
1

A Path Marginal Cost Approximation Algorithm for

System Optimal Quasi-Dynamic Traffic Assignment

Abstract

This study introduces an efficient path-based System-Optimal Quasi-Dynamic Traffic

Assignment (SOQDTA) framework that benefits from the computational efficiency of static

traffic assignment models, yet captures the realism of traffic flow, with less complexity and

computational burden, compared to dynamic traffic assignment models.

To solve the proposed SOQDTA problem, we have developed a novel Path Marginal Cost

(PMC) approximation algorithm, based on a newly-proposed Quasi-Dynamic Network

Loading (QDNL) procedure (Bliemer et al., 2014), that incorporates a first order node model,

and thus produces realistic path travel times consistent with queuing theory, and similar to

dynamic network loading models, but at a lower computational cost. The model considers

capacity constrained static flows, residual vertical/point queues and no spillback.

The proposed SOQDTA model is applied to the test network of Sioux Falls and it is

demonstrated that the model results in system optimal traffic flow patterns that improve total

system travel times compared to the user equilibrium solution. In the case study experiment,

the convergence of the algorithm is demonstrated using a relative gap function. A sensitivity

analysis is performed to realize the impact of perturbation size on the solution quality, and a

discussion is presented on the selection of perturbation size for general network applications.

Keywords: Quasi-Dynamic Traffic Assignment; System Optimal Traffic Assignment; Path

Marginal Cost Approximation

The following publication Tajtehranifard, H., Bhaskar, A., Nassir, N., Haque, M. M., & Chung, E. (2018). A path marginal cost approximation
algorithm for system optimal quasi-dynamic traffic assignment. Transportation Research Part C: Emerging Technologies, 88, 91-106 is available
at https://dx.doi.org/10.1016/j.trc.2018.01.002

This is the Pre-Published Version.

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

2

Introduction

System optimal (SO) traffic assignment models belong to the class of transportation network

modelling problems and have various applications in traffic management. These applications

range from recurrent traffic management practices, such as congestion pricing, and traffic

control/information systems, to non-recurrent traffic management, such as Incident Traffic

Management (ITM) and evacuation scenarios. With recent advancements in information and

communication technologies, vehicle automation (Autonomous Vehicles) and

vehicle/infrastructure connectivity (Connected Vehicles), possibilities emerge for

communicating and enforcing advanced traffic routing directions for efficient utilization of

existing traffic network capacities. Therefore, the task of finding optimal traffic directions

becomes more essential, as the required technologies will be available to facilitate the

implementation and enforcement of optimal directions, regardless of possible complexities.

The research reported in this paper studies and present a method for finding efficient traffic

directions within reasonable computational times, to be applied to real-time decision making

scenarios.

SO and user optimal (user equilibrium -- UE) traffic assignment problems, have been widely

studied under both static and dynamic traffic flow assumptions. Despite the growing interest

in the development and application of dynamic traffic assignment (DTA) models, static

traffic assignment (STA) models are still widely used, specifically in strategic transportation

planning, due to higher efficiency and scalability, and lower computational complexity. The

computational efficiency of a traffic assignment model becomes even more crucial in real-

time decision making applications such as emergency evacuations and incident management,

compared to long-term strategic transportation planning and operational applications.

In traffic assignment, whether static or dynamic, the assumptions regarding the propagation

of flow in the network (network loading) highly affect the model outputs. Therefore, besides

computational efficiency, the ability of an assignment model in capturing the realism of

traffic flow propagation plays a critical role in determining the quality of solution outputs.

In classic STA models, no link capacity constraints are presumed and the impact of high link

flows are only captured through increased link travel times. Therefore, there have been many

efforts in the literature to improve the precision and realism of STA models to generate more

accurate traffic flow patterns and travel times, whilst taking advantage of their high

computational tractability. Research along this path has led to a class of assignment models

where link capacity constraints and/or residual queues are incorporated into static assignment.

In the literature, capacity constrained static models with residual queues are referred to as

Quasi-Dynamic Traffic Assignment (QDTA) models.

A recent study by Bliemer et al. (2014) has introduced an efficient path-based quasi-dynamic

traffic assignment approach to alleviate the existing issues with the current capacity

constrained static models. Their model considers static but capacity-constrained flows with

residual vertical/point queues and no queue spillback. They have incorporated a first order

node model in their quasi-dynamic network loading (QDNL) model, to compute the actual

turn flows at nodes as well as residual point queues upstream of bottlenecks which can

improve the accuracy of path travel time estimations. They used their proposed QDNL

method to solve a path-based stochastic UE problem for general network settings. Such

QDNL procedures, which generate reliable traffic flow patterns at a relatively low

computational cost, can also be utilized to define and efficiently solve a path-based SO

Quasi-Dynamic Traffic Assignment (SOQDTA) problem. A SOQDTA problem can generate

3

practical solutions at a lower computational cost than SO Dynamic Traffic Assignment

(SODTA) problems.

As explained in the literature review section, one further advantage of a path-based SOQDTA

problem is that it can be solved using the conventional and widely-studied algorithms

developed for UE traffic assignment. However, using these methods to solve a path-based

SOQDTA problem requires the computation of path marginal cost (PMC), which is defined

as the derivative of the total system travel time with respect to the flow on each path. In STA,

PMC is simply computed by taking the derivative from the total travel time function with

respect to flow, however in DTA and QDTA, travel time is calculated through implicit

functions and exact PMC computation is very challenging. A variety of studies have

introduced algorithms to approximate PMC for SODTA (Ghali & Smith, 1995; Peeta &

Mahmassani, 1995; Qian et al., 2012; Shen et al., 2007), however to the best of our

knowledge, there exist no similar examples of PMC approximation for QDTA.

The contribution of the present study is twofold. First, we have developed a generic

SOQDTA framework which embeds a state-of-the-art QDNL model and can benefit a variety

of traffic management applications. It needs to be highlighted that the QDNL model

considers capacity constrained static flows and residual vertical queues without queue

spillback. It also does not directly model signalized intersections. Second, we have developed

a PMC approximation algorithm that can efficiently solve this path-based SOQDTA problem

for real-sized transportation networks, with realistic traffic flow assumptions and a low

computational cost. The exactness of the proposed method is not guaranteed because the

PMC values are approximate; however, the case study experiment demonstrates considerable

improvement of the objective value as compared to the UE solution (do nothing scenario).

For the case study experiment, we have applied the model to the medium-sized test network

of Sioux Falls and demonstrated improvements in the total system travel time.

The following section elaborates on the existing literature in the context of this study. Next,

the proposed methodology and algorithms are explained and lastly, the model is applied to

the Sioux Falls network and the results are discussed and concluded.

Literature Review

The SOQDTA problem is founded on multiple components, including a quasi-dynamic

network loading model, a first-order node model, and a path marginal cost approximation

algorithm for solving the system optimal traffic assignment problem. Therefore, the literature

review section covers these components.

In an effort to reduce the computational complexity of the dynamic network loading problem,

Bliemer et al. (2014) introduced an efficient Quasi-Dynamic Network Loading (QDNL)

model. Their model incorporates a comprehensive first order node model to properly

constrain traffic flows, predict the average number of vehicles in the queue and locate queues

upstream of bottlenecks. This model considers static traffic demand with residual vertical

queues and no spillback, however produces traffic flow patterns and travel times similar to

dynamic traffic assignment model by considering realistic supply-demand interactions. The

QDNL model represents traffic flow characteristics in the network via link reduction factors,

defined as the ratio of link out-flow to link demand, and uses these reduction factors to

compute average path travel times consistent with queuing theory. Their model proposes a

reasonable balance between static and dynamic traffic assignment, which benefits from the

computational efficiency of static traffic assignment models, while sufficiently capturing the

4

spatial interactions of traffic flows. The present study has therefore been founded on this

QDNL model, which will be explicitly explained in the methodology section.

Node models are an essential component of DNL models, and go hand-in-hand with link

models to determine the propagation of flow through the nodes and on the links. Despite the

importance of node models in capturing the realism of traffic flow propagation, there have

been shortcomings in the existing node models. Tampère et al. (2011) have studied the

necessary requirements that a comprehensive node model should meet and have accordingly

proposed a generic first order node model which meets all of the essential criteria to generate

realistic and oriented capacity-proportional distribution of the available downstream supply

over the incoming links of a node. This proposed node model is transferable to multi-

commodity flow and can be used for any node configuration including simple merges or

diverges, general nodes with multiple merges and diverges, etc. These characteristics make

the Tampère et al. (2011) node model suitable for applications in traffic assignment and

network loading models. This node model has been implemented in the QDNL algorithm by

Bliemer et al. (2014) and has, as well, been used in the system optimal traffic assignment

model presented in this paper.

The system optimal traffic assignment problem seeks to find an optimal traffic flow pattern

for the network, such that the total network cost (travel time) is minimized. Potential

applications include traffic management, congestion pricing, evacuation planning, and work

zone and incident traffic management. A large body of research in the past decade that deals

with the system optimal traffic assignment problems concentrates on single-destination

system optimal dynamic traffic assignment (SD-SODTA). The SD-SODTA problem seeks to

optimize the traffic routing from multiple sources (origins) to a single sink (destination), with

dynamic flows and travel times. “Single-destination” optimal traffic routing formulations

have been accepted and widely applied to evacuation optimization problems in the past

decade (Chiu et al., 2007; Nassir, 2013; Shen, 2009; Zheng, 2009). Modeling evacuation in a

single-destination network facilitates the use of many efficient solution algorithms that have

been developed for network flow problems, such as Minimum Cost Dynamic Flow (Nassir,

Zheng, et al., 2014), Earliest Arrival Flow (Zheng et al., 2013), Quickest Flow (Fleischer &

Skutella, 2007; Fleischer, 2001) for SD-SODTA problems such as Exit Flow Function

models (Carey, 1987; Merchant & Nemhauser, 1978a; Merchant & Nemhauser, 1978b; Nie,

2011), or SD-SODTA formulations modeled with the Cell Transmission Model (CTM)

(Ukkusuri et al., 2009; Ziliaskopoulos, 2000). The underlying assumption of a single-

destination optimal evacuation routing is that all vehicles in the network are routed from the

nodes inside the threat area to safe locations outside of the threat area. With this assumption,

a general network could be transformed into a single-destination network by virtually

connecting all of the safe locations to a dummy super-sink and assigning that super-sink as

the single destination of the network. The single-destination characteristic allows for efficient

graph theoretic and linear programming algorithms for computationally efficient solutions,

however, the disadvantage is that it only applied to single-destination networks.

From the perspective of formulating a system optimal traffic assignment problem, there exist

two main approaches, namely link-based and path-based. The link-based formulations seek to

optimize turn flows from upstream links to alternative downstream links, whereas the path-

based formulations seek to optimize the distribution of origin-destination (O-D) demands

among predefined path alternatives. Since the path sets sizes grow combinatorial with respect

to number of network links, a link-based formulation leads to smaller number of decision

variables and is thus more tractable. There are computationally efficient Linear Programming

(LP) formulations that have been implemented to model and solve the link-based SO

problem. However, in the originally proposed link-based formulations, the constraint sets

5

were mainly non-linear (Merchant & Nemhauser, 1978a; Merchant & Nemhauser, 1978b)

and the modifications to make the constraints linear (Carey, 1987; Ziliaskopoulos, 2000) may

lead to issues such as flow holding on links, especially in many-to-many networks. The flow

holding issue in a system optimal dynamic traffic assignment model can happen when, in a

solution, despite positive remaining capacity in the downstream, vehicles are being held at an

upstream link or a junction, to accommodate other path flows that are possibly more critical

to the system objective. Although the objective value may be superior in a flow holding

solution, such a solution is considered impractical and undesirable, because it is usually

assumed that vehicles do not selflessly hold or slow down to favor the system objective. In

order to eliminate such instances additional constraints should be incorporated. In addition,

more detailed path flow constraints (such as the first-in-first-out rule – FIFO) are difficult to

represent in link-based formulations. On the other hand, path-based formulations can easily

capture these constraints, but at the expense of higher computational burden.

A path-based SO traffic assignment problem can be converted into a Variational Inequality

and be solved using conventional traffic assignment solution finding algorithms. The key to

this solution is the estimation of PMC. PMC is defined as the changes in total system travel

time due a single unit of flow perturbation on each individual path. In the SO static

assignment problem, at the optimum solution, the PMC on all used paths connecting a given

O-D pair are equal to or less than the PMC on any unused paths (Peeta & Mahmassani,

1995). Similarly for SODTA, Peeta and Mahmassani (1995) proved that, at the optimum

solution, the time-dependent PMC on all used paths connecting a given O-D pair are equal to

or less than the time-dependent PMC on any unused paths. As a result, assigning vehicles to

paths with the minimum PMC between each O-D pair will lead to a SODTA solution.

In typical static traffic assignment problems where travel times are obtained through explicit

volume-delay functions (e.g. the BPR function), marginal costs are simply calculated by

taking the derivative of the link travel time functions with respect to flow. However, in more

advanced dynamic and quasi-dynamic traffic assignment problems that use network loading

procedures, path travel times are computed implicitly and thus the estimation of PMC is not a

trivial task. Therefore, designing efficient algorithms to approximate the PMC -without

enumerating and loading one perturbed solution for every path- can be very valuable in

solving SO traffic assignment problems. Examples of such studies in the context of path-

based SODTA are as follows.

Peeta and Mahmassani (1995) utilized PMC to obtain the SODTA solution for general

networks. They obtained PMC by summing up link marginal costs (obtained as the derivative

of the time-dependent link performance function) along the paths, with the consideration of

link traversal times. This method was later shown to overestimate the PMC (Shen et al.,

2007). Ghali and Smith (1995) also estimated an SODTA solution using link marginal costs

in general networks. Shen et al. (2007) estimated PMC by tracing the changes in link

cumulative flow arrival and departure curves along the paths, for the special case of networks

without diverges. Later, Qian et al. (2012) used a similar approach and generalized the model

to include diverges as well.

In the context of Quasi-Dynamic Traffic Assignment (QDTA) however, little has been done

to design efficient PMC estimation algorithms to be used in System Optimal Quasi-Dynamic

Traffic Assignment (SOQDTA). Despite the advantages of the aforementioned studies, there

still exists the need for efficient system optimal traffic assignment models that can be solved

for many-to-many real-size networks, fast enough to suit real-time applications. The above

review of the existing literature highlights the possibility to take advantage of, and build upon

the existing state-of-the-art QDNL models to develop a computationally efficient system

6

optimal traffic assignment framework which can assist many traffic management

applications.

Given the computational and practical benefits of the newly-proposed QDNL algorithm by

Bliemer et al. (2014), we propose a PMC approximation algorithm consistent with this

QDNL algorithm, to be used for SOQDTA. The resultant path-based SOQDTA problem can

be solved for many-to-many networks without issues such as flow-holding.

Methodology

In this section, we further discuss the SOQDTA problem, its objective function and

constraints, as well as the embedded components, namely the node model, the QDNL

module, the PMC estimation algorithm and the assignment procedure. We have adopted the

QDNL model by Bliemer et al. (2014), which incorporates the node model by Tampère et al.

(2011). Accordingly, we have proposed a PMC approximation algorithm to align with these

founding models.

The following path-based SOQDTA problem seeks to find the optimal path flow values 𝑓𝑝

that lead to minimized total system travel time, subject to demand and traffic flow

constraints:

min TC(𝐟) =∑ ∑ 𝑓𝑝 ∗ 𝐶𝑝(𝐟)𝑝∈𝑃𝑟𝑠(𝑟,𝑠) (1)

s.t. ∑ 𝑓
𝑝𝑝∈𝑃𝑟𝑠 = 𝐷𝑟𝑠 , ∀(𝑟, 𝑠)

 𝑓
𝑝
≥ 0 , ∀𝑝 ∈ 𝑃𝑟𝑠, ∀(𝑟, 𝑠)

where 𝐶𝑝(𝐟) represents the average travel time on path p, with f being the vector of network

path flows pattern consisting of path flows for all O–D pair paths, 𝐷𝑟𝑠 represents the total

demand between the O-D pair (r,s), where r belongs to R, the set of all origin nodes, and s

belongs to S the set of all destination nodes. In the above equations, 𝑃𝑟𝑠 represents the set of

all paths between each O-D pair (r,s).

According to Wardrop’s second principle (Wardrop, 1952), in path-based SO traffic

assignment solutions, the PMC on all the used paths among each O-D pair are equal, and less

than or equal to the PMC of any unused paths between the same O-D. Thus the SO

assignment solution can generally be obtained by assigning vehicles to paths with the least

marginal cost (least PMC) between each O-D. The problem of finding the paths with the least

PMC has been referred to as the least marginal cost problem in the literature (Peeta &

Mahmassani, 1995; Qian et al., 2012; Shen et al., 2007).

By definition, 𝑃𝑀𝐶𝑝(𝐟) is equal to the derivate of total system travel time with respect to

flow on path p and under flow pattern f. In dynamic traffic assignment models, 𝑃𝑀𝐶𝑝(𝐟) is

conventionally computed by adding one unit of flow on path p (unit perturbation on path p)

and measuring the total change in the system travel time. However, the perturbation size does

not necessarily have to be unit, and in this paper we have tested different values of

perturbation size in a sensitivity analysis which is conducted in the case study experiment.

The total system travel time value 𝑇𝐶(𝐟) can be re-written as the summation of total path

travel times (travel time experienced by all vehicles on any path) over all the paths of the

network, regardless of the O-D pairs, as:

𝑇𝐶(𝐟) = ∑ 𝑇𝐶𝑝𝑖
|𝑃|

𝑖=1 = ∑ 𝑓𝑝𝑖 ∗ 𝐶𝑝𝑖(𝐟)
|𝑃|
𝑖=1 (2)

7

where P =⋃ 𝑃𝑟𝑠(𝑟,𝑠) indicates the set of all network paths.

Having equation (2) the gradient vector of 𝑇𝐶(𝐟) or the vector of PMC(f) can be computed

as:

𝑷𝑴𝑪(𝐟) =
𝜕𝑇𝐶(𝐟)

𝜕𝐟
 =

[

𝜕𝑇𝐶𝑝1
𝜕𝑓𝑝1

𝜕𝑇𝐶𝑝1
𝜕𝑓𝑝2

.
.
.

𝜕𝑇𝐶𝑝1
𝜕𝑓𝑝|𝑃|

𝜕𝑇𝐶𝑝2
𝜕𝑓𝑝1

 …

𝜕𝑇𝐶𝑝2
𝜕𝑓𝑝2

…
.
.
.

𝜕𝑇𝐶𝑝2
𝜕𝑓𝑝|𝑃|

…

𝜕𝑇𝐶𝑝|𝑃|

𝜕𝑓𝑝1

𝜕𝑇𝐶𝑝|𝑃|

𝜕𝑓𝑝2.
.
.

𝜕𝑇𝐶𝑝|𝑃|

𝜕𝑓𝑝|𝑃|]

.

[

1
1
1
.
.
.
.
.
1]

 =

[

𝑃𝑀𝐶𝑝1(𝐟)

𝑃𝑀𝐶𝑝2(𝐟)
.
.
.
.
.

𝑃𝑀𝐶𝑝|𝑃|(𝐟)]

 (3)

Any perturbation of flow on each path 𝑝𝑖 will affect the total system travel time in two ways,

one being the effect on the travel time of vehicles on the same path 𝑝𝑖, and the other being the

effect on the vehicles on the other paths that interact with path 𝑝𝑖. The impact of perturbation

of path 𝑝𝑖 on the same path is referred to as internality and is represented by 𝐼𝑝𝑖(𝐟) =
𝜕𝑇𝐶𝑝𝑖

𝜕𝑓𝑝𝑖
.The total impact of the perturbation of path 𝑝𝑖 on all other paths, is referred to as

externality and is represented by 𝐸𝑝𝑖(𝐟) = ∑
𝜕𝑇𝐶𝑝𝑗

𝜕𝑓𝑝𝑖
𝑝𝑗∈𝑃,𝑗≠𝑖 . The summation of each paths’

internality and externality return the path’s marginal cost, as in equation (3).

The 𝑃𝑀𝐶𝑝𝑖(𝐟) of any path 𝑝𝑖, can be written as follows:

𝑃𝑀𝐶𝑝𝑖(𝐟) =
𝜕𝑇𝐶𝑝𝑖
𝜕𝑓𝑝𝑖

+ ∑
𝜕𝑇𝐶𝑝𝑗

𝜕𝑓𝑝𝑖
𝑝𝑗∈𝑃,𝑗≠𝑖 = (𝑓𝑝𝑖 ∗

𝜕𝐶𝑝𝑖(𝐟)

𝜕𝑓𝑝𝑖
 + 𝐶𝑝𝑖(𝐟))⏟

𝐼𝑝𝑖
(𝐟)

+ (∑
𝜕𝐶𝑝𝑗(𝐟)

𝜕𝑓𝑝𝑖
 ∗ 𝑓𝑝𝑗 𝑝𝑗∈𝑃,𝑗≠𝑖)

⏟
𝐸𝑝𝑖

(𝐟)

 (4)

Computation of 𝑃𝑀𝐶𝑝𝑖(𝐟) using the equation (4) requires the computation of path travel

times (𝐶𝑝𝑖(𝐟)) and partial derivatives of path travel times with respect to path flows (
𝜕𝐶𝑝𝑗(𝐟)

𝜕𝑓𝑖
).

These values need to be defined according to the underlying assumptions of the QDNL

algorithm and are introduced at length in the following subsections.

The framework in Figure 1 demonstrates the overall procedure for generating a SOQDTA

solution and specifies how the different elements of QDNL, the node model and the PMC

estimation are incorporated in this procedure. Initially, in the network and demand

specification step, the link lengths and maximum speeds, the O-D demands and time horizon

T are input to the problem. The network is considered to be a directed graph G(N,A), where N

and A denote the set of nodes and links respectively. Link capacities are also denoted by

ɵ𝑎, ∀𝑎 ∈ 𝐴. Next, a set of feasible paths is generated for every non-zero demand O-D pair

using a path set generation algorithm. The Path-Size Penalty Algorithm (PSPA) is used here

(Nassir, Ziebarth, et al., 2014) to generate the set of reasonable path alternatives, but not

necessarily in an increasing order of travel times (or distances). The PSPA generates the set

of path alternatives that are reasonable (in terms of travel time) and sufficiently independent.

We generate a maximum of 10 alternative paths for every OD pair, as a fixed a-priori set.

Ideally, path set generation can be repeated after the network loading step at every iteration of

the algorithm so that new relevant paths are discovered at every iteration. However, we have

used an a-priori set of reasonable and independent paths to simplify the computations.

8

The SOQDTA module uses the method of successive averages (MSA) to assign the O-D

demands to paths such that minimal total system travel time is achieved. The MSA, simple

but effective, has been widely used in traffic assignment problems (Sheffi & Powell, 1982). It

starts with a feasible solution in the solution space, (all-or-nothing assignment of the O-D

demand to an initially shortest path alternative) and then revises this solution by shifting

proportions of the demand to the paths with the current least cost (least PMC here). At each

iteration of the MSA, the least marginal cost problem is solved for every O-D pair and a new

assignment flow pattern is generated and loaded onto the network, and repeated until

convergence is reached. For completeness, the MSA algorithm used in this study is explained

in Appendix A.

We will first present an overview of the two adopted founding models and then elaborate on

our proposed PMC approximation algorithm.

Figure 1- The Overall SOQDTA Methodological Framework

9

 The QDNL model and The First-Order Node Model

The QDNL procedure takes the path flows 𝑓𝑝 (generated by the assignment module) as input

and computes the link flows and turn flows as output. This QDNL model incorporates a first

order node model that computes link reduction factors 𝛼𝑎
𝑏𝑎𝑠𝑖𝑐 for all links, as the ratio of the

link actual out-flow to the link in-flow (link demand).

All links with reduction factors smaller than one are considered congested because of a

downstream bottleneck. Reduction factors are then applied to the path flows to compute link

and turn flows. In order to guarantee the FIFO requirement, only a unique value of 𝛼𝑎
𝑏𝑎𝑠𝑖𝑐 is

associated with each link a to all its out-going turn directions. In other words, for a given link

a incoming to node n or 𝑎 ∈ 𝐴𝑛
𝑖𝑛, 𝛼𝑎−𝑏

𝑏𝑎𝑠𝑖𝑐 = 𝛼𝑎
𝑏𝑎𝑠𝑖𝑐 , ∀𝑏 ∈ 𝐴𝑛

𝑜𝑢𝑡, where 𝐴𝑛
𝑜𝑢𝑡 represents the set

of out-links of node n and 𝐴𝑛
𝑖𝑛 represents the set of in-links to node n. This condition

guarantees that regardless of the downstream link congestion conditions, the out-flow rate

from one link is equal for all the downstream links.

The link reduction factors are mathematically defined as:

𝛼𝑎
𝑏𝑎𝑠𝑖𝑐 =

𝑞𝑎

𝑆𝑎
=
𝑞𝑎−𝑏

𝑆𝑎−𝑏
 ∀ 𝑎 ∈ 𝐴𝑛

𝑖𝑛,∀𝑏 ∈ {𝐴𝑛
𝑜𝑢𝑡|𝑆𝑎−𝑏 > 0},∀𝑛 ∈ 𝑁 (5)

𝑞𝑎 = ∑ 𝑞𝑎−𝑏𝑏∈𝐴𝑛
𝑜𝑢𝑡 ∀ 𝑎 ∈ 𝐴𝑛

𝑖𝑛, ∀𝑛 ∈ 𝑁 (6)

where 𝑆𝑎 denotes the total in-flow to link a or demand on link a, 𝑞𝑎denotes the total actual

out-flow from link a, 𝑆𝑎−𝑏 denotes the turn demand from link a to b, and 𝑞𝑎−𝑏 denotes the

actual turn flow from link a to b.

It should be noted that potential queue spillback has not been considered in this model, as it

leads to non-stationary flows and contradicts the assumption of steady-state flows.

Following Bliemer et al. (2014) and Bifulco and Crisalli (1998) path-specific link in-flows

can be computed using link reduction factors.

𝑆𝑎𝑝 = 𝛿𝑎𝑝𝑓𝑝∏ 𝛼𝑎′
𝑏𝑎𝑠𝑖𝑐

𝑎′∈ 𝜂𝑎𝑝
 ∀ 𝑎 ∈ 𝐴, ∀ 𝑝 ∈ 𝑃𝑟𝑠, ∀(𝑟, 𝑠) (7)

where 𝜂𝑎𝑝 denotes the set of links on path p from the origin up to, but not including, link a,

and 𝛿𝑎𝑝 is the link-path incidence indicator.

The turn demands can also be computed as follows:

𝑆𝑎−𝑏 = ∑ ∑ 𝛿𝑏𝑝𝑆𝑎𝑝𝑝∈𝑃𝑟𝑠(𝑟,𝑠) ∀ 𝑎 ∈ 𝐴𝑛
𝑖𝑛, ∀𝑏 ∈ 𝐴𝑛

𝑜𝑢𝑡, ∀𝑛 ∈ 𝑁 (8)

The total link in-flow of link a will then be computed as the sum of path-specific link in-

flows (𝑆𝑎𝑝) over all paths using link a. The value of 𝑆𝑎 is also equal to the sum of turn

demands from link a to all downstream turn directions.

𝑆𝑎 = ∑ ∑ 𝑆𝑎𝑝𝑝∈𝑃𝑟𝑠(𝑟,𝑠) = ∑ 𝑆𝑎−𝑏𝑏∈𝐴𝑛
𝑜𝑢𝑡 ∀𝑎 ∈ 𝐴𝑛

𝑖𝑛, ∀𝑛 ∈ 𝑁 (9)

As evident from equations (7) to (9), the link and turn flows are determined using link

reduction factors 𝛼𝑎
𝑏𝑎𝑠𝑖𝑐 obtained from the node model. Thus, in a more general

representation, 𝑺′ = ϒ(𝜶𝒃𝒂𝒔𝒊𝒄|𝐟); where 𝑺′ denotes the vector of all turn demands (𝑺′ =
[𝑆𝑎−𝑏]) and depends on 𝛂 and 𝐟 which respectively denote the vector of all reduction factors

(𝜶𝒃𝒂𝒔𝒊𝒄 = [𝛼𝑎
𝑏𝑎𝑠𝑖𝑐]) and the vector of all path demand flows (𝒇 = [𝑓𝑝]).

10

On the other hand, the node model requires the link and turn flows and capacities of all

incoming and outgoing links of a node as input in order to compute 𝜶𝒃𝒂𝒔𝒊𝒄. Generally 𝜶𝒃𝒂𝒔𝒊𝒄
can be obtained as a function of link turn demands given link capacities as follows:

[𝛼𝑎
𝑏𝑎𝑠𝑖𝑐]𝑎∈𝐴𝑛𝑖𝑛 = 𝜞

𝒏(𝑆𝑎′−𝑏′|ɵ𝑎′ , ɵ𝑏′) ∀𝑎
′ ∈ 𝐴𝑛

𝑖𝑛, ∀𝑏′ ∈ 𝐴𝑛
𝑜𝑢𝑡 (10)

where 𝜞𝒏(.) is an implicit representation of the node model.

This circular reference between 𝜶 and 𝑺 yields the following fixed point problem:

𝜶𝒃𝒂𝒔𝒊𝒄 = 𝜞(𝑺′|ɵ) = 𝜞(ϒ(𝜶𝒃𝒂𝒔𝒊𝒄|𝐟) |ɵ) = 𝒈(𝜶𝒃𝒂𝒔𝒊𝒄|𝒇, ɵ) (11)

The solution to this fixed point problem is a vector of reduction factors 𝜶𝒃𝒂𝒔𝒊𝒄
∗
 which

satisfies 𝜶𝒃𝒂𝒔𝒊𝒄
∗
= 𝒈(𝜶𝒃𝒂𝒔𝒊𝒄

∗
|𝒇, ɵ), where 𝒈 = 𝜞 ∘ ϒ.

Bliemer et al. (2014) propose the following algorithm to iteratively solve this fixed point

problem:

Input: Path set P, path flows 𝐟(𝑖), where i represents the assignment iteration, and link

capacities ɵ.

Step 0: Initialization. Assuming an empty network, initialize all reduction factors

𝜶𝒃𝒂𝒔𝒊𝒄
(0)
= 1.

Step 1: Calculate initial link and turn flows. For all paths 𝑝 ∈ 𝑷, calculate path-

specific link in-flows using 𝐟(𝑖) (equation 7). Calculate turn demands 𝑺′
(𝟎)

 (equation

8), and calculate link in-flows 𝑺(𝟎) (equations 9). Set the loading iteration 𝑗 = 1.

Step 2: Determine potentially congested links1. For each link 𝑏 ∈ 𝐴, if 𝑆𝑏
(0)
> ɵ𝑏 then

link b is a potential bottleneck and all links a with turn demand 𝑆𝑎−𝑏
(0)

> 0 will

potentially be congested. In other words, the set of links 𝐴̃ that will be considered for

QDNL is defined as: 𝐴̃ = {𝑎 ∈ 𝐴𝑛
𝑖𝑛| 𝑆𝑎−𝑏

(0) > 0, 𝑆𝑏
(0) > ɵ𝑏, 𝑏 ∈ 𝐴𝑛

𝑜𝑢𝑡, 𝑛 ∈ 𝑁}

Step 3: Compute Reduction Factors. Run the node model using turn demands 𝑺′̃
(𝑗−1)

,

link flows 𝑺̃(𝑗−1) from previous iteration (j-1), to obtain reduction factors 𝜶̃𝒃𝒂𝒔𝒊𝒄
(𝒋)

.

Step 4: Compute turn and link demands. Compute the path-specific link flows using

𝜶̃𝒃𝒂𝒔𝒊𝒄
(𝒋)

and 𝐟(𝑖) (equation 7) and calculate the turn demands 𝑺′̃
(𝑗)

 (equation 8). Use

turn demands (equation 9) to update link flows 𝑺̃(𝑗) for all 𝑎 ∈ 𝐴̃.

Step 5: Convergence check. If
1

|𝐴̃|
‖𝜶̃𝒃𝒂𝒔𝒊𝒄

(𝒋)
− 𝜶̃𝒃𝒂𝒔𝒊𝒄

(𝒋−𝟏)
‖ < 𝜀1, for convergence

criteria parameter 𝜀1 > 0, the problem has converged to a fixed point, then terminate.

Otherwise, set 𝑗 = 𝑗 + 1 and return to step 3. (‖∙‖ Represents Euclidean Norm)

The resultant reduction factors from the QDNL are then used to compute the average path

travel times as follows:

𝐶𝑝(𝐟) = ∑
𝛿𝑎𝑝𝐿𝑎

𝑣𝑎
𝑚𝑎𝑥𝑎∈𝐴 +

𝑇

2
 (

1

∏ 𝛼𝑎
𝑏𝑎𝑠𝑖𝑐

𝑎∈𝑉𝑝
− 1) (12)

1 This step is performed in order to enhance the computational efficiency of the algorithm. By this means, the

links that are potentially congested will be identified and for the links that will potentially not be congested

𝛼𝑎
𝑏𝑎𝑠𝑖𝑐 will remain equal to one.

11

where ∑
𝛿𝑎𝑝𝐿𝑎

𝑣𝑎
𝑚𝑎𝑥𝑎∈𝐴 denotes the summation of links free flow travel times, [0,T] denotes the

demand time period duration, 𝑉𝑝 denotes the vector of links on path p and

𝑇

2
 (

1

∏ 𝛼𝑎
𝑏𝑎𝑠𝑖𝑐

𝑎∈𝑉𝑝
− 1) denotes the average non-separable path queuing delay, in consistence

with queueing theory (Bliemer et al., 2014).

The first order node model presented here is adapted from Tampère et al. (2011) and can be

applied to general cross-nodes. Their proposed algorithm finds the exact solution in a

maximum of m iterations (m being the number of node in-links). This node model can be

extended for signalized intersections, using the signal green time ratios per turn. We refer to

Tampère et al. (2011) for the detailed node-model algorithm.

 Analytical PMC Derivation

In order to solve the path-based SOQDTA problem defined in equation (1), PMCs need to be

approximated for all paths between all O-D pairs. In order to compute path internality and

externality using equation (4), the values of
𝜕𝐶𝑝𝑖(𝐟)

𝜕𝑓𝑝𝑖
 and

𝜕𝐶𝑝𝑗(𝐟)

𝜕𝑓𝑝𝑖
 (𝑤ℎ𝑒𝑟𝑒 𝑗 ≠ 𝑖) need to be

approximated respectively. By plugging the path travel times from equation (9) into equation

(4),
𝜕𝐶𝑝𝑖(𝐟)

𝜕𝑓𝑝𝑖
 can be written as follows:

𝜕𝐶𝑝𝑖(𝐟)

𝜕𝑓𝑝𝑖
 =

𝑇

2
∗

−1

(∏ 𝛼𝑎
𝑏𝑎𝑠𝑖𝑐

𝑎∈𝑉𝑝𝑖
)2
∗ (∑

𝜕𝛼𝑏
𝑏𝑎𝑠𝑖𝑐

𝜕𝑓𝑝𝑖
∗
∏ 𝛼𝑎

𝑏𝑎𝑠𝑖𝑐
𝑎∈𝑉𝑝𝑖

𝛼𝑏
𝑏𝑎𝑠𝑖𝑐𝑏∈𝑉𝑝𝑖)

 =
𝑇

2
∗

−1

∏ 𝛼𝑎
𝑏𝑎𝑠𝑖𝑐

𝑎∈𝑉𝑝𝑖

∗ (∑
𝜕𝛼𝑏

𝑏𝑎𝑠𝑖𝑐

𝜕𝑓𝑝𝑖
∗

1

𝛼𝑏
𝑏𝑎𝑠𝑖𝑐𝑏∈𝑉𝑝𝑖) (13)

Since according to equation (11), 𝜶𝒃𝒂𝒔𝒊𝒄 are calculated through the node model and the fixed

point QDNL problem and not through an explicit function, deriving the analytical partial

derivate of alphas with respect to path flows is not trivial. As a result, we propose to

approximate
𝜕𝛼𝑏

𝑏𝑎𝑠𝑖𝑐

𝜕𝑓𝑝𝑖
 by enumerating

∆𝛼𝑏
𝑏𝑎𝑠𝑖𝑐

∆𝑓𝑝𝑖
 =

𝛼𝑏,𝑝𝑖
𝑛𝑒𝑤−𝛼𝑏

𝑏𝑎𝑠𝑖𝑐

𝜉
𝑉1
𝑝𝑖,𝑝𝑖

 ; then,

𝜕𝐶𝑝𝑖(𝐟)

𝜕𝑓𝑝𝑖
 =

𝑇

2
∗

−1

∏ 𝛼𝑎
𝑏𝑎𝑠𝑖𝑐

𝑎∈𝑉𝑝𝑖

∗ (∑
𝛼𝑏,𝑝𝑖
𝑛𝑒𝑤−𝛼𝑏

𝑏𝑎𝑠𝑖𝑐

𝜉
𝑉1
𝑝𝑖,𝑝𝑖

∗
1

𝛼𝑏
𝑏𝑎𝑠𝑖𝑐𝑏∈𝑉𝑝𝑖) (14)

where 𝛼𝑏,𝑝𝑖
𝑛𝑒𝑤 denotes the new reduction factor of link b as a result of perturbation on path 𝑝𝑖,

and 𝑉𝑘
𝑝𝑖 denotes the kth link on the path 𝑝𝑖. Also, 𝜉

𝑉1
𝑝𝑖 ,𝑝𝑖

 denotes the initial perturbation on the

first link of path 𝑝𝑖 when path 𝑝𝑖 is perturbed.

Similarly,
𝜕𝐶𝑝𝑗(𝐟)

𝜕𝑓𝑝𝑖
,∀𝑗 ≠ 𝑖 can be written as follows:

𝜕𝐶𝑝𝑗(𝐟)

𝜕𝑓𝑝𝑖
 =

𝑇

2
∗

−1

∏ 𝛼𝑎
𝑏𝑎𝑠𝑖𝑐

𝑎∈𝑉
𝑝𝑗

∗ (∑
𝛼𝑏,𝑝𝑖
𝑛𝑒𝑤−𝛼𝑏

𝑏𝑎𝑠𝑖𝑐

𝜉
𝑉1
𝑝𝑖,𝑝𝑖

∗
1

𝛼𝑏
𝑏𝑎𝑠𝑖𝑐𝑏∈𝑉

𝑝𝑗) (15)

In the proposed method for computation of externality, two forms of approximation take

place. First, we only approximate externality on paths that share at least one node with path

𝑝𝑖 , and for simplicity, we assume that perturbation on path 𝑝𝑖 will not affect those paths of

the network that do not share any nodes with path 𝑝𝑖. Second, in estimation of externality on

12

an intersecting path, we only consider the link reduction factor changes for the immediate

incoming link to the shared node.

 PMC Approximation Algorithm

According to the overall SOQDTA framework in Figure 1, a feasible path flow pattern

(solution) will be generated by the assignment module and will be loaded onto the network

using the QDNL module. Afterwards, the PMC values should be updated according to the

newly obtained flow pattern on the network.

From the QDNL converged solution, link demands S, turn demands (flows) 𝑺′ and link

reduction factors 𝜶𝒃𝒂𝒔𝒊𝒄 are available. In the QDNL model, path travel times are calculated

based on the reduction factors of path links (equation (9)) and thus the effects of one

additional unit of demand on travel time can be captured through the changes that it causes in

link reduction factors. In turn, reduction factors are determined through the node model

which captures the complicated interactions between link and turn demands and capacities.

In the first step of PMC approximation, regardless of paths, at every node 𝑛 ∈ 𝑁, we evaluate

the potential changes in the in-link reduction factors 𝛼𝑎
𝑏𝑎𝑠𝑖𝑐 , 𝑎 ∈ 𝐴𝑛

𝑖𝑛 due to one extra unit of

flow on different turn movements 𝑚𝑎,𝑏, ∀ 𝑎 ∈ 𝐴𝑛
𝑖𝑛, ∀𝑏 ∈ 𝐴𝑛

𝑜𝑢𝑡, ∀𝑛 ∈ 𝑁. More specifically,

one perturbation unit is added to each turn demand 𝑆𝑎−𝑏 (obtained from the converged

QDNL solution), at each node n in the network as follows:

𝑆𝑎−𝑏
+1 = 𝑆𝑎−𝑏 + 1 𝑎 ∈ 𝐴𝑛

𝑖𝑛, 𝑏 ∈ 𝐴𝑛
𝑜𝑢𝑡, 𝑛 ∈ 𝑁 (16)

For this stage, only one turn movement 𝑚𝑎,𝑏 is perturbed at a time, keeping the other turn

demands constant. Next, the node model is run for node n with the new turn demands (𝑆𝑎−𝑏
+1),

and the corresponding reduction factors on in-links 𝑎′, denoted by 𝛼𝑎′,𝑚𝑎,𝑏
+1 ∀𝑎′ ∈ 𝐴𝑛

𝑖𝑛 , are

calculated. This stage is performed for all nodes and their existing turn movements in the

network, regardless of the paths using these movements. Therefore, the computational cost of

this stage increases only linearly with the number of nodes in the network. Moreover, since at

this stage, each node is processed individually, parallel processing can also be performed for

higher efficiency.

The relative changes between 𝛼𝑎′,𝑚𝑎,𝑏
+1 and 𝛼𝑎′

𝑏𝑎𝑠𝑖𝑐are then stored in variable ∆𝛼𝑎′,𝑚𝑎,𝑏
+1 , ∀𝑎′ ∈

𝐴𝑛
𝑖𝑛, as follows:

∆𝛼+1𝑎′,𝑚𝑎,𝑏=
𝛼
𝑎′,𝑚𝑎,𝑏

+1 − 𝛼
𝑎′
𝑏𝑎𝑠𝑖𝑐

𝛼
𝑎′
𝑏𝑎𝑠𝑖𝑐 , ∀ 𝛼′ ∈ 𝐴𝑛

𝑖𝑛, ∀𝑏′ ∈ 𝐴𝑛
𝑜𝑢𝑡 (17)

Figure 2 gives a graphical demonstration of this stage in a node with two in-links and two

out-links. The procedure can be applied to any general cross-node and we have merely

limited the number of in and out links in the figure for illustration clarity.

13

Figure 2- Computation of 𝜶+𝟏 for a general cross-node

Figure 2 (a) demonstrates a general cross-node 𝑛1, where the turn demands and link reduction

factors have been computed in the QDNL procedure. In Figure 2 (b), we have added one

demand unit to movement 𝑚𝑎1,𝑏2from link 𝑎1 to 𝑏2. The turn demand 𝑆𝑎1−𝑏2 will be

increased by one unit, and other turn demands remain constant. This demand increase on one

movement affects all incoming link reduction factors. This effect is captured using the node

model and by calculating new alphas, 𝛼
𝑎1,𝒎𝒂𝟏,𝒃𝟐
+1 and 𝛼𝑎2,𝒎𝒂𝟏,𝒃𝟐

+1 . Figure 2 (c) shows one

additional unit of demand on movement 𝑚𝑎2,𝑏2, and same should be performed for 𝑚𝑎1,𝑏1

and 𝑚𝑎2,𝑏1.

So far, the aforementioned steps compute and store the relative changes to 𝜶𝒃𝒂𝒔𝒊𝒄 due to one

unit of increased demand on each movement. The next step in the algorithm takes the

generated O-D paths into account and perturbs each path individually to approximate its

internal and external effects on total system travel time. This stage of the algorithm also

allows for parallel processing of different O-D pairs.

In this stage, each path p is perturbed by a fixed additional flow 𝜉𝑉1
𝑝
,𝑝that is assigned on path

p at its first link 𝑉1
𝑝
, and the estimated proportion of this unit flow, 𝜉𝑎,𝑝 that reaches every

downstream link a is computed using link reduction factor. 𝜉𝑎,𝑝 is then used to approximate

the resultant 𝜶𝒏𝒆𝒘 on all the links of the network that are affected by perturbing path p. In the

original version of the algorithm we choose the perturbation size at the first link 𝜉𝑉1
𝑝
,𝑝=1,

however, we have also tested different values for 𝜉𝑉1
𝑝
,𝑝in a sensitivity analysis that is reported

in the cases study section.

14

In a general cross-node, when a given link a is an incoming link to node n (𝑎 ∈ 𝐴𝑛
𝑖𝑛),

according to the node model, the perturbation arriving on link a from path p (𝜉𝑎,𝑝) affects the

reduction factors of all incoming links to node n (∀ 𝑎′ ∈ 𝐴𝑛
𝑖𝑛). Since changes in reduction

factors with respect to unit perturbation (∆𝜶+𝟏) are computed in the previous step of the

algorithm, a linear approximation can provide the correspondent 𝜶𝒏𝒆𝒘with respect to 𝝃 =
[𝜉𝑎,𝑝].

𝛼𝑎′,𝑝
𝑛𝑒𝑤 = (1 + 𝜉𝑎,𝑝 ∗ ∆𝛼𝑎′,𝑚𝑎,𝑏

+1) ∗ 𝛼𝑎′
𝑏𝑎𝑠𝑖𝑐 ∀𝑎′ ∈ 𝐴𝑛

𝑖𝑛, 𝑎 ∈ 𝐴𝑛
𝑖𝑛, 𝑏 ∈ 𝐴𝑛

𝑜𝑢𝑡 , 𝑛 ∈ 𝑁𝑝 (18)

In equation (18) 𝛼𝑎′,𝑝
𝑛𝑒𝑤 denotes the new reduction factor of link 𝑎′ as a result of perturbation

on path p, and 𝑁𝑝 denotes the set of all nodes on path p. However, due to potential

bottlenecks, the unit flow may not proceed all the way to destination (during unit time

interval). The proportion of unit perturbation that will reach any link a on the path is

computed as:

𝜉𝑎,𝑝 = 𝜉𝑉1
𝑝
,𝑝 ∗ ∏ 𝛼𝑙,𝑝

𝑛𝑒𝑤
𝑙∈𝜂𝑎𝑝 ∀𝑎 ∈ 𝑉𝑝, ∀𝑝 ∈ 𝑃𝑟𝑠, ∀(𝑟, 𝑠) (19)

where 𝛼𝑙,𝑝
𝑛𝑒𝑤 denotes the new reduction factors of links 𝑙, resultant from perturbing path p.

Equation (19) is based on equation (7) in which the product of reduction factors upstream of a

link determines the link in-flow.

The algorithm processes all movement 𝑚𝑎,𝑏 on the path sequentially starting from the

upstream (∀ 𝑚𝑎,𝑏 ∈ 𝑀
𝑝), where 𝑀𝑝 is the set of all movement on path p and a and b are

consecutive links on path p (𝑎 = 𝑉𝑖
𝑝
, 𝑏 = 𝑉𝑖+1

𝑝
 , 𝑎 ∈ 𝐴𝑛

𝑖𝑛, 𝑏 ∈ 𝐴𝑛
𝑜𝑢𝑡 , 𝑛 ∈ 𝑁𝑝), and computes

𝜶𝒏𝒆𝒘, for not only the links on the path (𝑎 ∈ 𝑉𝑝, 𝑎 ∈ 𝐴𝑛
𝑖𝑛) but also all other links 𝑎′ that share

a node with links a (∀ 𝑎′ ∈ 𝐴𝑛
𝑖𝑛).

Figure 3 illustrates this stage of the algorithm:

Figure 3- Computation of 𝜶𝒏𝒆𝒘for links affected by perturbation on path p

As the algorithm processes each movement 𝑚𝑎,𝑏 on the path p, path externality at each node

𝑛 ∈ 𝑁𝑝 is computed for all paths 𝑝′ that share the same node with path p.

The internality of path p and the total externality can be computed once all the movements on

the path are processed. Examples of external paths to path p are demonstrated in Figure 3, as

external paths 1, 2, and 3. While processing each node n on path p (𝑛 ∈ 𝑁𝑝), the impact of

the perturbation 𝜉𝑎,𝑝 can be evaluated on all the external links incoming to node n as follows:

15

𝜆
𝑎′,𝑝′
𝑛,𝑝

=
𝑇

2
∗

−1

∏ 𝛼𝑎
𝑏𝑎𝑠𝑖𝑐

𝑎∈𝑉𝑝
′

∗ (
𝛼
𝑎′,𝑝
𝑛𝑒𝑤−𝛼

𝑎′
𝑏𝑎𝑠𝑖𝑐

𝜉
𝑉1
𝑝
,𝑝

∗
1

𝛼
𝑎′
𝑏𝑎𝑠𝑖𝑐) ∗ 𝑓𝑝′

∀𝑎′ ∈ 𝐴𝑛
𝑖𝑛, ∀𝑝′ ∈ 𝑃𝑎′ , 𝑝

′ ≠ 𝑝, 𝑛 ∈ 𝑁𝑝 (20)

Where 𝜆
𝑎′,𝑝′
𝑛,𝑝

 denotes the share of externality happening on link 𝑎′ of path 𝑝′ when

perturbation reaches node n on path p. This value shall be computed for all O-D paths using

link 𝑎′, a set denoted by 𝑃𝑎′.

In Figure 3, external path 1, as an example, shares node 𝑛1 with path p. The algorithm

approximates the impact of path p on this external path by computing 𝛼2,𝑝
𝑛𝑒𝑤 and 𝜆2,1

𝑛1,𝑝.

However the reduction factor on link 12, which is on the external path but is not an

immediate in-link to node 𝑛1, remains constant at 𝛼12
𝑏𝑎𝑠𝑖𝑐. The reason behind this lies in the

assumptions of the QDNL model, where queues are assumed to form vertically (point

queues) and potential spillback is not explicitly modelled.

The red dashed line in Figure 3, shows the extent to which the impact of path p on the

external paths 1, 2 and 3 is taken into account.

Once all the movements on path p are processed, the total externality of the path can be

computed as:

𝐸𝑝(𝐟) = ∑ ∑ ∑
𝑇

2
∗

−1

∏ 𝛼𝑎
𝑏𝑎𝑠𝑖𝑐

𝑎∈𝑉𝑝
′

∗ (∑
𝛼
𝑎′,𝑝
𝑛𝑒𝑤−𝛼

𝑎′
𝑏𝑎𝑠𝑖𝑐

𝜉
𝑉1
𝑝
,𝑝

∗
1

𝛼
𝑎′
𝑏𝑎𝑠𝑖𝑐𝑎′∈𝐴𝑛

𝑖𝑛) ∗ 𝑓𝑝′ 𝑝′∈𝑃𝑎′\𝑝𝑎′∈𝐴𝑛
𝑖𝑛𝑛∈𝑁𝑝 (21)

Equation (21) accounts for the approximations that take place in the computation of path

externality, namely that externality is computed only for paths that share at least a node with

path p, and the assumption that only certain one link per external path is affected by the

perturbation on path p.

The internality of path p can also be computed using equations (4) and (14), once all the

movements have been processed and the reduction factors of all links on path p have been

updated. Having computed path internality and externality, the total PMC can be obtained.

The pseudocode for the procedure explained above, can be found in Appendix B.

16

Computational Advantages

At every iteration of the search for the least marginal cost paths, the proposed PMC

approximation initially computes and stores the changes in the link reduction factors due to

unit perturbations on all existing movements at all nodes (∆𝜶+𝟏), one movement at a time.

This computation is done only once at every iteration and independent of the O-D paths.

Therefore, the computational cost of this stage increases only linearly with the size of

network. Moreover, since nodes are processed individually, parallel processing becomes

possible for higher efficiency.

Next, for each O-D pair, the algorithm computes 𝑃𝑀𝐶𝑝 (𝐟) by moving along every O-D path

p, looking up the stored ∆𝜶+𝟏 and accordingly approximating the travel time of path p and all

crossing paths. Without this store-and-look-up approximation technique, PMC approximation

would entail moving along each O-D path and running the node model for every node along

the path with perturbed link demands. As a matter of fact, we are reducing the computational

time significantly by factoring out the procedure of solving the node models for every path,

and performing this process only once and independently of the number of paths.

To compute the externality of one path, p, at every iteration of the MSA, the proposed

algorithm needs to estimate changes in travel times of all (and only) crossing paths 𝑝′. This

will require computation of 𝐴̇𝑝′,𝑝
𝑛𝑒𝑤 for all crossing paths 𝑝′.

Considering the above-mentioned steps for the PMC calculations, the required number of

computations are bound to O(|N| + |P|∙|A| + |P|2|A|) which results from |N| (number of node in

the network) times executions of the node model at the beginning, |P|∙|A| (number of paths ×

number of links) times update of link reduction factor for internality of paths, and |P|2|A| path

travel time update for externalities of every path on every intersecting path. Because this

upper bound is polynomial in the size of the network, the execution of the method for real-

sized networks is possible. However, for fast computations in large networks, parallel

computations may be required.

Case Study

In order to evaluate the performance of the proposed SOQDTA algorithm, we have applied it

to a test network of the medium-sized city of Sioux Falls. This network has been used in

transportation studies several times (Lam & Zhang, 2000; LeBlanc et al., 1975; Morlok,

1973), to evaluate the performance of different traffic assignment models. The specific

demand table of the Sioux Falls network, used in this study, was originally used by LeBlanc

et al. (1975) and is accessible via the website Transportation Test Problems (Bar-Gera).

The Sioux Falls test network has 24 nodes and 76 links. The O-D demand matrix used in this

study represents the all-to-all node demand for one hour during the peak period with a total of

360,600 trips. A total of 3,125 paths have been generated for 528 non-zero O-D demand

pairs, using the path set generation algorithm by Nassir, Ziebarth, et al. (2014).

In order to provide evidence that the SO model is actually improving the objective function

value compared to the UE solution, we have computed the user equilibrium quasi-dynamic

traffic assignment (UEQDTA) and SOQDTA solutions for the network and compared the

total system travel times (objective values) at each MSA iteration. The changes in link

reduction factors, as a measure of links out-flow to in-flow ratios, have also been

demonstrated.

17

We have used the MSA (presented in Appendix A) with one hundred iterations, to compute

both the UEQDTA and SOQDTA solutions. In step 2 of the MSA algorithm, the O-D paths

with the least PMC will be chosen to add flow in the SOQDTA problem; whereas in the same

step, the O-D paths with the least travel times are chosen to add flow for the UEQDTA

problem.

The values of total system travel time under UE and SO assumptions have been demonstrated

over the MSA iterations in Figure 4.

Like all quasi-dynamic models with residual queues, our model also assumes no queues at the

beginning of the time interval (Bliemer et al., 2014), and is thus applied best to the whole

peak period. Accordingly, all PMCs are equal to the path free flow travel times at the first

assignment iteration, and the total system travel time is initially equal for UEQDTA and

SOQDTA. However, in the next MSA iterations the SOQDTA constantly leads to lower total

system travel times compared to UEQDTA. After one hundred iterations, total system travel

times are 1.26 ∗ 107and 1.2 ∗ 107 minutes under UE and SO, respectively, demonstrating a

total improvement of about 4.8%.

Coded in C++, on a notebook computer with Intel® Core™ i7 @ 2.6 GHz running Windows

7 32-bit, using a single thread, the computational time of each MSA iteration is 0.48 second

for UEQDTA, and 3.50 seconds for the proposed SOQDTA. The 3.50 seconds for SOQDTA

include PMC approximation, solving the least marginal cost problem, finding the new

assignment solution and loading the solution onto the network (the QDNL).

Figure 4-SOQDTA vs. UEQDTA Total System Travel Time (minutes) for the Test Network of Sioux Falls

The fluctuation of the SO objective value along the MSA iterations observed in Figure 4 is

because: 1) the descent direction computed based on PMCs is approximate, and 2) the MSA

step size in the descent direction is not necessarily optimized. However, the SO trend line is

1.00E+07

1.10E+07

1.20E+07

1.30E+07

1.40E+07

1.50E+07

1.60E+07

8

1
2

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

4
8

5
2

5
6

6
0

6
4

6
8

7
2

7
6

8
0

8
4

8
8

9
2

9
6

1
0

0

To
ta

l S
ys

te
m

 T
ra

ve
l T

im
e

MSA Iteration i

UE

SO

18

demonstrating an overall decreasing pattern and SO objective values are constantly lower

than the UE. This observation demonstrates that moving in the direction of the approximated

PMCs leads to an improved total system travel time (objective value); hence the algorithm is

capable of providing a reliable and practical approximation of PMCs. Future research may

focus on modifying the step size in descent direction in order to improve the efficiency of SO

computation.

As previously discussed, according to Wardrop’s second principle (Wardrop, 1952), in path-

based SO traffic assignment solutions, the PMC on all the used paths among each O-D pair

are equal, and less than or equal to the PMC of any unused paths between the same O-D. The

SO relative gap function value is thus defined using the following equation for each

assignment iteration i:

𝐺(𝑖) =
∑ ∑ 𝑓𝑝∗(𝑃𝑀𝐶𝑝(𝐟)−𝜇

𝑟𝑠)
∀𝑝∈𝑃𝑟𝑠∀(𝑟,𝑠)

∑ ∑ 𝑓𝑝∗∀𝑝∈𝑃𝑟𝑠∀(𝑟,𝑠) 𝜇𝑟𝑠
 (22)

 where 𝜇𝑟𝑠 = 𝑚𝑖𝑛𝑝∈𝑃𝑟𝑠𝑃𝑀𝐶𝑝(𝐟) , ∀(𝑟, 𝑠).

Figure 5- Relative Gap Function Value at each MSA Iteration

As depicted in Figure 5, the relative gap reaches 0.01 after 100 MSA iterations,

demonstrating that the algorithm is converging to a SO solution.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 5 8

1
1

1
4

1
7

2
0

2
3

2
6

2
9

3
2

3
5

3
8

4
1

4
4

4
7

5
0

5
3

5
6

5
9

6
2

6
5

6
8

7
1

7
4

7
7

8
0

8
3

8
6

8
9

9
2

9
5

9
8

R
el

at
iv

e
G

ap

MSA Iteration i

19

Figure 6 demonstrates the changes made in link reduction factors between the UEQDTA and

SOQDTA solutions. The SOQDTA solution increases link reduction factors on some links

and decreases them on some other, for a generally improved total system travel time. To

elaborate on specific examples in Figure 6, the SO link reduction factors increased on links 9,

22, 39, 40, 43, 52, 59, 61, and 68, and decreased on links 12 and 63.

Figure 6- Link Reduction Factors under UE and SOQDTA

20

A sensitivity analysis has been performed on the perturbation size, for values ranging

between 0 and 5, in intervals of 0.1 units (Figure 7). It is observed that the optimal objective

value achieved by different values of perturbation is generally increasing (worsening) in a

step-like function. This is consistent with intuition, as increasing the perturbation size, should

make the PMC approximation less accurate due to the fact that smaller (than perturbation

size) changes in O-D flows, which could potentially yield a better objective value, may be

undetected in the PMC approximation with a not small enough perturbation size.

In this particular case study, we observe that as long as the perturbation size is smaller than

1.6, the algorithm will perform efficiently in 100 MSA iterations. In general, given that the

flow changes in MSA are proportional to the O-D demand and inversely proportional to the

iteration number, a sufficiently small perturbation size should be computed based on O-D

demands and the maximum number of iterations that MSA is run for.

Figure 7- Optimal Objective Value Obtained after 100 MSA Iterations using different Values of Perturbation

Conclusions and Future Research

We have proposed, developed and tested a computationally efficient path-based SOQDTA

framework, and a new PMC approximation algorithm for solving it. The framework

incorporates a QDNL model that captures the realism of traffic propagation through a first-

order node model.

The proposed quasi-dynamic model benefits the computational efficiency of static models,

yet considers capacity constraints, residual vertical/point queues and observes the FIFO

principle. Being path-based, the model does not lead to issues such as flow holding in the

network, and can be efficiently solved for many-to-many networks.

11800000

11900000

12000000

12100000

12200000

12300000

12400000

12500000

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

2
.7

2
.9

3
.1

3
.3

3
.5

3
.8 4

4
.2

4
.4

4
.6

4
.9

O
p

ti
m

al
 O

b
je

ct
iv

e
V

al
u

e
(1

0
0

 M
SA

 it
er

at
io

n
s)

Perturbation Size

21

The resultant SO traffic flow pattern can have a variety of applications from regular traffic

management to work zones and incident traffic re-routing and disaster evacuation. The

corresponding minimum total system travel time also provides a benchmark for evaluating

potential benefits of different traffic management strategies.

We have applied our proposed model to Sioux-falls test network. The results demonstrate that

the model is capable of providing reliable estimates of the PMC and can be used for SO

traffic management. The obtained SO solution demonstrated an improvement of 4.8% in total

system travel time compared to the UE solution. The values of the relative gap function were

also reported which demonstrated the convergence at 0.01 level after 100 MSA iterations.

A sensitivity analysis of the perturbation size was also performed and demonstrated that the

optimal objective value achieved by different values of perturbation is generally increasing

(worsening) in a step-like function. Therefore, the perturbation size should be chosen small

enough to guarantee the solution quality. In general, given that the flow changes in MSA are

proportional to the O-D demand and inversely proportional to the iteration number, the

perturbation size should be selected based on O-D demand levels and the maximum number

of iterations.

As a possible direction for future research, we identify testing and analysis of different

solution finding algorithms, which in the current model is done by a generic MSA.

Adjustments of the step size in the solution finding process is of particular interest and

expected to further improve both the computational efficiency and the quality of solution of

the proposed SOQDTA.

To further complement the present research from the perspective of implementation, one can

explore practical implications of applying the proposed algorithms to work zones traffic

management or incident traffic re-routing scenarios. Especially, the recent advancements in

connected and autonomous vehicle technologies, and new possibilities for advisory traffic

information provision, can open up new opportunities to reconcile the state-of-the-art in SO

traffic modelling with the state-of-practice in traffic management.

The present study does not account for traffic signals. The incorporation of signals through

capacity adjustments will be also considered in future research.

22

References

Bar-Gera, H. Transportation Test Problems. Retrieved from
https://github.com/bstabler/TransportationNetworks

Bifulco, G., & Crisalli, U. (1998). Stochastic user equilibrium and link capacity constraints: formulation

and theoretical evidence. In TRANSPORTATION PLANNING METHODS. PROCEEDINGS OF
SEMINAR E HELD AT AET EUROPEAN TRANSPORT CONFERENCE, LOUGHBOROUGH
UNIVERSITY, UK, 14-18 SEPTEMBER 1998. VOLUME P424.

Bliemer, M. C., Raadsen, M. P., Smits, E.-S., Zhou, B., & Bell, M. G. (2014). Quasi-dynamic traffic

assignment with residual point queues incorporating a first order node model.
Transportation Research Part B: Methodological, 68, 363-384.

Carey, M. (1987). Optimal Time-Varying Flows on Congested Networks. Operations Research, 35(1),

58-69.

Chiu, Y.-C., Zheng, H., Villalobos, J., & Gautam, B. (2007). Modeling No-notice Mass Evacuation Using

a Dynamic Traffic Flow Optimization Model. IIE Transactions, 39(1), 83-94.

Fleischer, L., & Skutella, M. (2007). Quickest Flows Over Time. SIAM Journal on Computing, 36(6),

1600-1630.

Fleischer, L. K. (2001). Faster Algorithms for the Quickest Transshipment Problem. SIAM Journal on

Optimization, 12(1), 18-35.

Ghali, M., & Smith, M. (1995). A model for the dynamic system optimum traffic assignment problem.

Transportation Research Part B: Methodological, 29(3), 155-170.

Lam, W. H., & Zhang, Y. (2000). Capacity-constrained traffic assignment in networks with residual

queues. Journal of transportation engineering, 126(2), 121-128.

LeBlanc, L. J., Morlok, E. K., & Pierskalla, W. P. (1975). An efficient approach to solving the road

network equilibrium traffic assignment problem. Transportation Research, 9(5), 309-318.

Merchant, D. K., & Nemhauser, G. L. (1978a). A model and an algorithm for the dynamic traffic

assignment problems. Transportation science, 12(3), 183-199.

Merchant, D. K., & Nemhauser, G. L. (1978b). Optimality Conditions for a Dynamic Traffic

Assignment Model. Transportation Science, 12(3), 200-207.

Morlok, E. K. (1973). Development and application of a highway network design model: Federal

Highway Administration.

https://github.com/bstabler/TransportationNetworks

23

Nassir, N. (2013). Optimal Integrated Dynamic Traffic Assignment and Signal Control for Evacuation
of Large Traffic Networks with Varying Threat Levels PhD Dissertation. University of Arizona,
Tucson.

Nassir, N., Zheng, H., & Hickman, M. (2014). Efficient negative cycle-canceling algorithm for finding

the optimal traffic routing for network evacuation with nonuniform threats. Transportation
Research Record: Journal of the Transportation Research Board(2459), 81-90.

Nassir, N., Ziebarth, J., Sall, E., & Zorn, L. (2014). Choice Set Generation Algorithm Suitable for

Measuring Route Choice Accessibility. Transportation Research Record: Journal of the
Transportation Research Board(2430), 170-181.

Nie, Y. M. (2011). A Cell-Based Merchant-Nemhauser Model for the System Optimum Dynamic

Traffic Assignment Problem. Transportation Research Part B: Methodological, 45(2), 329-
342.

Peeta, S., & Mahmassani, H. S. (1995). System optimal and user equilibrium time-dependent traffic

assignment in congested networks. Annals of Operations Research, 60(1), 81-113.

Qian, Z. S., Shen, W., & Zhang, H. (2012). System-optimal dynamic traffic assignment with and

without queue spillback: Its path-based formulation and solution via approximate path
marginal cost. Transportation research part B: methodological, 46(7), 874-893.

Sheffi, Y., & Powell, W. B. (1982). An algorithm for the equilibrium assignment problem with random

link times. Networks, 12(2), 191-207.

Shen, W. (2009). System Optimal Dynamic Traffic Assignment: A Graph-Theoretic Approach and its

Engineering Application (Ph.D. thesis). University of California, Davis, Davis, CA.

Shen, W., Nie, Y., & Zhang, H. M. (2007). On path marginal cost analysis and its relation to dynamic

system-optimaltraffic assignment. TRANSPORTATION AND TRAFFIC THEORY 2007: PAPERS
SELECTED FOR PRESENTATIONAT ISTTT17, A PEER REVIEWED SERIES SINCE 1959(p327-60).

Tampère, C. M., Corthout, R., Cattrysse, D., & Immers, L. H. (2011). A generic class of first order node

models for dynamic macroscopic simulation of traffic flows. Transportation Research Part B:
Methodological, 45(1), 289-309.

Ukkusuri, S. V., Ramadurai, G., & Patil, G. (2009). A Robust Transportation Signal Control Problem

Accounting for Traffic Dynamics. Computers & Operations Research, 37(5), 869-879.

Wardrop, J. G. (1952). ROAD PAPER. SOME THEORETICAL ASPECTS OF ROAD TRAFFIC RESEARCH.

Proceedings of the institution of civil engineers, 1(3), 325-362.

Zheng, H. (2009). Efficient Algorithms for the Cell-Based Single Destination System Optimal Dynamic

Traffic Assignment Problem Ph.D.(Ph.D. thesis). University of Arizona, Tucson, AZ.

24

Zheng, H., Chiu, Y.-C., & Mirchandani, P. B. (2013). A Heuristic Algorithm for the Earliest Arrival Flow
with Multiple Sources. Journal of Mathematical Modelling and Algorithms in Operations
Research, 1-21.

Ziliaskopoulos, A. K. (2000). A linear programming model for the single destination system optimum

dynamic traffic assignment problem. Transportation science, 34(1), 37-49.

25

Appendix A

MSA algorithm for SOQDTA (Qian et al., 2012):

Step 0: Initialization. Select an initial flow pattern 𝒇𝛽,𝛽 = 0.

Step 1: Perform the QDNL based on 𝒇𝛽.

Step 2: Solve the least marginal cost problem for each O-D pair (r,s). 𝑝𝑟𝑠
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑝𝑃𝑀𝐶𝑝

𝑟𝑠(𝐟)

Step 3: Obtain the auxiliary flow pattern 𝒈(𝒇𝛽) by assigning all the demand 𝐷𝑟𝑠∀(𝑟, 𝑠) onto 𝑝𝑟𝑠
∗ .

Step 4: 𝒇𝛽+1 = 𝒇𝛽 (1 −
1

𝛽
) + 𝒈(𝒇𝛽)

1

𝛽

Step 5: Convergence check, if ‖𝒇𝛽+1 − 𝒇𝛽‖ < 𝜀 terminate. Otherwise go to step 1 and set 𝛽 = 𝛽 + 1.

26

Appendix B

Algorithm to approximate PMC

 From the QDNL solution, obtain the turn demands 𝑺′, and the link reduction

factors 𝜶𝒃𝒂𝒔𝒊𝒄

 For all nodes n in the network:

o For all turn movements 𝑚𝑎,𝑏 at node n:

 Add 1 perturbation unit to turn demand on 𝑚𝑎,𝑏 (keeping the other turn

demands unchanged)

 Run the node model and calculate all 𝛼𝑎′,𝑚𝑎,𝑏
+1 , ∀𝑎′ ∈ 𝐴𝑛

𝑖𝑛

 Store the relative changes to 𝛼𝑎′
𝑏𝑎𝑠𝑖𝑐(as a result of unit perturbation on

movement 𝑚𝑎,𝑏) in variable ∆𝛼𝑎′,𝑚𝑎,𝑏
+1 , ∀𝑎′ ∈ 𝐴𝑛

𝑖𝑛

 For all O-D pairs (𝑟, 𝑠):
o For all paths 𝑝 ∈ 𝑃𝑟𝑠 ∶

 Initiate perturbation of size 1 on the first link of the path, 𝜉𝑉1
𝑝
,𝑝 = 1;

 For all movements on path p, 𝑚𝑎,𝑏 ∈ 𝑀
𝑝, (𝑎 = 𝑉𝑖

𝑝
, 𝑏 = 𝑉𝑖+1

𝑝
 , 𝑎 ∈ 𝐴𝑛

𝑖𝑛, 𝑏 ∈

𝐴𝑛
𝑜𝑢𝑡, 𝑛 𝜖𝑁𝑝):
o For all in-links to node n, 𝑎′ ∈ 𝐴𝑛

𝑖𝑛 ∶

 Compute 𝛼𝑎′,𝑝
𝑛𝑒𝑤 = (1 + 𝜉𝑎,𝑝 ∗ ∆𝛼𝑎′,𝑚𝑎,𝑏

+1) ∗ 𝛼𝑎′
𝑏𝑎𝑠𝑖𝑐

(𝑎′ ∈ 𝐴𝑛
𝑖𝑛, 𝑎 = 𝑉𝑖

𝑝
, 𝑏 = 𝑉𝑖+1

𝑝
)

o For all paths 𝑝′ that use links 𝑎′, ∀𝑎′ ∈ 𝐴𝑛
𝑖𝑛, ∀𝑝′ ∈ 𝑃𝑎′ && 𝑝′ ≠ 𝑝:

 Compute the share of externality happening on link 𝑎′ of

path 𝑝′ when perturbation reaches node n on path p

𝜆
𝑎′,𝑝′
𝑛,𝑝

=
𝑇

2
∗

−1

∏ 𝛼𝑎
𝑏𝑎𝑠𝑖𝑐

𝑎∈𝑉𝑝
′

∗ (
𝛼
𝑎′,𝑝
𝑛𝑒𝑤−𝛼

𝑎′
𝑏𝑎𝑠𝑖𝑐

𝜉
𝑉1
𝑝
,𝑝

∗
1

𝛼
𝑎′
𝑏𝑎𝑠𝑖𝑐) ∗ 𝑓𝑝′

 (∀𝑎′ ∈ 𝐴𝑛
𝑖𝑛, ∀𝑝′ ∈ 𝑃𝑎′ , 𝑝

′ ≠ 𝑝, 𝑛 ∈ 𝑁𝑝)
o Update the value of perturbation that can pass through link a, on

path p, and reach the next link on the path, according to 𝛼𝑎
𝑛𝑒𝑤

 𝜉𝑏,𝑝 = 𝜉𝑎,𝑝 ∗ 𝛼𝑎,𝑝
𝑛𝑒𝑤 (𝑎 = 𝑉𝑖

𝑝
, 𝑏 = 𝑉𝑖+1

𝑝)

 Compute Total Externality of path p:

𝐸𝑝(𝐟) = ∑ ∑ ∑
𝑇

2
∗

−1

∏ 𝛼𝑎
𝑏𝑎𝑠𝑖𝑐

𝑎∈𝑉𝑝
′

∗ (∑
𝛼𝑎′,𝑝
𝑛𝑒𝑤 − 𝛼𝑎′

𝑏𝑎𝑠𝑖𝑐

𝜉𝑉1
𝑝
,𝑝

∗
1

𝛼𝑎′
𝑏𝑎𝑠𝑖𝑐

𝑎′∈𝐴𝑛
𝑖𝑛

) ∗ 𝑓𝑝′

𝑝′∈𝑃𝑎′\𝑝𝑎′∈𝐴𝑛
𝑖𝑛𝑛∈𝑁𝑝

 Compute Internality on path p:

 𝐼𝑝(𝐟) = 𝑓𝑝 ∗ (
𝑇

2
∗

−1

∏ 𝛼𝑎
𝑏𝑎𝑠𝑖𝑐

𝑎∈𝑉𝑝
∗ (∑

𝛼𝑏,𝑝
𝑛𝑒𝑤−𝛼𝑏

𝑏𝑎𝑠𝑖𝑐

𝜉
𝑉1
𝑝
,𝑝

∗
1

𝛼𝑏
𝑏𝑎𝑠𝑖𝑐𝑏∈𝑉𝑝)) + 𝐶𝑝(𝐟)

 Compute marginal cost of path p:

 𝑃𝑀𝐶𝑝(𝐟) = 𝐼𝑝(𝐟) + 𝐸𝑝(𝐟)

