorithms based on different mechanisms [10], bio-inspired 

methods and methods based on evolutionary learning [11, 

42-45].  

Although the existing DD-FLSs methods are effective for 

constructing different types of FLSs, they still face common 

challenges. Degeneration of interpretability and/or 

generalizability due to the high dimensionality of the training 

data is one of the issues. When an FLS is constructed using 

classical DD-FLS training methods based on high-dimensional 

data, the fuzzy rules acquired become very complex and 

exceedingly long, which severely deteriorates the 

interpretability of the fuzzy rules due to the tedious linguistic 

descriptions. The decision models thus developed turn out to 

be impractical for real-life applications, e.g. medical 

diagnosis. In order to enhance the conciseness and 

interpretability of FLSs constructed with high-dimensional 

data, DD-FLS training methods based on feature reduction 

have been proposed [13-15, 50-54]. Principle component 

analysis (PCA) is used to capture the prominent components 

from the training data [13]. However, the features extracted by 

PCA lose the physical meaning of the original features and it 

becomes difficult to make sense from the linguistic 

interpretation of the PCA-based FLS. A scalable two-stage 

multi-objective genetic algorithm is proposed for constructing 

more precise FLSs [14]. In the first stage, an evolutionary 

data-driven based learning technique and an inductive 

rule-based learning technique are used at the same time. A 

post-processing process is then followed to perform rule 

selection and scatter-based tuning of the membership 

functions to further refine the trained model. On the other 

hand, a hybrid heuristic approach is integrated with 

integer-programming formulation to develop a new linguistic 

fuzzy rule-based classification system for high-dimensional 

classification problems [15]. In this method, many rules are 

Data-Driven Elastic Fuzzy Logic System 

Modeling: Constructing a Concise System with 

Human-like Inference Mechanism 

Jiangbin Zhang, Zhaohong Deng, IEEE Senior Member, Kup-Sze Choi, IEEE Member, Shitong Wang 

F 

The following publication J. Zhang, Z. Deng, K. Choi and S. Wang, "Data-Driven Elastic Fuzzy Logic System Modeling: Constructing a Concise System 
With Human-Like Inference Mechanism," in IEEE Transactions on Fuzzy Systems, vol. 26, no. 4, pp. 2160-2173, Aug. 2018 is available at  
http://doi.org/10.1109/TFUZZ.2017.2767025.

This is the Pre-Published Version.

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works.

mailto:JiangbinZhang@jiangnan.edu.cn
mailto:dengzhaohong@jiangnan.edu.cn
mailto:wxwangst@yahoo.com.cn


 

 

2 

generated heuristically for each class, which are then selected 

to form a pool of rules via integer-programming formulation. 

Other feature selection based methods have also been adopted 

to develop more compact fuzzy systems [50-54]. For example, 

feature selection and granularity learning have been used to 

generate genetic fuzzy rule-based classification systems [51]. 

Besides interpretability, the generalization performance of 

the trained FLS may also be deteriorated due to the 

high-dimensional data. If the size of the high-dimensional 

datasets is small, the trained models are prone to over-fitting. 

This situation can be further aggravated if noisy features are 

embedded in the data space. To overcome the effect of 

high-dimensional data on generalizability, the structural risk 

minimization technique that is used in support vector machine 

has been introduced for parameter learning in DD-FLS 

construction methods [12, 21]. 

Another issue with most existing DD-FLS construction 

methods is that the FLSs are all developed to generate all the 

fuzzy rules in the same feature space [6-10, 42-45], which 

does not always in line with the operations of human inference 

mechanism. To better simulate the mechanism, elastic feature 

space is more appropriate for characterizing different views. 

The above analyses indicate that constructing FLSs with 

concise and interpretable fuzzy rules remains a challenge. In 

addition, in most existing DD-FLS construction methods, the 

assumption that all rules are generated from the same feature 

space is not necessarily valid and inconsistent with human 

inference mechanism. To this end, a data-driven elastic FLS 

(DD-EFLS) framework is proposed in this study. Based on 

this framework, an elastic TSK-FLS (ETSK-FLS) algorithm is 

developed for the construction of TSK FLS based on 

high-dimensional data. In the ETSK-FLS, soft subspace 

clustering (SSC) technique is first adopted to determine the 

optimal partition of the input space and to obtain important 

feature subsets for different clusters. With the SSC results 

obtained based on the input data of the training dataset, the 

antecedent parameters of the TSK FLS are estimated and fixed 

in different subspaces. The parameter learning of the 

consequents is then transformed to the parameter estimation of 

a linear model in the mapping hidden feature space. Finally, 

L2-norm penalty and structural risk minimization-based 

techniques are used to optimize the consequent parameters.  

The contributions of this study are three folded. First, the 

elastic framework DD-EFLS is proposed for FLS 

construction. When compared with the classical DD-FLS 

framework, it is advantageous in that the FLSs constructed 

under the proposed framework can extract important features 

for different rules from high-dimensional data. Besides, the 

antecedents and consequents in different fuzzy rules can be 

described in the corresponding feature subspaces, which is 

analogous to the inference mechanism of humans, e.g. 

different experts usually make an inference from different 

views for the same problem. 

Second, the ETSK-FLS algorithm, proposed within the 

DD-EFLS framework for TSK FLS construction, adopts fewer 

features to construct the fuzzy rules. Hence, the rules obtained 

are more concise and can be interpreted more easily by simple 

linguistic description. Furthermore, since noisy features can be 

removed effectively by the ETSK-FLS algorithm, the 

robustness of TSK FLS constructed by ETSK-FLS remains 

high even if the original feature space of the high-dimensional 

data contains noisy features. Within the DD-EFLS framework, 

human-like inference mechanism also exhibits in the TSK 

FLS constructed by ETSK-FLS since each fuzzy rule of the 

trained system implements the inference in its individual view. 

Third, the proposed DD-EFLS framework and the 

ETSK-FLS algorithm are validated comprehensively by 

experiments conducted on both synthetic and real-world 

high-dimensional datasets. 

The rest of this paper is organized as follows. The model 

structure of the classical DD-FLS framework is briefly 

described in Section II. The DD-EFLS framework proposed 

for data-driven FLS construction with high-dimensional data 

is presented in Section III. In Section IV, the ETSK-FLS 

algorithm is proposed for the construction of TSK FLS based 

on the DD-EFLS framework. The experimental studies 

conducted to validate the DD-EFLS framework and the 

proposed ETSK-FLS algorism are reported in Section V. 

Finally, conclusions and future work are given in Section VI. 

For clarity and easy reference, the abbreviations used in this 

paper are listed in Table I. 
Table I The abbreviations used in this paper 

Abbreviations Descriptions 

FLS Fuzzy logic system 

ML FLS Mamdani-Larsen fuzzy logic system 

TSK FLS Takagi-Sugeno-Kang fuzzy logic system 

DD-FLS Data-driven fuzzy logic system 

DD-EFLS Data-driven elastic fuzzy logic system 

ETSK-FLS Elastic Takagi-Sugeno-Kang fuzzy logic system 

SSC Soft subspace clustering 

EWKM Entropy weighting k-means 

II. CLASSICAL DD-FLS CONSTRUCTION 

The two major FLSs used in classical DD-FLS construction 

methods are the Mamdani-Larsen fuzzy logic system (ML 

FLS) [16, 17] and the TSK FLS [18, 19]. While having the 

same antecedents (If-parts), the two models differ in the 

consequents (THEN-parts) of the fuzzy rules. As shown in 

Table II, 
k

iA  is a fuzzy subset subscribed by the input 

variable ix  for the kth rule in the antecedents;   is a fuzzy 

conjunction operator and K  is the number of fuzzy rules in 

the rule base. Each rule is premised on the input vector 

1 2( , , , )T

dx x xx and maps the fuzzy sets in the input space 

k dRA  to a fuzzy set in the output space, denoted by 

( , )k

k kB b v  in ML FLS or by a varying fuzzy singleton 

( )kf x  in TSK FLS. For the consequents of ML FLS, 

( , )k

k kB b v  is a fuzzy set with centroid kb  and fuzziness 

index kv , while for TSK FLS, the consequent ( )kf x  

denotes a varying singleton which is a function of the input 

vector x . The fuzzy membership function in the input space 
k dRA  is denoted by ( )k x , which is the firing strength of 

the kth rule. ( )k x  is obtained by taking a fuzzy conjunction 
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of the membership functions of all the fuzzy subsets in the 

antecedents, i.e., 

 
1 1 2 2( ) ( ) ( ) ( )k k k k

d dx x x      x  (1) 

Here, a commonly used conjunction operator is multiplication. 

When this operator is used, ( )k x  can be expressed as 

follows: 

 
1

( ) ( )
d

k k

i i

i

x 


x  (2) 

When multiplication and addition are employed respectively 

as the implication operator and the combination operator, and 

the center of gravity as the defuzzification operator, the output 

of the ML FLS and TS FLS can be presented respectively as 

follows. 
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Compared with conventional intelligent models, classical 

FLSs are distinguished by their interpretability and 

learnability. Since real-world data are more readily available 

nowadays, DD-FLS construction methods have become a 

popular approach. However, its advantages are largely realized 

for low-dimensional data only. When the data dimensionality 

is high, the classical DD-FLS construction methods become 

problematic, as discussed in Section I.

 
Table II Fuzzy rules used in classical DD-FLS models 

Type Fuzzy Rules 

Antecedents (IF-parts) Consequents (THEN-parts) 

ML FLS 

 
IF is is is21 1 2

k k kx x xA A Ad d
   , 1, ,k K  THEN  is  ( , )k k

k ky B b v  

TSK FLS 
 

THEN  is  ( )k ky f x  

Note: All the rules have a common feature space, i.e., inference is implemented from a common view for all fuzzy rules. 

 

Table III Fuzzy rules developed within the DD-EFLS framework 

Type Fuzzy Rules 

Antecedents (IF-parts) Consequents (THEN-parts) 

ML FLS 

 
1 1 2 2IF

k k

k k k k k k

m mx is A x is A x is A    

1 2( , , , )
k

k T

mx x xx , 1, ,k K  

THEN  is  ( , )k k

k ky B b v  

TSK FLS 
 

THEN  is  ( )k k ky f x  

Note: Each rule has its individual feature space. Inference is implemented with fuzzy rules from different views. 

 

III. DD-EFLS FRAMEWORK FOR HIGH-DIMENSIONAL DATA 

In this section, the new DD-EFLS framework is proposed 

for the construction of data-driven FLSs with 

high-dimensional data. Table III shows the structure of the 

fuzzy rules that are developed for the classical FLS models in 

the DD-EFLS framework. 

The differences between DD-FLS and DD-EFLS can be 

seen by comparing Table II with Table III. For the antecedents 

(IF-part), each rule of a classical FLS used with the DD-FLS 

framework is constructed by using all the features of the input 

vector, i.e., 1 2( , , , )T

dx x xx . Thus, all the rules have the 

same input space. However, in the proposed DD-EFLS 

framework, different feature subsets are adopted for different 

rules. For example, the kth rule in the DD-EFLS framework is 

associated with the input vector 1 1( , , , )
k

k k k k T

mx x xx , which 

is a vector containing km  features extracted from the full 

features. While the THEN-part of the ML FLS in the DD-FLS 

framework and the proposed DD-EFLS framework are the 

same, the THEN-part of the TSK FLS in the DD-EFLS is 

distinct from that in the classical DD-FLS framework. 

Different feature sets are adopted as variables in the varying 

singleton functions of the consequents for TSK FLS in the two 

frameworks. 

Remarks: For the classical ML FLS and TSK FLS, where 

the parameters of the model are adjusted based on expert 

knowledge, the use of the fuzzy rules in Table III is a natural 

choice and can be readily realized. However, it is non-trivial 

to use these fuzzy rules in the DD-EFLS construction methods 

due to the difficulty in determining the subspaces for each 

fuzzy rule based on the available training data. When different 

subspaces are considered for different rules, the data-driven 

learning algorithms of the model can become very 

complicated. Hence, the novelty here lies in the use of the 

fuzzy rules in Table III for the DD-EFLS construction 

methods.  

IV. SOFT SUBSPACE CLUSTERING AND L2 NORM 

PENALTY-BASED ELASTIC TSK FLS CONSTRUCTION 

A. The ETSK-FLS 

While the DD-EFLS is a promising framework for 

constructing high-dimensional data-driven FLSs, the 

realization of these types of FLSs is not straightforward. In 

this section, the ETSK-FLS algorithm is proposed for the 

construction of the TSK FLS within the DD-EFLS framework. 

The process is described in the diagram shown in Fig. 1. 

The process contains two main parts. In Part 1, a rule 

generation method based on SSC technique [20, 22] is 

proposed. The main purpose of this part is to acquire 

important features for each rule. For the different rules, 

various feature subsets are adopted to construct the fuzzy sets 
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in the antecedents. The feature subsets used for the varying 

singleton functions of different rules in the consequents are 

determined accordingly. In Part 2, an  -insensitive learning 

strategy based on an L2-norm penalty [21] is used to optimize 

the consequent parameters by introducing a learning technique 

for minimizing the structural risks. These two parts will be 

described in detail in the two subsections below. 

 
Fig. 1 The process of ETSK-FLS construction. 

 

B. SSC-based Feature Extraction and Antecedents Generation 

SSC techniques have attracted increasing attention due to 

their promising performance in high-dimensional data 

clustering [20, 22], where the data can be grouped into 

different clusters and their related subspace, i.e., the important 

feature subsets associated with different clusters. In FLS 

modeling, clustering is widely used as effective space 

partitioning techniques. However, classical clustering 

techniques do not give the importance of the features for each 

fuzzy rule, and therefore not effective for FLS modeling in the 

DD-EFLS framework. On the contrary, SSC not only 

partitions the data into different clusters but also informs the 

importance of the features. These characteristics make SSC a 

very appropriate method for generating the fuzzy rules of the 

FLS in the proposed DD-EFLS framework. 

 

1) Subspace Clustering Algorithm EWKM 

Many SSC algorithms have been proposed, including 

various fuzzy weighting subspace clustering algorithms and 

entropy weighting subspace clustering algorithms [20, 28]. In 

this study, a benchmarking SSC algorithm – the entropy 

weighting K-means clustering algorithm (EWKM) [22] – is 

adopted to generate the initial fuzzy rules of the TSK FLS in 

the DD-EFLS framework. In the EWKM, the following 

objective is used to optimize the partitioning of the data, 

2

1 1 1 1 1

( , , ) ( ) ln
C N D C D

EWKM ij ik jk ik ik ik

i j k i k

J u w x v w w
    

    U V W

1 1 1

. . {0,1}, 1,0 ,0 1, 1.
C N D

ij ij ij ij ik

i j k

s t u u u N w w
  

          

 (5) 

where C , N  and D  are the number of clusters, data and 

features respectively. [ ]ij C Nu U  denotes the hard partition 

matrix, with its element iju  denoting whether the jth data 

belongs to the ith cluster. Note that the column matrix U  

only has one element equal to 1, indicating that each instance 

only belongs to a certain cluster. [ ]ik C Dv V  is the cluster 

center matrix, with element ikv  denoting the kth feature of 

the ith cluster center. [ ]ik C Dw W  is the weight matrix, with 

ikw  denoting the importance of the kth feature in the ith 

cluster. 

Based on the available data and the EWKM clustering 

algorithm, the optimal clustering center matrix *
V , the 

partition matrix *
U  and the feature weight matrix *

W  can 

be obtained. Knowledge of the clustering results can then be 

used to generate the initial fuzzy rules for the TSK FLS in the 

DD-EFLS framework. 

 

2) Extracting Features for Different Rules based on EWKM 

The optimal feature weight matrix *
W  can be used to 

determine the important features for each rule. The row vector 

kw  of *
W  denotes the importance of the features in the 

associated cluster. Once the information of the thk  cluster is 

employed to generate the thk  fuzzy rule, kw  can be used 

to identify the important features in this rule, where features 

with large weight value should be selected. If the full feature 

space is expressed as 1 2( , , , )T d

dx x x R x , the important 

features that have been selected for the thk  fuzzy rule can be 

expressed as follows: 

1 2( , , , ) 1,2 , ,
k

k k k

mx x x k K  (6) 

where km  is the number of features extracted from the full 

feature space for the thk  fuzzy rule. In practical 

applications, we can use different feature selection criteria to 

determine the final feature subsets for different rules based on 
*

W . Two feasible approaches are given below: 

 (a) Fix the number of important features. Given a number 
m , where 1 m D  , the m  features with the largest 

weight values in kw  are selected for the thk  fuzzy rule. In 

this strategy, equal number of features are selected from all the 

fuzzy rules, i.e., 1 2 Km m m m    . Note that the feature 

subsets of different rules may differ greatly. 

 (b) Fix the threshold of the weight. For example, we can set 

a threshold D
  , where  (0 )D    is an adjustable 

parameter. The features with the weights in kw  that are 

larger than   are taken as the important features for the 

thk fuzzy rule. In this strategy, the numbers of features 

selected for different rules may differ.  

For the consequents of TSK FLS in the DD-EFLS 

PART1: 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

PART2: 

 

SSC-based Feature Extraction and Rule Generation: 

 

2) Extract features for different rules based on the 

EWKM clustering results. 

1) Cluster the input dataset using the subspace 

clustering algorithm EWKM. 

3) Generate fuzzy sets in the antecedent based on 

the EWKM clustering results. 

 -insensitive Loss Function and L2-norm 

Penalty-based Consequent Parameter Learning. 
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framework, the corresponding input variable can be 

determined according to the selected features of each rule. For 

example, if 1=( , , )
k

k k k T

mx xx  denotes the feature vector 

selected for the thk  fuzzy rule, the corresponding input 

vector of the fuzzy singleton function ( )k kf x  in the 

consequents can be determined. In this case, if a linear 

function is adopted, the corresponding fuzzy singleton 

function ( )k kf x  can be expressed as 

0 1 1( ) , , , 1, 2, , .
k k

k k k k k k k

m mf p p x p x k K    x  (7) 

 

3) Generating Fuzzy Sets in the Antecedent based on EWKM 

The optimal clustering center matrix *
V  and partition 

matrix *
U  can be used to determine the antecedent 

parameters of the fuzzy membership function in a way similar 

to that in other clustering-based FLS construction methods 

[12, 27]. The details are given below. Suppose the commonly 

used Gaussian membership function is employed as the fuzzy 

membership function, the fuzzy membership function of the 

thi  fuzzy set k
iA  in the thk  fuzzy rule can be expressed as 

2( )
( ) exp[ ]

2
k
i

k k
k i i
i kA

i

x c
x



 
  (8) 

where the parameters k
ic  and k

i  can be estimated by 

applying the clustering results of the EWKM clustering 

algorithm to the input data of the training dataset, i.e.,  

1 1

N N
k k

i kj ji kj

j j

c u x u
 

  , 1, , ,ki m  (9) 

2

1 1

( )
N N

k k k

i kj ji i kj

j j

h u x c u
 

   . (10) 

Here, 
k

jix  denotes the thi feature in the vector 

,1 ,=( , , )
k

k k k T

j j j mx xx ; 
k

jx  contains km  important features 

associated with the thk fuzzy rule, and these features are 

extracted from the original input instance jx  in the original 

training dataset; kju  denotes whether the jth input instance 

jx  belongs to the kth cluster; h  in (10) is a scale parameter 

that can be adjusted manually or determined using the 

cross-validation strategy to find the optimal value [12]. 

 

C.  -insensitive Loss Function and L2-norm Penalty-based 

Consequent Parameter Learning 

Once the antecedent parameters of the fuzzy rules in the 

DD-FLS framework are determined, the next step is to 

optimize the consequent parameters of the trained TSK FLS. 

This can be achieved using the  -insensitive loss function 

and L2-norm penalty-based learning strategy. 

If the fuzzy sets in the antecedents are fixed, the firing 

strength of each rule can be calculated. When multiplication is 

used as the conjunction operator, the firing strength of the 

thk  rule can be obtained as 

1

( ) ( )
k

k
i

m

k k k
iA

i

x 



x . (11) 

Furthermore, if additive combination operator is used, the 

output of the TSK FLS in the DD-EFLS framework can be 

expressed as 

1 1
1

( )
( ) ( ) ( ).

( )

K Kk k
k k k k k k

K k k
k k

k

y f f





 
 



  


x
x x x

x

, (12) 

where 

1

( ) ( ) ( )

K
k k k k k k

k

  
 



 x x x . (13) 

The output of the TSK FLS in (12) can be further 

transformed into the linear form as follows,  

 

T

ETSK FS g gy  p x , (14) 

where gp  is the combined vector of the consequent 

parameters and gx  is the mapping vector derived with the 

fuzzy inference rules from the original input instance x . 

These two vectors gx  and gp  can be constructed as 

follows,  

1 2(1, ) (1, , , , ) , 1,2, ,
k

k k T k k k T
e mx x x k K  x x ; (15) 

( ) 1,2, ,k k k k
e k K x x x ; (16) 

1 2(( ) ,( ) , ,( ) )T T K T T
g x x x x ; (17) 

0 1( , , , ) , 1,2, ,
k

k k k k T
mp p p k K p ; (18) 

1 2(( ) ,( ) , ,( ) )T T K T T
g p p p p . (19) 

Many objective criteria are available to optimize the 

consequent parameters of the ETSK FLS, e.g. the least square 

method [23] and methods based on the  -insensitive loss 

function [21, 24]. In this work, the consequent parameter gp  

is optimized based on the  -insensitive loss function and the 

L2-norm penalty-based method. This learning strategy has 

been shown to be particularly effective [12, 21]. 

Given a scalar ig  and a vector 1 2( , , , )T

dg g gg , the 

definition of the  -insensitive loss function can be expressed 

as 

,
| |

0,

i i

i

i

g g
g

g


 



 
 


, (20) 

1

| | | |
d

i

i

g 


g . (21) 

where   is a positive constant. 

Given a training dataset { , }train i iD y x ,
d

i Rx , iy R , 

1,2, ,i N , the corresponding optimization criterion of the 

TSK FLS in (12), based on the  -insensitive loss function, is 

defined as 

- ,

1 1

min | | | |
g

N N
T

ETSK FLS i i g gi i

i i

E y y y 
 

    
P

p x . (22) 

In general, the inequalities 
T

g gi iy  p x  and 
T

i g giy  p x  
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are not satisfied for all training data. By introducing the slack 

variables 0
i

 , 0

i

  and the L2-norm penalty terms, 

the optimization can also be written as  

2 2

, ,
1

min (( ) ( ) )
g i i

N

i i

i

E  
 

 



 
p ξ ξ

, 

.

T

i g gi i

T

g gi i i

y
s t i

y

 

 





   


  

p x

p x
. (23) 

By introducing the regularization term and the penalty term of 

the insensitive parameter  , as in some existing L2-norm 

penalty-based methods like L2-SVR [25], the optimization 

objective can be further expressed as  

2 2

, , ,
1

1 1 2 1
min ( , , , ) . . (( ) ( ) )

2g

N
T

g i i g g

j

L
N

   
  

   



   
p ξ ξ

p ξ ξ p p

.

T

i g gi i

T

g gi i i

y
s t i

y

 

 





   


  

p x

p x
. (24) 

In (24),   is a positive constant used to balance the 

complexity of the regression model and the error tolerance. 

However, solving this optimization problem is non-trivial. A 

commonly used strategy is to transform it into the dual 

problem as follows (The derivation is given in Appendix 1 of 

the Supplementary Materials section). 

2

, 1 1 1

2

1 1 1

max  ( )( ) ( )
2

( )
2

N N N
T

i i j j igi gj
i j i

N N N

i ii i i
i i i

N

N
y y


    


  

 

    

  

 

  

      

        

λ λ

x x

 

1

s.t. ( ) 1, 0, 0 .
N

i i i i
i

i   
   



      (25) 

In (25), the solution variables are the Lagrangian multipliers. 

According to the Karush-Kuhn-Tucker (KKT) conditions, the 

relationship between the optimal solutions of the primal 

problem in (24) and the dual problem in (25) can be expressed 

as follows. 

1

2
( )

N

g i i gi

i

 


 



 p x , (26) 

i iN   , (27) 

i iN   , (28) 

2 2

1 1

1 1

( ) (( ) ( ) )
2

1
( )( ) .

N N

i i gi i i

i i

N N
T

i i j j gi gj

i j

N
    

   


   

 

   

 

   

  

 



x

x x

 (29) 

Once the solution of (25) is obtained, the optimal consequent 

parameters of the TSK FLS in the DD-EFLS framework can 

be determined using (26). 

 

D. The ETSK-FLS Algorithm 

With the results obtained from sections IV-B and IV-C, the 

construction of the TSK FLS in the DD-EFLS framework 

based on SSC and  -insensitive loss-based ETSK-FLS 

algorithm is described as follows. 

 

Algorithm of ETSK-FLS 

Stage 1: The construction of the antecedents of the TSK FLS based on SSC 

Step1： Initialize the number of fuzzy rules K  and the width in the 

Gaussian membership function h . Set the weight threshold   

or the number of selected features 
1 2 Km m m m    . Set 

the training dataset { , }train i iD y x , d

i Rx ,
iy R , 

1, ,i N . 

Step2： Implement EWKM clustering on the input dataset { }ix . Divide 

{ }ix  into K  clusters and obtain the partition matrix U . Set 

the cluster center matrix V  and the feature weight matrix W .  

Step3： Match each cluster to a fuzzy rule. Determine the important 

features for each rule using W  and   (or m ).  

Step4： Estimate the parameters of the fuzzy membership functions with 
(9) and (10). 

Stage 2: The learning of consequents of the TSK FLS based on 
 -insensitive loss and the structural risk minimization strategy 

Step5： Set the regularization parameter   in (24) and (25). 

Step6： Solve the optimal consequent parameters using (25) and (26). 

Stage 3：The integrated stage of the TSK FLS 

Step7： The final TSK FLS in the DD-EFLS framework is constructed 

with the antecedent and consequent parameters obtained in 

Stage 1 and Stage 2. 

 

E. Theoretical Analysis of the ETSK-FLS Algorithm 

1) Model Complexity 

The complexity of the TSK FLS constructed by the 

ETSK-TLS algorithm is determined by the total number of 

parameters involved in the final decision model. If km  

features are selected in the k th rule and the Gaussian 

membership function is adopted, the numbers of parameters in 

the antecedents and consequents are 2 km  and 1km   

respectively. Therefore, the complexity of the final decision 

model is  
1

3 1
K

kk
m


 , where K  is the number of fuzzy 

rules. For a TSK FLS that is trained by the classical DD-FLS 

algorithms, the model complexity is  3 1d K , where d  is 

the number of features. For high-dimensional data, km d , 

and therefore    
1

3 1 3 1
K

kk
m d K


   , i.e., the model 

complexity of the TSK FLS trained by the proposed 

ETSK-FLS algorithm is less than that trained by the classical 

DD-FLS constructions algorithms. 

 

2) Computational Time Complexity 

The ETSK-FLS algorithm contains two main parts: the 

acquisition of the antecedent parameters of the fuzzy rules by 

using the EWKM subspace clustering algorithm, and the 

learning of the consequent parameters based on the classical 
 -insensitive criterion and L2-norm penalty terms. For the 

first part, the computational complexity of the EWKM 

algorithm is ( )O TNCd  where T , N , C  and d  are the 

number of iterations, data, clusters and features respectively. 

For the second part, the training of the consequent parameters 

is a QP optimization problem. Since the time complexity of a 

typical QP solution is 2( )O N , the total time complexity of 

http://www.baidu.com/link?url=KBZgyrU7KMagLL8CBPx9j80GRlW6360gR40gflMn4q_JutnUGGIm6YUFEG_zLU4Nk51U_6WIDUwY3WYFIH86TaDta7CAFKMOwO_ju4l4UgyrMPvSFrSmlNHK2vew7D6I
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the proposed ETSK-FLS algorithm is 2( )O TNCd N . 

However, if sophisticated QP algorithms such as the working 

set based algorithm are adopted, the time complexity can be 

reduced to between ( )O N  and 2( )O N , depending on the 

algorithm used. 

The time complexity of the proposed ETSK-FLS algorithm 

is competitive with that of existing TSK FLS construction 

methods. Take the algorithm that employs PCA and 

L2-TSK-FLS, i.e., PCA+L2-TSK-FLS, as an example. It uses 

PCA to extract the key features and then L2-TSK-FLS 

algorithm to construct the TSK FLS based on the new data 

with the extracted features. The computational time 

complexity of the PCA+L2-TSK-FLS algorithm contains three 

components: (i) the time complexity of PCA, which is 

typically 3( )O N ; (ii) the time complexity of fuzzy c-means 

(FCM) clustering, which is ( )O TNC  where T , N  and C  

are the number of iterations, data and clusters respectively; 

and (iii) the time complexity of consequents training of the 

fuzzy rules based on the  -insensitive loss function and 

L2-norm penalty, which is the same as that of the proposed 

ETSK-FLS algorithm. Therefore, the time complexity of the 

PCA+L2-TSK-FLS algorithm is 3 2( )O N TNC N  . The 

experiments conducted to evaluate the computational time 

complexity of the proposed ETSK-FLS in comparison with 

the PCA+L2-TSK-FLS will be discussed in Section V-E. 

 

V EXPERIMENTS 

In this section, the performance of the proposed ETSK-FLS 

algorithm is evaluated and compared comprehensively with 

the related methods. The methods adopted for comparison and 

the experimental settings are first described, followed by the 

analysis and discussion of their performance on four 

high-dimensional datasets, involving one synthetic dataset and 

three real-world datasets. 

 
A. Methods and Settings  

1) Methods Adopted for Performance Comparison 

In the experiments, the L2-norm penalty-based 

L2-TSK-FLS [12], the L1-penalty-based L1-TSK-FLS (IQP) 

[21], and the L1-TSK-FLS (LSSLI) [21] were compared with 

the proposed ETSK-FLS. Meanwhile, PCA was combined 

respectively with these three methods to reduce the dimension 

of the high-dimensional data. Thus, the proposed ETSK-FLS 

was compared with a total of six methods. A brief description 

of these methods is given in Table S1 in the Supplementary 

Materials section. 

 

2) Parameter Setting 

For the algorithms adopted in the experiments, FCM 

clustering was used to partition the input space, except for the 

proposed ETSK-FLS which used the subspace clustering 

algorithm EWKM instead for the input space partitioning and 

feature extraction. The fuzzy index of FCM was set to 2. The 

five-fold cross-validation strategy was adopted to obtain the 

optimal hyper parameters within a given search grid for each 

algorithm. The ranges of the search grids of various hyper 

parameters in the algorithms are given in Table S2 in the 

Supplementary Materials section. 

 

3) Performance Indices 

The classification accuracy accJ , precision preJ  and recall 

recJ  are used to evaluate the generalization performance of 

the classification tasks. Besides, the per-class accuracy  
Number of test samples classified correctly in a certain class

Number of test samples in a certain class
perclasJ    (30) 

is also used in some experiments. 

In particular, another index compJ  is adopted to evaluate the 

model complexity of the final decision model, which is 

defined as 

Jcomp = total number of parameters involved in the final decision model. (31) 

 

4) Other Settings 

In the experiments, all the features of the original input data 

were normalized to the range [-1, 1]. 

 

B. Synthetic Dataset 

A synthetic dataset was prepared to evaluate the 

performance of the proposed ETSK-FLS algorithm 

effectively. It had three characteristics: (1) a large number of 

features existed in the dataset; (2) the important features 

varied in different data subsets; and (3) noisy features 

embedded in the full feature space. The synthetic dataset thus 

generated contained 300 instances with 150 features. The 

instances belonged to three different classes and each class 

contained 100 instances. Notably, different classes were 

assigned with important features in the corresponding 

subspaces. The important features for different classes are 

listed in Table IV. Random Gaussian noise was introduced 

into all the other features. The noisy features usually reduce 

the performance of the classical DD-FLS construction 

algorithms. 
Table IV The important features of each class in the synthetic dataset 

Class labels  Index number of important features 

Class 1 2,10,17,30,41,50,88,100,114,120 
Class 2 10,11,30,31,50,51,80,81,100,101 

Class 3 6,10,50,63,80,94,100,109,120,123 
In the classification task, the class labels were used as the 

output in the model training procedure. Once the TSK FLSs of 

the different methods were constructed, for a test instance, the 

label nearest to the FLS output was taken as the predicted 

label. The details of the procedure are explained as follows. In 

the training procedure, the labels of the examples (e.g. ‘1’, 

‘2’…, ‘5’) were directly used as the outputs for the training of 

the TSK FLS regression model. Once the TSK FLS was 

trained, given an input vector of a test example, the output of 

the TSK FLS would be a real value, say, ‘2.11’. Then, among 

all the labels, the label ‘2’ is nearest to the output and would 

be taken as the label of the test example. The optimal 

performance achieved by the proposed method with the 

five-fold cross-validation strategy and that by the six methods 

under comparison are reported in Table V. From these results, 
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the following observations can be obtained. 

(1) It can be seen from Table V that, in terms of 

classification accuracy and model complexity, the proposed 

ETSK-FLS method showed distinctive advantages over the 

other six methods. In particular, since the final decision model 

obtained by the ETSK-FLS algorithm had lower model 

complexity and produced more concise rules, the fuzzy rules 

obtained could be interpreted more easily using linguistic 

expressions. Also, fast decision making was expected with this 

concise model. 

(2) For L2-TSK-F LS,  -TSK-FLS(IQP), and 

 -TSK-FLS(LSSLI), since all features were regardless used 

to construct the fuzzy rules, the fuzzy inference was adversely 

affected by the noisy features and the classification 

performance was reduced. The rules also became too tedious 

to be readily explained using linguistic terms. Even though the 

PCA feature extraction technique was used, many features 

were still required by the three conventional methods to attain 

the optimal classification accuracy. For example, the 

PCA+L2-TSK-FLS method used 86 new features to construct 

a TSK FLS that could yield optimal classification result. It is 

noted that although fewer features could be extracted using 

PCA, the new features were indeed a combination of the 

original features, which may not have a clear physical 

meaning and makes it difficult to give a reasonable linguistic 

explanation of the fuzzy rules. 

(3) For the proposed ETSK-FLS, various features of the 

different fuzzy rules were extracted. The rule base of the TSK 

FLS obtained by ETSK-FLS thus resembled an expert base, 

where each rule corresponded to an expert and the associated 

feature subset corresponded to the view of the expert. 

Fig. 2 shows the weight distribution of each cluster obtained 

by the EWKM clustering algorithm when the optimal 

classification accuracy was attained. It can be seen from this 

figure that the features of the three clusters were different, i.e., 

the corresponding fuzzy rules were generated in different 

subspaces and implemented by fuzzy inference from different 

views. Based on the weight distributions and the optimal 

threshold parameter obtained, i.e. 1   as reported in Table 

V, the extracted features of the three fuzzy rules, namely R1, 

R2 and R3, are listed in Table VI. By comparing Table IV and 

Table VI, it is clear that the most important features embedded 

in different data subsets were effectively detected. 

Referring to the antecedent and consequent parameters of 

the TSK FLS that were finally constructed with the 

ETSK-FLS and  -TSK-FLS (IQP) methods, as shown 

respectively in Table S3 and Table S4 in the Supplementary 

Materials section, we can see that the TSK FLS trained by 

ETSK-FLS with high-dimensional dataset was concise, 

yielding a system that could be described easily and clearly 

with linguistic terms. The final decision model constructed by 

the  -TSK-FLS (IQP) was much more complicated which 

severely deteriorated the interpretability of the model. 

The classification performance of the ETSK-FLS algorithm 

with different number of rules is given in Table VII. From the 

results, we can see that the number of clusters, i.e., the number 

of rules, was a key parameter for the proposed ETSK-FLS 

algorithm. In particular, a large number of clusters would 

result in fuzzy model with exceedingly many fuzzy rules. In 

this case, the model may be overfitted when trained by the 

training data and the generalizability of the model would be 

degenerated for the test data. Hence, an appropriate value is 

necessary for this parameter, which can be obtained with some 

existing strategies. In this study, this parameter was 

considered as a hyper parameter and the commonly used 

cross-validation strategy was adopted to determine the 

appropriate value within a predefined search grid, as shown in 

Table S2 in the Supplementary Materials section. 
 

Table V Performance of the seven TSK FLS construction methods on synthetic dataset 

Method Optimal Parameters Number of  

features 

adopted 

Classification Indices (%) (MeanSD)* Model Complexity 

accJ  preJ   resJ   perclasJ  compJ  

Class 1 Class 2 Class 3 

L2-TSK-FLS 
3k  , 0.01h  ,

0.01   

150 for each 

rule 

72.00 

±6.17 

75.00 

±12.24 

78.73 

±4.03 

75.00 

±12.25 

67.00 

±5.70 

74.00 

±6.52 
3(2150+151)= 

1353 

 -TSK-FLS 

(IQP) 
3k  , 100h  , 1   

150 for each 

rule 

70.67 

±6.41 

72.00 

±12.55 

76.31 

±3.39 

72.00 

±12.55 

61.00 

±6.52 

79.00 

±6.52 
3(2150+151)= 

1353 

 -TSK-FLS 

(LSSLI) 
5k  , 0.01h  , 10   

150 for each 

rule 

73.67 

±5.45 

72.00 

±8.37 

83.69 

±4.87 

72.00 

±8.37 

76.00 

±4.18 

73.00 

±10.95 
5(2150+151)= 

2255 

PCA+ 

L2-TSK-FLS 

5k  , 0.01h  ,

0.01  , 0.85   
86 for each rule 

70.00 

±6.35 

72.00 

±12.04 

79.85 

±6.40 

72.00 

±12.04 

70.00 

±6.12 

68.00 

±5.70 

15086+ 

5(286+87)=14195 

PCA+ 
 -TSK-FLS 

(IQP) 

3k  , 0.01h  , 10  ,

0.85   
86 for each rule 

45.00 

±3.91 

53.00 

±15.65 

50.08 

±6.70 

53.00 

±15.65 

24.00 

±10.84 

58.00 

±11.51 

15086+ 

3(286+87)=13677 

PCA+ 
 -TSK-FLS 

(LSSLI) 

5k  , 0.01h  , 10  , 

0.85   
86 for each rule 

69.67 

±8.03 

66.00 

±15.17 

86.00 

±9.02 

66.00 

±15.17 

78.00 

±7.58 

65.00 

±7.07 

15086+ 

5(286+87)=14195 

ETSK-FLS 
3k  , 1  , 0.01h  ,

0.01  , 10r   
(11+10+12)# 

99.67 

±0.75 

100.00 

±0 

97.23 

±4.09 

100.00 

±0 

100.00 

±0 

99.00 

±2.24 

(211+12)+(210+11)

+(212+13)=102 

*Mean and SD of the classification accuracies obtained using five-fold cross-validation strategy.  

#The three rules R1, R2 and R2 contained on average 13, 9 and 12 features respectively. 
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Fig 2 The distribution of weights in the weight matrix *

W , obtained by EWKM clustering on the input data of the synthetic dataset in a certain run, 

when the optimal classification accuracy was attained by the ETSK-FLS. 

 

Table VI Features extracted for each rule by the ETSK-FLS algorithm in 

a certain run when the best classification accuracy was attained. 

Rule 
1R  2R  3R  

Index number of 

extracted features 

2,10,17,30,41,50,
84,88,100,114,12

0 

10,11,30,31,
50,51,80,81,

100,101 

6,10,35,50,63,80
,94,96,100,109,1

20,123 

 
Table VII Classification performance of the ETSK-FLS on synthetic data 

with different number of rules 

Number of 

rules 
2 3 4 5 6 7 

Classification 

Accuracy (%) 

99.20 

±2.24 

99.67 
±0.75 

96.32 

±2.79 

95.00 

±2.04 

93.67 

±1.39 

92.67 

±3.02 

Number of 

rules 
8 9 10 11 25 32 

Classification 

Accuracy (%) 

91.67 

±2.64 

91.00 

±3.03 

90.08 

±1.18 

88.24 

±4.31 

85.67 

±9.02 

81.63 

±9.65 

 

C. Real-world Datasets 

This section presents the performance of the proposed 

ETSK-FLS algorithm on three high-dimensional real-world 

datasets obtained from the UCI database [26]. The details of 

the datasets are listed in Table VIII. The optimal performance 

attained by the seven methods with the five-fold 

cross-validation strategy is given in Tables IX-XI. 
Table VIII The real-world classification datasets adopted 

Dataset Size of 

data 

Number of 

features 

Number of 

classes 

LSVT-Voice-Rehabilitation 126 310 3 

Sonar 208 60 2 

Musk 476 167 2 

Smartphone 5744 561 6 

 

 

 

Table IX Performance on the dataset LSVT-Voice-Rehabilitation 

Method Optimal Parameters Number of  

features adopted 

Classification Indices (%) 

(MeanSD)* 

Model Complexity 

 

accJ  preJ   resJ   compJ  

L2-TSK-FLS 3k  , 100h  , 0.1   310 for each rule 
83.83 

±9.01 

85.00 

±16.29 

74.25 

±14.38 
3(2x310+311)=2793 

 -TSK-FLS 

(IQP) 
7k  , 0.001h  , 0.0001   310 for each rule 

76.33 

±3.98 

82.50 

±20.91 

60.90 

±4.57 
7(2310+311)=6517 

 -TSK-FLS 

(LSSLI) 
3k  , 0.01h  , 100   310 for each rule 

86.83 

±14.09 

85.25 

±20.92 

74.57 

±13.87 
3(2310+311)=2793 

PCA+ 

L2-TSK-FLS 

3k  , 10h  , 0.01  , 

1   
125 for each rule 

77.67 

±12.64 

85.00 

±16.30 

64.41 

±15.14 
310125+3(2125+126)=39878 

PCA+ 
 -TSK-FLS 

(IQP) 

3k  , 100h  , 1  , 1   125 for each rule 
74.00 
±9.12 

75.00 
±15.30 

55.73 
±11.40 

310125+3 (2125+126)=39878 

PCA+ 
 -TSK-FLS 

(LSSLI) 

7k  , 0.1h  , 100  , 1   125 for each rule 
87.83 

±12.26 

83.53 

±14.19 

92.70 

±8.59 
310125+7(2125+126)=41382 

ETSK-FLS 
3k  , 0.99  , 0.01h  ,

0.1  , 100r   
(140+199+161)# 

84.83 

±3.60 

84.37 

±11.96 

72.22 

±13.39 
(2140+141)+(2199+200)+(2161+162)

=1502 

*Mean and SD of the classification accuracies obtained using five-fold cross-validation strategy.  

#The three rules contained on average 140, 199 and 161 features respectively. 

 

 

The following conclusions can be drawn from the 

experimental results. First, the proposed ETSK-FLS was 

advantageous over the classical methods in model 

complexity. The fuzzy rules of the TSK FLS constructed by 
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the ETSK-FLS employed fewer features. Different features 

were also extracted for different rules. Thus, the linguistic 

interpretation of the resulted TSK FLS was much more 

concise. The mechanism adopted for making inference was 

similar to the human inference mechanism, where each rule 

implemented the inference from an individual view, 

resembling the way that the knowledge of individual 

experts is sought in solving a problem. On the other hand, 

the results also indicated clearly that the classification 

performance of the proposed ETSK-FLS on real-world 

datasets was highly competitive with the existing 

state-of-the-art TSK construction methods. 

Referring to the classification performance on the dataset 

Sonar, when the optimal accuracy was attained, the weight 

distribution of each cluster obtained by the EWKM 

clustering algorithm is shown in Fig. 3. We can see that the 

two clusters had different features, indicating that the fuzzy 

rules associated with these clusters were generated in 

different subspaces and the fuzzy inference was made from 

different views. Table XII shows the features extracted for 

the two fuzzy rules obtained based on the weight 

distributions in Fig. 3 and the optimal threshold parameter 

1.2  . 

The final TSK FLS constructed by ETSK-FS with the 

dataset Sonar, described with its antecedent and consequent 

parameters, is shown in Table XIII. The trained model was 

very concise and the linguistic description of the TSK FLS 

thus obtained was clear. 

 

 

Table X Classification performance on the dataset Sonar 

Method Optimal Parameters Number of  

features adopted 

Classification Indices (%) 

(MeanSD)* 
Model Complexity 

accJ  preJ   resJ   compJ  

L2-TSK-FLS 11k  , 0.1h  , 0.01   60 for each rule 
82.22 

±6.98 

88.30 

±8.22 

80.30 

±5.53 
11(260+61)=1991 

 -TSK-FLS 

(IQP) 
32k  , 0.1h  , 0.01   60 for each rule 

86.12 

±6.53 

85.69 

±10.00 

87.97 

±4.82 
32(260+61)=5792 

 -TSK-FLS 

(LSSLI) 
32k  , 0.1h  , 0.1   60 for each rule 

89.01 

±5.33 

88.37 

±9.14 

91.20 

±6.59 
32(260+61)=5792 

PCA+ 

L2-TSK-FLS 

3k  , 10h  , 0.01  , 

0.85   
15 for each rule 

78.74 

±5.62 

82.01 

±9.53 

79.81 

±6.82 
6015+3(215+16) =938 

PCA+ 

 -TSK-FLS 

(IQP) 

3k  , 0.01h  , 1  , 0.85   15 for each rule 
79.36 
±2.90 

75.65 
±14.62 

80.64 
±4.10 

6015+3(215+16)=938 

PCA+ 

 -TSK-FLS 

(LSSLI) 

3k  , 0.01h  , 1  , 0.85   15 for each rule 
81.30 

±3.89 

78.42 

±5.67 

81.57 

±4.53 
6015+3(215+16) =938 

ETSK-FLS 2k  , 1.2  , 0.01h  , 0.01  , 10r   (19+19)# 
84.39 

±5.61 

82.92 

±7.2 

81.13 

±4.8 
(219+20)+(219+20)=116 

*Mean and SD of the classification accuracies obtained using five-fold cross-validation strategy.  

+The two rules contained on average 19 and 19 features respectively. 

 

Table XI Classification performance on the dataset Musk 
Method Optimal Parameters Number of  

features adopted 

Classification Accuracy (%) 

(MeanSD)* 

Model Complexity 

accJ  preJ   resJ   compJ  

L2-TSK-FLS 3k  , 0.01h  , 0.1   166 for each rule 
70.18 

±6.27 

74.09 

±12.80 

75.34 

±9.72 
3(2166+167)=1497 

 -TSK-FLS 

(IQP) 
3k  , 10h  , 0.1   166 for each rule 

72.60 

±9.79 

70.44 

±18.85 

79.95 

±9.31 
3(2166+167)=1497 

 -TSK-FLS 

(LSSLI) 
3k  , 10h  , 1   166 for each rule 

74.69 

±16.16 

68.53 

±27.55 

84.13 

±11.34 
3(2150+151)=1353 

PCA+ 

L2-TSK-FLS 
3k  , 10h  , 0.1  , 0.85   13 for each rule 

55.48 

±1.24 

85.11 

±9.72 

64.87 

±4.05 
16613+3(213+14) 

=2276 

PCA+ 
 -TSK-FLS 

(IQP) 

3k  , 1h  , 0.1  , 0.85   13 for each rule 
71.49 

±8.73 

75.89 

±14.31 

73.19 

±12.17 

16613+ 

3(213+14)=2276 

PCA+ 
 -TSK-FLS 

(LSSLI) 

9k  , 0.01h  , 10  , 0.85   13 for each rule 
71.49 
±8.73 

74.36 
±13.17 

72.14 
±11.70 

16613+ 

3(213+14)=2276 

ETSK-FLS 3k  , 0.8  , 100h  , 0.1  , 10r   (126+89+84)# 
81.49 
±2.56 

85.28 
±15.0 

83.31 
±1.76 

(2126+127)+(289+90)+

(284+85)=900 

*Mean and SD of the classification accuracies obtained using five-fold cross-validation strategy. 

#The three rules contained on average 126, 89 and 84 features respectively. 
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Table XII Classification performance on the dataset Smartphone 

Method Optimal Parameters Number of  

features adopted 

Classification Accuracy (%) 

(MeanSD)* 

Model Complexity 

accJ  preJ   resJ   compJ  

L2-TSK-FLS 
3k  , 0.01h  , 100   

561 for each rule 
18.15 

±0.19 

49.89 

±5.11 

13.09 

±0.85 
3(5612+562)=5052 

 -TSK-FLS 

(IQP) 

3k  , 0.1h  , 10   
561 for each rule 

63.92 
±2.29 

61.89 
±4.80 

81.22 
±2.44 

3(5612+562)=5052 

 -TSK-FLS 

(LSSLI) 

3k  , 0.01h  , 10   
561 for each rule 

42.96 
±0.73 

41.23 
±13.19 

56.54 
±8.25 

3(5612+562)=5052 

PCA+ 

L2-TSK-FLS 
3k  , 100h  , 10  , 0.9   41 for each rule 

14.35 

±1.24 

27.65 

±4.53 

7.81 

±1.07 
56141+3(412+42)= 

23373 

PCA+ 

 -TSK-FLS 

(IQP) 

3k  , 0.001h  , 100  , 0.95   
76 for each rule 

59.55 
±2.48 

49.65 
±3.82 

84.04 
±4.64 

56176+3(762+77)= 

43323 

PCA+ 

 -TSK-FLS 

(LSSLI) 

3k  , 0.1h  , 10  , 0.95   
76 for each rule 

54.51 

±1.49 

47.27 

±2.80 

85.86 

±5.06 
56176+3(762+77)= 

43323 

ETSK-FLS 
3k  , 1.05  , 0.01h  , 0.01  ,

100r   (263+250+363) # 
57.15 

±2.60 

45.73 

±6.20 

89.32 

±5.07 

(2632+264)+(250 

2+251)+(3632+364)= 
2631 

*Mean and SD of the classification accuracies obtained using five-fold cross-validation strategy.  

#The three rules contained on average 263, 250 and 363 features respectively. 
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Fig 3 The distribution of weights in the weight matrix *

W , obtained by EWKM clustering on the input data of the dataset Sonar in a certain run, when 

the optimal classification accuracy was attained by ETSK-FLS. 

 
Table XII Features extracted for the two rules by the ETSK-FLS in a certain run when the best classification accuracy 

 was attained for the dataset Sonar. 

Rule Features extracted for each rule 

R1 3, 4, 6, 40, 41, 44, 51, 59, 60 

R2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 46, 47, 50, 51, 52, 55, 56, 57, 58, 59, 60 

 

D. Real-world Datasets with Noisy Features Embedded 

Here, noisy features were introduced to the two real-world 

high-dimensional datasets LSVT-Voice-Rehabilitation and 

Sonar to evaluate the robustness of the proposed ETSK-FLS. 

The experimental procedure was as follows. First, 50% of the 

features were randomly selected, to which Gaussian white 

noise with a power of 50 dBW were introduced. The same 

experimental procedure described in Section V-C was then 

implemented on the noisy data. Details of the results are 

reported in Tables S5 and S6 in the Supplementary Materials 

section. The results show that the proposed ETSK-FLS was 

advantageous over the other methods in both classification 

accuracy and model complexity.  

Furthermore, the classification performance on the two 

datasets LSVT-Voice-Rehabilitation and Sonar, with and 

without noisy features embedded, are compared in Table XIV. 

It is obvious that the proposed ETSK-FLS was very robust 

against the noisy features, while the performance of the other 

TSK-FLS construction methods was sensitive to and easily 

affected by the noisy features. This can be explained by the 

fact that in the ETSK-FLS, instead of using all features 

regardless, each rule only makes use of a certain feature set for 

fuzzy inference, which greatly reduces the impact of the noisy 

features. Besides, different feature subsets were also used in 

different rules to improve the adaptability. 
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E. Running Time 

The running time of the experiments discussed in Section 

V-B and V-C was shown in Table S7 in the Supplementary 

Materials section. The results indicate that the computational 

efficiency of the proposed ETSK-FLS was comparable to that 

of the classical TSK FLS construction algorithms. 
 

F. Performance of Regression 

Although the experimental studies above focus on 

classification, the proposed method can be applied for 

regression as well. In this subsection, four real-world 

regression datasets were adopted for performance evaluation. 

The performance index in (32), commonly used for regression, 

was employed for the analysis [12], 
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
, (32) 

where N is the number of test data; iy  is the output for the 

ith test input; iy   is the fuzzy model output for the ith test 

input and 
1

N

i
i

y y N


 . The smaller the value of J, the 

better the generalization performance. 

The results of the regression tasks are given in Tables 

S8-S12 in the Supplementary Materials section, which are 

similar to the results obtained from the experimental analyses 

of classification, i.e., while the regression performance of the 

proposed method was comparable or better than that of the 

existing classical fuzzy system modeling methods, the fuzzy 

system generated was more concise and the elastic fuzzy rules 

could be interpreted more easily, attributed to the human-like 

inference mechanism. 

 

Table XIII The rule base generated when ETSK-FLS achieved the optimal generalization performance on the dataset Sonar. 

TSK FLS rule
kR ： 

1 1 1 2 2 2 2IF ( , ) ( , ) ( , )
k k k k

k k k k k k k k k k k

m m m mx is c x is A c x is A c     ,   1 2( , , , )
k

k k k k T

mx x xx  

0 1 1THEN ( )
k k

kk k k k k k k

m my p p x p xf    x  

Rule Antecedent parameters 

(The parameters of the Gaussian membership function) 

Consequent parameters 

(The parameters of the linear function) 

R1 
1c =[-0.4264 -0.5099 -0.1832 -0.2655 -0.3056 -0.3979 -0.492343127490040 -0.2238 -0.5311] 

1δ =[0.1504 0.1314 0.1507 0.0947 0.1191 0.0931 0.1463 0.1490 0.1396] 

1p =[0.6104, 0.1676, -0.5445, -0.1015, 

0.3178, 0.0104, -0.6078, -0.4403, -0.2194, 

0.0995] 

R2 
2c =[-0.6941 -0.7615 -0.7865 -0.8303 -0.7077 -0.5521 -0.4199 -0.5141 -0.5587 -0.5079 -0.6257 

-0.6043 -0.5531 -0.7248 -0.6802 -0.6777 -0.6524 -0.6352 -0.7303 -0.6525 -0.7727] 

2δ =[0.0390 0.0247 0.0231 0.0152 0.0381 0.0695 0.0711 0.0613 0.0575 0.0725 0.0704 0.0652 

0.0779 0.0286 0.0439 0.0576 0.0502 0.0654 0.0366 0.0627 0.0260] 

2p =[0.2610, 0.0819, -0.1149, 0.0243, 0.0165, 

-0.1213, -0.2593, 0.1322, -0.0592, -0.5609, 

-1.1407, -0.0955, -0.4334, 0.5765, 0.1179, 

0.0976, -0.1634, -0.0333, 0.3158, -0.2730, 

0.1561, -0.1174] 

 

Table XIV Performance on two real-world datasets with noisy features embedded 

Dataset 

Method and Classification Accuracy (MeanSD)* 

L2-TSK 

-FLS 

 -TSK 

-FLS(IQP) 

 -TSK 

-FLS(LSSLI) 

PCA+ 

L2-TSK-FLS 

PCA+ 

 -TSK-FLS 

(IQP) 

PCA+ 

 -TSK-FLS 

(LSSLI) 

ETSK-FLS 

LSVT+ 
83.83 

±9.01 

76.33 

±3.98 

86.83 

±14.09 

77.67 

±12.64 

74.00 

±9.12 

87.83 

±12.26 

84.83 

±3.60 

LSVT (noisy)# 73.00 

±6.91 

70.67 

±6.60 

72.33 

±6.38 

64.67 

±6.79 

63.17 

±9.25 

67.83 

±6.96 

82.50 

±3.48 

Sonar 82.22 
±6.98 

86.12 
±6.53 

89.01 
±5.33 

78.74 
±5.62 

79.36 
±2.90 

81.30 
±3.89 

84.39 
±5.61 

Sonar (noisy)# 53.38 

±0.62 

70.22 

±9.67 

71.16 

±8.17 

59.1 

±3.67 

59.00 

±2.90 

59.52 

±5.80 

81.05 

±4.42 
+LSVT denotes the dataset LSVT-Voice-Rehabilitation.  
#Noisy features were embedded in the dataset.  

*Mean and SD of the classification accuracies obtained using five-fold cross-validation strategy. 

 

VI CONCLUSIONS 

In this paper, the DD-EFLS framework is proposed to 

overcome the degeneration of generalizability and 

interpretability of the classical DD-FLS construction 

methods due to high-dimensional data. With this 

framework, the ETSK-FLS algorithm is proposed for the 

construction of TSK FLS, where SSC technique was 

introduced to extract important features for each fuzzy rule. 

Compared with classical methods, the proposed ETSK-FLS 

has two distinctive advantages. First, the fuzzy rules are 

generated using only a few features extracted from the input 

data, and are robust against noisy features. Second, 

human-like inference mechanism is realized with each 

fuzzy rule only implementing the inference using its 

individual feature subspace. 

Although the performance of the proposed ETSK-FLS is 

promising, further issues remain to be addressed. For 

example, the TSK FLS model is only considered in this 
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study for developing the FLS construction algorithm in the 

DD-EFLS framework. Algorithms for other types of FLS 

models, particularly the ML FLS, will be a topic for future 

research. In addition, type-2 FLS construction algorithms 

under the proposed DD-EFLS framework are also worth 

further investigation [27-29]. 

Another interesting work is to develop elastic data-driven 

fuzzy systems by integrating subspace extraction technique 

with clustering methods that can automatically find the 

appropriate number of clusters. If the appropriate number of 

fuzzy rules can be determined more efficiently for fuzzy 

modeling, the learning time can be reduced to a certain 

extent. 

In this study, the SSC and  -insensitive loss function 

are adopted to realize the ETSK-FLS in the DD-EFLS 

framework. Research on better strategies that can be 

applied to develop elastic fuzzy systems in the DD-EFLS 

framework will be a significant future work. Furthermore, 

the scalability of the elastic fuzzy systems in the DD-EFLS 

framework is also important due to the increasing size of 

large-scale data. 
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