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ABSTRACT
This paper studies an optimal insurance and reinsurance design problem
among three agents: policyholder, insurer, and reinsurer. We assume that
the preferences of the parties are given by distortion risk measures, which
are equivalent to dual utilities. By maximizing the dual utility of the insurer
and jointly solving the optimal insurance and reinsurance contracts, it is
found that a layering insurance is optimal, with every layer being borne
by one of the three agents. We also show that reinsurance encourages
more insurance, and is welfare improving for the economy. Furthermore,
it is optimal for the insurer to charge the maximum acceptable insurance
premium to the policyholder. This paper also considers three other variants
of the optimal insurance/reinsurance models. The first two variants impose
a limit on the reinsurance premium so as to prevent insurer to reinsure all
its risk. An optimal solution is still layering insurance, though the insurer
will have to retain higher risk. Finally, we study the effect of competition by
permitting the policyholder to insure its risk with an insurer, a reinsurer, or
both. The competition from the reinsurer dampens the price at which an
insurer could charge to the policyholder, although the optimal indemnities
remain the same as the baseline model. The reinsurer will however not
trade with the policyholder in this optimal solution.
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1. Introduction

Many papers study the bilateral contract design problem to determine optimal reinsurance contracts
for a given risk of the insurer. This problem is first formally analyzed by Borch (1960) and Arrow
(1963), who both show that if the reinsurance premium is calculated by the expected value principle,
the stop-loss reinsurance treaty is the optimal strategy. The objective of Borch (1960) is to minimize
the variance of the retained loss of the insurer, and the objective of Arrow (1963) is to maximize
the expected utility of the terminal wealth of a risk-averse insurer. These pioneering results are later
extended to situation where there is a more sophisticated objective function and/or more realistic
premium principles (see, e.g. Young 1999, Gajek & Zagrodny 2000, 2004, Kaluszka 2001, 2005, Cai &
Tan 2007, Balbás et al. 2009, 2015, Chi 2012, Asimit et al. 2013, 2015, Cai et al. 2013, Forthcoming, Chi
& Tan 2013, Cui et al. 2013, Cheung et al. 2014, 2015, Bernard et al. 2015, Cheung et al. 2015, Boonen
et al. 2016, Weng & Zhuang Forthcoming). In the above-mentioned papers, the risk of the insurer is
typically given and the objective boils down to determining an optimal strategy of transferring part
of its risk to a reinsurer. In this paper, we relax this assumption by assuming the risk of the insurer is

CONTACT Tim J. Boonen t.j.boonen@uva.nl

© 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://
creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the
original work is properly cited, and is not altered, transformed, or built upon in any way.

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/03461238.2016.1184710&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


536 S. C. ZHUANG ET AL.

endogenously determined from bargaining with a policyholder. This is a more challenging problem
in that in addition to determining an optimal reinsurance, the insurer also needs to determine how
much risk to underwrite from the policyholder. The problem is therefore formulated as a three-party
problem involving policyholder, insurer, and reinsurer, and with the objective of jointly analyzing
the optimal insurance and optimal reinsurance from the point of view of the insurer. To the best
of our knowledge, this is the first paper that studies insurance and reinsurance contract design
simultaneously.

In our baseline model, we assume that the insurer bargains with a policyholder to determine the
coverage and premium of the risk of the policyholder. The bargaining setting is similar to Raviv
(1979) but with some notable differences. We assume that both parties use dual utility as introduced
by Yaari (1987) and that the insurer has access to a reinsurance market. The reinsurer can take over a
part of the risk that the insurer bears, but cannot trade directly with the policyholder. In this baseline
model, we formally show that optimal insurance and reinsurance contracts exist. We find that an
optimal insurance contract is given by layering of the risk. Any layer is allocated to the one specific
party for which the corresponding distortion function isminimal at a given quantile. This observation
is in line with Pareto optimal risk sharing (Jouini et al. 2008, Ludkovski & Young 2009) and bilateral
reinsurance contract design with a given distortion premium principle (Cui et al. 2013). We also
establish that the exclusive accessibility to a secondary reinsurance market encourages insurance and
that the insurer might profit more from selling coverage to a policyholder, and reselling a part of
the risk to a reinsurer. Analytic expression for the extra profit in the presence of reinsurance is also
derived.

Using the baseline model as the benchmark, we additionally consider three other variations of the
optimal insurance–reinsurancemodels. Thefirst two variants impose an additional (linear) constraint
on how much risk an insurer could cede its risk to a reinsurer. This can be controlled by ensuring
that the reinsurance premium does not exceed a certain pre-set dollar amount or a certain fractional
amount of the insurance premium received. The motivation for imposing such constraint can be
internal or external. In general, it is costly for an insurer to reinsure its risk and hence internally
controlling the reinsurance budget relates to controlling the insurer’s profitability. Externally, the
regulator may impose a limit on reinsurance budget so as to prevent a situation where the insurer
merely acts as an intermediary by transferring all the risk from the policyholder to reinsurer and
reaping the profit margin. As we will discuss in greater details in Section 4, the presence of the
reinsurance premium budget can have a non-trivial effect on the optimal risk sharing among all three
stakeholders, depending on how we formulate the reinsurance premium constraint. Consistent with
our intuition, the presence of the budget constraint forces insurer to retain higher risk.

A key assumption in our baseline model is that only the insurer has the exclusive access to the
reinsurancemarket. Our third variant of themodel is to relax this assumption so that the policyholder
has the option of insuring its risk to an insurer, to a reinsurer, or to both. In this setting, the increase
competition implies that the insurer can no longer charge the highest attainable insurance premium
to the policyholder. In fact, the insurance premium charged by the insurer needs to be competitive in
order to discourage policyholder fromchanneling its risk to the reinsurer.Our analytic results confirm
this observation (see Section 5). It should be emphasized that the observation that competition
reduces prices is well known in economics (see, e.g. Bertrand 1883), but we are the first one to
show this analytically in the context of insurance–reinsurance design. We also formally establish
that competition does not affect the optimal indemnity contracts (compared to unconstrained case),
although the prices are lower and hence benefit policyholders.

The remaining of the paper is organized as follows. Section 2 introduces themodel setup. Section 3
presents our proposed baseline model and derives its solutions. Section 4 discusses our first two
variants of the baseline model and Section 5 analyzes the solution where policyholder has equal
access to the secondary reinsurance market. Section 6 concludes the paper and the Appendix 1
collects proofs to the lemmas.
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2. Model setup

Let (�, F,P) be a probability space. Since our model involves three agents, namely the policyholder,
the insurer, and the reinsurer, it is convenient to use the notations P, I ,R, to represent these agents,
respectively. We assume that a policyholder with an initial wealth of WP ∈ R faces a non-negative,
bounded risk X, which has a support on [0,M] for some M > 0. We denote L∞ as the class of
bounded random variables on (�, F,P). A risk measure is called a distortion risk measure with
distortion function g ∈ G, denoted by ρg , if and only if it admits the following representation

ρg (Z) = −Eg [−Z] :=
∫ ∞

0
g(SZ(z))dz +

∫ 0

−∞
[
g(SZ(z)) − 1

]
dz, (1)

for random variables Z ∈ L∞,1 where SZ(z) = 1 − FZ(z), g ∈ G, and2

G :=
{
g : [0, 1] → [0, 1]

∣∣∣g is increasing and left continuous, g(0) = 0 and g(1) = 1
}

.

Note that the second term in (1) vanishes for non-negative risk. Distortion risk measures are based
on dual utilities (Yaari 1987), and are introduced byWang et al. (1997) as a premium principle. If the
distortion function g is concave, the distortion risk measure is coherent, as defined by Artzner et al.
(1999).

Two risks Y ,Z ∈ L∞ are comonotonic if there exist a common random variableQ and increasing
functions f1, f2 such that (Y ,Z)

d= (f1(Q), f2(Q)). Furthermore, distortion risk measures ρg satisfy the
following properties:

• Comonotonic additivity: ρg (Y +Z) = ρg (Y)+ρg (Z) for two comonotonic random variables
Y ,Z ∈ L∞;

• Translation invariance: ρg (Z + c) = ρg (Z) + c for any constant c ∈ R and random variable
Z ∈ L∞.

Comonotonic additivity means that if two random variables are ‘perfectly’ dependent, there is no
benefit from pooling them. Translation invariance states that we can interpret the risk measure in
terms of a monetary amount. These two properties of distortion risk measures are well known in the
literature (Wang et al. 1997) and results to be presented shortly rely heavily on these properties.

Based on the distortion function, we define the general distortion premium principle for the
reinsurer as

πk(Y) := (1 + θ)ρgk (Y) =
∫ ∞

0
h(SY (z))dz, for all non-negative Y ∈ L∞, (2)

where the constant θ ≥ 0, gk ∈ G andh(s) := (1+θ)gk(s) for s ∈ [0, 1].When gk(s) = s, the distortion
premium principle recovers the expected value premium principle and θ can be interpreted as the
safety loading of the reinsurer. Furthermore, when the distortion function is concave with θ = 0,
the distortion premium principle recovers Wang’s premium principle. Note that h is not a distortion
function if θ > 0 as h(1) = 1+ θ > 1. It is shown by Boonen et al. (2015) that this premium principle
can be representative for multiple reinsurers in markets where there are multiple reinsurers that all
use distortion premium principles.

We assume the policyholder wishes to insure a part of its risk X with an insurer who has an initial
wealth of WI ∈ R. Mathematically, an insurance indemnity fI partitions the risk X into fI(X) and

1Literally, distortion risk measures are given by (1) whenever the integrals converge. In this paper, we ignore this issue, and focus
only on risks in L∞ .

2Throughout this paper, by an ‘increasing’ function we mean a ‘non-decreasing’ function, namely: g is increasing if g(x) ≥ g(y)
whenever x > y. We say g is ‘strictly increasing’ if g(x) > g(y) whenever x > y. Similar conventions are used for ‘decreasing’ and
‘strictly decreasing’ functions.
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X − fI(X), where fI(X) represents the portion of loss that is ceded to an insurer, and X − fI(X) is the
residual loss retained by the policyholder. In this paper, we require that fI( · ) belongs to the following
set FM̂ :

FM̂ := {f ( · ) : f (0) = 0, 0 ≤ f (x) − f (y) ≤ x − y, ∀ 0 ≤ y < x ≤ M̂}. (3)

for 0 ≤ M̂ ≤ M. That is, the loss functions fI(z) and z − fI(z) are increasing and any incremental
compensation is always less than or equal to the incremental loss. These are desirable properties on
the ceded loss function fI(z) as these conditions discourage moral hazard of the policyholder (Denuit
and Vermandele 1998, Huberman et al. 1983). Under the insurance arrangement, the final wealth
for the policyholder is WP − X + fI(X) − πI(fI(X)) and the final wealth for the insurer becomes
WI − fI(X)+πI(fI(X)), where πI(fI(X)) represents the premium charged by the insurer for insuring
the ceded risk fI(X).

As part of a prudent risk management strategy, we assume that at the time of insuring risk fI(X)

from the policyholder, the insurerwishes to reinsure its riskwith a reinsurer. This implies thatwith the
reinsurance, the risk fI(X) is further partitioned into fR(fI(X)) and fI(X)− fR(fI(X)), where fR(fI(X))

captures the stochastic loss that is ceded to a reinsurer and fI(X) − fR(f (X)) is the net residual loss
retained by the insurer. The final wealth for the insurer becomesWI − fI(X)+πI(fI(X))+ fR(fI(X))−
πR(fR(fI(X))) where πR(fR(fI(X))) corresponds to the reinsurance premium defined in (2). In this
paper, we require that

(fI , fR) ∈ {
(f̂I , f̂R) : f̂I ∈ FM , f̂R ∈ Ff̂I (M)

} := F2.

We further assume that the policyholder and the insurer are endowed with dual utility (Yaari 1987).
Maximizing dual utility of gains ismathematically equivalent tominimizing a distortion riskmeasure
of losses. Therefore, the utilities of the policyholder and the insurer are given by

Uk(W) := −ρgk ( − W) := Egk [W], k ∈ {P, I}.

Note that we do not require concavity of the distortion function, which allows us to focus on
preferences derived from value-at-risk as well.

3. The baseline insurance–reinsurance problem

In this section, we first present our proposed insurance–reinsurance model that jointly integrates
policyholder’s insurance decision, insurer’s reinsurance decision, as well as the corresponding
optimal insurance premium. More specifically, our proposed optimal insurance–reinsurance model
is formally stated as follows:

max
fI ,fR ,πI

EgI
[
WI − fI(X) + πI(fI(X)) + fR(fI(X)) − πR(fR(fI(X)))

]
,

s.t. (fI , fR) ∈ F2,πI(fI(X)) ≥ 0,
EgP [WP − X + fI(X) − πI(fI(X))] ≥ EgP [WP − X].

(4)

In the above model, the objective function ensures that the insurer’s dual utility is maximized in the
presence of both insurance and reinsurance. The left- and right-hand sides of the second constraint
measure the welfare of the policyholder with and without insurance. The former is at least as great
as the latter to provide an incentive for the policyholder to participate in insurance. For this reason,
this constraint can be interpreted as the insurance participation constraint. The above formulation of
the insurance–reinsurance model represents the baseline of our proposed model. In our subsequent
analysis, we will consider three other models that are variants of the baseline model.
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Proposition 3.1 belowfirst asserts that the participation constraint leads to a closed formexpression
of the insurance premium while Theorem 3.1 gives the optimal f ∗

R ( · ) and f ∗
I ( · ) analytically.

Proposition 3.1: Every solution to (4) is such that πI(fI(X)) = −EgP [−fI(X)] = ρgP (fI(X)).
Proof: If we fix fI(X), then the objective function in (4) is strictly increasing and continuous in
πI(fI(X)) and the left-hand side of the last constraint is strictly decreasing and continuous in
πI(fI(X)). This implies if a solution exists, it is such that the participation constraint is binding,
i.e.

EgP [WP − X + fI(X) − πI(fI(X))] = EgP [WP − X].

Since EgP satisfies the properties, translation invariance and comonotonic additivity, we have

πI(fI(X)) = −EgP [−fI(X)] = ρgP (fI(X))

and this concludes the proof. �
We denote π∗

I (fI(X)) = ρgP (fI(X)) as the indifference pricing function, which is characterized
in Proposition 3.1. We now draw some remarks on this proposition. Firstly, the insurance premium
charged by the insurer is the highest acceptable premium that the policyholder is willing to pay
for insurance coverage. At this level of insurance premium, the policyholder is indifferent between
insurance and no insurance. Secondly, it follows from Proposition 3.1 that π∗

I (fI(X)) is a special case
of the general distortion premium principle defined in (2) with distortion function gP and θ = 0.
Finally, the insurance premium charged by the insurer depends on the policyholder’s distortion
function. This should not be surprising since to have insurance, the policyholder needs to go through
an underwriting process and hence any risk pertaining to the policyholder should be reflected in its
distortion function, and hence its insurance premium.

From the definition of the distortion risk measure and for any fI ∈ FM , we have

π∗
I (fI(X)) =

∫ M

0
gP(SX(z))dfI(z).

See Zhuang et al. (2016, Lemma 2.1 therein) for a detailed proof. Hence, we use a unique and non-
negative pricing kernel to price risk. Together with Proposition 3.1, this implies that our baseline
model (4) can be reformulated as:

max
fI ,fR

EgI
[
WI − fI(X) + π∗

I (fI(X)) + fR(fI(X)) − πR(fR(fI(X)))
]
,

s.t. (fI , fR) ∈ F2.
(5)

Note that apart from the admissibility condition on the shape of the indemnity contracts (fI , fR) ∈ F2,
there is no other constraint. Theorem below provides the solution of our proposed baseline problem:

Theorem 3.1: The solution to (4) is given by f ∗
R ( · ) and f ∗

I ( · ) such that

(f ∗
I )′(z) a.e.=

⎧⎪⎨⎪⎩
1, if min{gI(SX(z)), h(SX(z))} < gP(SX(z)),

η(z) if min{gI(SX(z)), h(SX(z))} = gP(SX(z)),
0, if min{gI(SX(z)), h(SX(z))} > gP(SX(z)),

(6)



540 S. C. ZHUANG ET AL.

and

(f ∗
R )′(f ∗

I (z)) a.e.=

⎧⎪⎨⎪⎩
1, if h(SX(z)) < gI(SX(z)),

κ(f ∗
I (z)), if h(SX(z)) = gI(SX(z)),

0, if h(SX(z)) > gI(SX(z)),

(7)

where κ(f ∗
I (z)) and η(z) are any [0, 1]-valued function on

{
z ∈ [0,M] : h(SX(z)) = gI(SX(z))

}
and{

z ∈ [0,M] : min{gI(SX(z)), h(SX(z))} = gP(SX(z))
}
, respectively.

Proof: Since a distortion risk measure is translation invariant, this implies thatWI can be removed
from (5). Moreover, it is easy to verify that the objective of (5) is equivalent to∫ M

0
gP(SX(z))dfI(z) −

∫ M

0
gI(SX(z))dfI(z) +

∫ M

0
gI(SX(z))dfR(fI(z)) −

∫ M

0
h(SX(z))dfR(fI(z)),

(8)

which in turn leads to∫ M

0
m(z)dfI(z) +

∫ M

0
n(z)dfR(fI(z)) =

∫ M

0
m(z)f ′

I (z)dz +
∫ M

0
n(z)f ′

R(fI(z))f ′
I (z)dz, (9)

wherem(z) := gP(SX(z))−gI(SX(z)) and n(z) := gI(SX(z))−h(SX(z)). Assuming fI ∈ FM is given,
then the optimal f ∗

R is of the following form:

(f ∗
R )′(fI(z))

a.e.=

⎧⎪⎨⎪⎩
1, if n(z)f ′

I (z) > 0,

κ(fI(z)), if n(z)f ′
I (z) = 0,

0, if n(z)f ′
I (z) < 0.

(10)

where κ(fI(z)) can be any [0, 1]-valued function on {z ∈ [0, fI(M)] : n(z)f ′
I (z) = 0}. Note that

fR is defined on [0, fI(M)]. By fixing f ∗
R as in (10), it follows that

∫ M
0 n(z)(f ∗

R )′(fI(z))f ′
I (z)dz =∫ M

0 n+(z)f ′
I (z)dz, where n

+(z) := max{0, n(z)}. Therefore, (9) reduces to∫ M

0
m(z)f ′

I (z)dz +
∫ M

0
n+(z)f ′

I (z)dz =
∫ M

0

(
m(z) + n+(z)

)
f ′
I (z)dz.

It is easy to derive that the optimal f ∗
I is given by

(f ∗
I )′(z) a.e.=

⎧⎪⎨⎪⎩
1, ifm(z) + n+(z) > 0,

η(z), ifm(z) + n+(z) = 0,
0, ifm(z) + n+(z) < 0,

(11)

where η(z) can be any [0, 1]-valued function on {z ∈ [0,M] : m(z) + n+(z) = 0}. Moreover, the
optimal objective value of problem (5) becomes

∫ M
0

(
m(z) + n+(z)

)+dz.
Note that {z ∈ [0,M] : m(z) + n+(z) > 0} = {z ∈ [0,M] : n(z) > 0,m(z) + n(z) > 0} ∪ {z ∈

[0,M] : n(z) ≤ 0,m(z) > 0} = {z ∈ [0,M] : min{gI(SX(z)), h(SX(z))} < gP(SX(z))}. Therefore, we
obtain the solutions in (6) and (7) from (10) and (11), and from substituting the definitions of the
functionsm and n. �

Theorem 3.1 can be seen as an extension of Cui et al. (2013) to the case that there are three parties
involved in sharing the policyholder’s risk exposureX.With only two parties involved in risk sharing,
Cui et al. (2013) similarly show that layering is an optimal reinsurance contract.
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To continue, it is useful to define the following sets {K1,K2,K3} and {Q1,Q2,Q3,Q4}. As we will
see shortly, the risk borne by the three agents can be expressed succinctly in terms of these sets:

K1 := {
z ∈ [0,M] : gI(SX(z)) < min{gP(SX(z)), h(SX(z))}}

K2 := {
z ∈ [0,M] : gP(SX(z)) < min{h(SX(z)), gI(SX(z))}}

K3 := {
z ∈ [0,M] : h(SX(z)) < min{gP(SX(z)), gI(SX(z))}}

Q1 := {
z ∈ [0,M] : gI(SX(z)) = gP(SX(z)) = h(SX(z))

}
Q2 := {

z ∈ [0,M] : h(SX(z)) = gI(SX(z)) < gP(SX(z))
}

Q3 := {
z ∈ [0,M] : gP(SX(z)) = gI(SX(z)) < h(SX(z))

}
Q4 := {

z ∈ [0,M] : gP(SX(z)) = h(SX(z)) < gI(SX(z))
}
,

By construction, we have
( ∪i=3

i=1 Ki
) ∪ ( ∪j=4

j=1 Qi
) = [0,M], and that the sets are all disjoint from

each other. It follows from Theorem 3.1 that the posterior risk of the policyholder, reinsurer, and
insurer can be expressed explicitly as

1 − (f ∗
I )′(z) a.e.=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if z ∈ K2,

u1(z), if z ∈ Q1,
u2(z), if z ∈ Q4,
u3(z), if z ∈ Q3,
0, otherwise,

(12)

(
f ∗
R (f ∗

I (z))
)′ a.e.=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if z ∈ K3,

v1(z), if z ∈ Q1,
v2(z), if z ∈ Q2,
v3(z), if z ∈ Q4,
0, otherwise,

(13)

(
f ∗
I (z) − f ∗

R (f ∗
I (z))

)′ a.e.=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if z ∈ K1,

w1(z), if z ∈ Q1,
w2(z), if z ∈ Q3,
w3(z), if z ∈ Q2,
0, otherwise,

(14)

where u1(z) + v1(z) + w1(z) = 1 for z ∈ Q1, v2(z) + w3(z) = 1 for z ∈ Q2, u3(z) + w2(z) = 1
for z ∈ Q3 and u2(z) + v3(z) = 1 for z ∈ Q4. Note that the risk retained by the insurer is given by
f ∗
I (X) − f ∗

R (f ∗
I (X)).

It is of interest to point out that the presence of a reinsurer leads to more insurance coverage, as
can be inferred fromTheorem 3.1. The profit of the insurer, as attributed to the presence of insurance
and reinsurance, can be defined as

EgI
[
WI − f ∗

I (X) + π∗
I (f ∗

I (X)) + f ∗
R (f ∗

I (X)) − πR(f ∗
R (f ∗

I (X)))
] − EgI

[
WI

]
.

Not surprisingly, the insurer makes more profit if there is a reinsurer, as formally asserted in the
following proposition:
Proposition 3.2: The insurer makes more profit if there is a reinsurer, and the extra profit is given
by −Emin{gP ,gI }[−f ∗

R (f ∗
I (X))] − πR(f ∗

R (f ∗
I (X))) ≥ 0.
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Proof: Note that the profit does not depend on initial wealthWI andhencewithout loss of generality,
we letWI = 0. The profit of the insurer, in the presence of reinsurer, is given by

EgI
[ − f ∗

I (X) + π∗
I (f ∗

I (X)) + f ∗
R (f ∗

I (X)) − πR(f ∗
R (f ∗

I (X)))
]

= EgI
[ − f ∗

I (X) + f ∗
R (f ∗

I (X))
] − EgP ( − f ∗

I (X)) + (1 + θ)EgR( − f ∗
R (f ∗

I (X)))

= Emin{gP ,gI ,h}[ − f ∗
I (X) + f ∗

R (f ∗
I (X))

] − EgP [−f ∗
I (X)] + (1 + θ)EgR(f ∗

R (f ∗
I (X)))

= Emin{gP ,gI ,h}[ − X + f ∗
R (f ∗

I (X))
] − EgP [−X] − (1 + θ)EgR(f ∗

R (f ∗
I (X)))

= Emin{gP ,gI ,h}[ − X
] − EgP [−X],

where the second equality follows from gI = min{gP , gI , h} on the domain where(
f ∗
I (z) − f ∗

R (f ∗
I (z))

)′
> 0 (see (14)), and the third equality follows from adding EgP [−X + f ∗

I (X)] to
both sides of the equation, and the fact that gP = min{gP , gI , h} on the domain where 1− (f ∗

I )′(z) > 0
(see (12)).

If the reinsurer does not participate, we deduce in the same manner as in Theorem 3.1 that the
optimal insurance contract, denoted by f̂ ∗

I (X), has the following form:

(f̂ ∗
I )′(z) a.e.=

⎧⎪⎨⎪⎩
1, if gI(SX(z)) < gP(SX(z)),

η(z) if gI(SX(z)) = gP(SX(z)),
0, if gI(SX(z)) > gP(SX(z)),

for all z ∈ [0,M], where η(z) is any [0, 1]-valued function on {z ∈ [0,M] : gI(SX(z)) = gP(SX(z))}.
Then, we obtain directly that

EgI
[ − f̂ ∗

I (X) + π∗
I (f̂ ∗

I (X))
] = EgI

[ − f̂ ∗
I (X)

] − EgP ( − f̂ ∗
I (X))

= Emin{gP ,gI }[ − X
] − EgP [−X].

Hence, the extra profit is given by

Emin{gP ,gI ,h}[ − X
] − EgP [−X] −

(
Emin{gP ,gI }[ − X

] − EgP [−X]
)

= Emin{gP ,gI ,h}[ − X
] − Emin{gP ,gI }[ − X

]
= Emin{gP ,gI }[ − X + f ∗

R (f ∗
I (X))

] − πR(f ∗
R (f ∗

I (X)))

− Emin{gP ,gI }[ − X + f ∗
R (f ∗

I (X))
] − Emin{gP ,gI }[ − f ∗

R (f ∗
I (X))

]
= −Emin{gP ,gI }[−f ∗

R (f ∗
I (X))] − πR(f ∗

R (f ∗
I (X))).

where the second equality follows from the fact that we get from (13) that h = min{gP , gI , h} on the
domain where

(
f ∗
R (f ∗

I (z))
)′

> 0. This concludes the proof. �
Remark 1: Suppose we introduce a reservation utility uP ≥ EgP [WP − X]. This affects the pricing
function in Proposition 3.1 by a constant, i.e. if EgP [WP − X + fI(X) − πI(fI(X))] ≥ uP , then
πI(fI(X)) = (uP − EgP [WP − X]) + EgP [fI(X)] for all fI ∈ FM . We note that the indemnities in
Theorem 3.1 still hold, but insuring might no longer be rational for the insurer. Hence, we need to
check that the profit for the insurer is non-negative of the solution from Theorem 3.1. If it is negative,
the only optimal indemnity contract is f ∗

I (z) ≡ 0; i.e. no insurance.
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4. The effect of imposing reinsurance premium budget

The baseline model that we analyzed in the previous section does not have any restriction on
how much an insurer could spend on reinsurance. In practice, it may be desirable to impose a
reinsurance premium budget constraint, either due to internal or external reasons. In general, it is
costly for an insurer to reinsure its risk and hence internally controlling the reinsurance budget relates
to controlling the insurer’s profitability (Cheung & Lo Forthcoming). Externally, the reinsurance
premium budget can be imposed by the regulator to prevent a situation where the insurer merely
acts as an intermediary by transferring all the risk from the policyholder to reinsurer and reaping the
profit margin. Motivated by these arguments, this section studies two variants of our baseline model
depending on how we incorporate the reinsurance premium budget constraint. Section 4.1 imposes
the premium budget in terms of dollar amount while Section 4.2 expresses the reinsurance premium
budget based on a certain percentage of the insurance premium collected. In addition to deriving the
analytic solutions of these models, the effects of the imposed reinsurance premium budget are also
discussed.

4.1. Reinsurance premiumbudget in terms of dollar amount

In this subsection, we study the optimal insurance–reinsurance model by assuming that the insurer
can only spend a given amountC ≥ 0 on reinsurance. Recall that in a bilateral contract design between
insurer and reinsurer, this problem is studied by Cui et al. (2013), and Cheung & Lo (Forthcoming).

In our setting, the constraint on the reinsurance premium can easily be incorporated by explicitly
introducing an additional constraint to our proposed baseline model, as shows below:

max
fI ,fR ,πI

EgI
[
WI − fI(X) + πI(fI(X)) + fR(fI(X)) − πR(fR(fI(X)))

]
,

s.t. (fI , fR) ∈ F2,πI(fI(X)) ≥ 0,
EgP [WP − X + fI(X) − πI(fI(X))] ≥ EgP [WP − X],
πR

(
fR(fI(X))

) ≤ C.

(15)

As in Proposition 3.1, the insurance premium is given by π∗
I (fI(X)) = ρgP (fI(X)) for all fI ∈ FM . If

there exist f ∗
I and f ∗

R solving problem (4) such that πR
(
f ∗
R (f ∗

I (X))
) ≤ C, then f ∗

I and f ∗
R are also the

solutions to problem (15). Therefore, we define C̄ := inf {πR
(
f ∗
R (f ∗

I (X))
) : (f ∗

I , f
∗
R ) solves (4)}. Based

on (13) in Theorem 3.1, it follows that C̄ = ∫
K3

h(SX(z))dz. Without loss of generality, we assume
that C ≤ C̄. Similarly, problem (15) can be reduced to

max
fI ,fR

∫ M
0 m(z)dfI(z) + ∫ M

0 n(z)dfR(fI(z)),

s.t. (fI , fR) ∈ F2,∫ M
0 h(SX(z))dfR(fI(z)) ≤ C,

(16)

where we recall from the proof of Theorem 3.1 that m(z) = gP(SX(z)) − gI(SX(z)) and n(z) =
gI(SX(z)) − h(SX(z)) for z ∈ [0,M]. Note that the objective and constraint are linear in (fI , fR). By
introducing a Lagrangian multiplier to the constraint, we obtain the following auxiliary problem:

max
fI ,fR

∫ M
0 m(z)dfI(z) + ∫ M

0 n(z)dfR(fI(z)) − λ
( ∫ M

0 h(SX(z))dfR(fI(z)) − C
)
,

s.t. (fI , fR) ∈ F2.
(17)

Now setting nλ(z) := n(z) − λh(SX(z)), then (17) reduces to the following problem

max
fI ,fR

∫ M
0 m(z)dfI(z) + ∫ M

0 nλ(z)dfR(fI(z)),

s.t. (fI , fR) ∈ F2.
(18)
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For a given λ, we can apply the proof of Theorem 3.1 by changing h(SX(z)) to (1+ λ)h(SX(z)) to get
all solutions (f λ

I , f
λ
R ) that solve (18) explicitly. Or, equivalently, (f λ

I , f
λ
R ) satisfies Equations (12), (13),

and (14) with h(SX(z)) being replaced by (1+λ)h(SX(z)) in Ki for i = 1, 2, 3 andQj for j = 1, 2, 3, 4.
Then, we need to find a λ∗ > 0 such that

∫ M
0 h(SX(z))df λ∗

R (f λ∗
I (z)) = C for a certain pair (f λ∗

I , f λ∗
R )

which solves (18) under λ∗. For any C ≤ C̄, let us define AC :=
{
λ ≥ 0 : there exists (f λ

I , f
λ
R ) solving

(18) under λ with
∫ M
0 h(SX(z))df λ

R (f λ
I (z)) = C

}
and λC := sup

{
λ ≥ 0 : λ ∈ AC

}
.

Lemma 4.1: When C ≤ C̄, there exists a λ∗ > 0 such that (f λ∗
I , f λ∗

R ) solving problem (18) with∫ M
0 h(SX(z))df λ∗

R (f λ∗
I (z)) = C. For all C ≤ C̄, it holds that λC is decreasing in C.

Proof: The techniques in the proof for the first part of this lemma are analogous to Xu et al. (2015).
We relegate the proof to the Appendix 1 of this paper. �

It follows from Lemma 4.1 that for any given C ≤ C̄, f λC
I and f λC

R are the optimal solutions to
problem (16), or problem (15). Here, λ∗ is interpreted as shadow prices, i.e. if we increase C by 1, the
profit of the insurer increased by λ∗.
Proposition 4.1: We get for all (f ∗

I , f
∗
R ) ∈ F2 solving (4) that there exists a pair of solution (f λC

I , f λC
R )

such that

(i) f λC
I (X) ≤ f ∗

I (X);
(ii) f λC

I (X) − f λC
R (f λC

I (X)) ≥ f ∗
I (X) − f ∗

I (f ∗
R (X)).

Moreover, f λC
I (X) is increasing and f λC

I (X) − f λC
R (f λC

I (X)) is decreasing in C.
Proof: Let the pair (f ∗

I , f
∗
R ) ∈ F2 solve (4). Let us consider problem (15) under C1 and C2 with

C1 ≤ C2 ≤ C̄. Lemma 4.1 implies that λC1 and λC2 exist, and are positive with λC1 ≥ λC2 .
Then, by denoting hλ(z) := (1 + λ)h(SX(z)), we have hλC1 (SX(z)) ≥ hλC2 (SX(z)). Therefore, it
follows that

{
z ∈ [0,M] : gP(SX(z)) > min{gI(SX(z)), hλC2 (SX(z))}} ⊇ {

z ∈ [0,M] : gP(SX(z)) >
min{gI(SX(z)), hλC1 (SX(z))}}. When we apply Theorem 3.1 with η(z) common for both problems,
we get (f

λC1
I )′(z) ≤ (f

λC2
I )′(z) for all z ∈ [0,M]. This, together with f

λC2
I (0) = f

λC1
I (0) = 0, leads to

f
λC1
I (X) ≤ f

λC2
I (X).

We now verify the second inequality, i.e. f
λC1
I (X) − f

λC1
R (f

λC1
I (X)) ≥ f

λC2
I (X) − f

λC2
I (f

λC2
R (X)).

We again show this via the derivatives, i.e. we show that (f
λC1
I )′(z) − (f

λC1
R (f

λC1
I (z)))′ ≥ (f

λC2
I )′(z) −

(f
λC2
R (f

λC2
I (z)))′. We get from Theorem 3.1 that:

(f λC
I )′(z) − (f λC

R (f λC
I (z)))′ =

⎧⎨⎩
1 if z ∈ {

z ∈ [0,M] : gI(SX(z)) < min{gP(SX(z)), hλC (SX(z))}},
ζ(z) if z ∈ {

z ∈ [0,M] : gI(SX(z)) = min{gP(SX(z)), hλC (SX(z))}},
0 otherwise,

where we note that hλC (SX(z)) decreases in C and sets ζ(z) to be the same for both problems.
When C2 = C̄, the first part of this proposition follows easily as problem (15) reduces to the

baseline problem (5). This concludes the proof. �
The effects of imposing the reinsurance premium budget are clearly highlighted in Proposition

4.1. In particular, Part (i) of the proposition implies that the insurer is less aggressive in providing
insurance coverage to the policyholder since there is a limit on how much it could spend on
reinsurance. The situation is aggravated by the larger risk retained by both insurer and policyholder,
as asserted in Part (ii) of the proposition. These adverse effects diminish as the reinsurance premium
budget increases. Note also that since λ∗ > 0, there exists a M̂ > 0 such that we get for all (fI , fR) ∈ F2

solving problem (18) that fR(fI(z)) = 0 for all z ∈ [0, M̂]. Therefore, the insurer does not reinsure
the realizations of the risk X that are low.
Remark 2: Suppose there is a solvency requirement which requires the insurer to control its
exposure to the net insured risk (i.e. after reinsurance). Such additional requirement can be reflected
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in our proposed insurance–reinsurance problem (15) by explicitly imposing a solvency constraint
of the form ρ̂I(fI(X) − fR(fI(X))) ≤ Ĉ, where ρ̂I is a distortion risk measure with distortion
function ĝI and Ĉ is a constant. The Lagrangian method can similarly be used to solve the resulting
problem. In this case, we have the Lagrangian multiplier λ∗ ≥ 0 and this leads to the transformation
gI(SZ(z)) → gI(SZ(z)) + λ∗ĝI(SZ(z)), and the problem can be solved analogously to problem (15),
but with the distortion function of the insurer being increased by a factor (1 + λ∗). The presence of
the solvency constraint yields a lower retained risk for the insurer, but at the expense of higher risk
exposure for both the reinsurer and the policyholder.

4.2. Reinsurance premiumbudget as a function of insurance premium

In this subsection, we similarly study the baseline model except imposing the reinsurance premium
budget in termsof the percentage of the insurance premiumcollected.Weuse the parameterα ∈ (0, 1]
to capture the percentage of the insurance premium an insurer could spend on reinsurance. In this
setting, the generalized baseline model becomes

max
fI ,fR ,πI

EgI
[
WI − fI(X) + πI(fI(X)) + fR(fI(X)) − πR

(
fR(fI(X))

)]
,

s.t. (fI , fR) ∈ F2,πI(fI(X)) ≥ 0,
EgP [WP − X + fI(X) − πI(fI(X))] ≥ EgP [WP − X],
πR

(
fR(fI(X))

) ≤ απI(fI(X)).

(19)

The approach to solving the above model parallels to that in the previous subsection.We similarly
have the result that π∗

I (fI(X)) = ρgP (fI(X)) for all fI ∈ FM (cf. Proposition 3.1) and that if there
exist f ∗

I and f ∗
R solving problem (4) such that πR

(
f ∗
R (f ∗

I (X))
) ≤ απ∗

I
(
f ∗
I (X)

)
, then f ∗

I and f ∗
R are the

solutions to problem (19). Also, we assume that πR
(
f ∗
R (f ∗

I (X))
)
> απ∗

I
(
f ∗
I (X)

)
for all (f ∗

I , f
∗
R ) which

solve (4). We define ᾱ := inf
{πR(f ∗

R (f ∗
I (X)))

π∗
I (f ∗

I (X))
: (f ∗

I , f
∗
R ) solves problem (4)

}
. If π∗

I (f ∗
I (X)) = 0 and

πR
(
f ∗
R (f ∗

I (X))
) = 0, then we let πR(f ∗

R (f ∗
I (X)))

π∗
I (f ∗

I (X))
= 0. If π∗

I (f ∗
I (X)) = 0 and πR

(
f ∗
R (f ∗

I (X))
)
> 0, then we

let πR(f ∗
R (f ∗

I (X)))

π∗
I (f ∗

I (X))
= ∞. Without loss of generality, we assume that α ≤ ᾱ to exclude the trivial case.

Problem (19) can be reduced to

max
fI ,fR

∫ M
0 m(z)dfI(z) + ∫ M

0 n(z)dfR(fI(z)),

s.t. (fI , fR) ∈ F2,∫ M
0 h(SX(z))dfR(fI(z)) ≤ α

∫ M
0 gP(SX(z))dfI(z).

(20)

Similarly, applying a Lagrangian multiplier γ to the constraint leads to the following auxiliary
problem:

max
fI ,fR

∫ M
0 m(z)dfI(z) + ∫ M

0 n(z)dfR(fI(z)) − γ
( ∫ M

0 h(SX(z))dfR(fI(z)) − α
∫ M
0 gP(SX(z))dfI(z)

)
,

s.t. (fI , fR) ∈ F2.

(21)

Here, we assume γ > 0 since if γ = 0, then a solution of the unconstrained problem in Section 3 (i.e.
our baseline model) appears to satisfy the constraint. By denoting mγ (z) := m(z) + γαgP(SX(z))
and nγ (z) = n(z) − γ h(SX(z)), problem (21) reduces to the following problem

max
fI ,fR

∫ M
0 mγ (z)dfI(z) + ∫ M

0 nγ (z)dfR(fI(z)),

s.t. (fI , fR) ∈ F2.
(22)
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Using Theorem 3.1, we can obtain f γ
I and f γ

R which solve (22) explicitly. Then, we need to find γ ∗
such that

∫ M
0 h(SX(z))df γ ∗

R (f γ ∗
I (z)) = α

∫ M
0 gP(SX(z))df γ ∗

I (z). Analogous to Lemma 4.1, we have
the following lemma and its proof is relegated to the Appendix 1.
Lemma 4.2: When α ≤ ᾱ, there exists a γ ∗ > 0 such that (f γ ∗

I , f γ ∗
R ) solving (21) with∫ M

0
h(SX(z))df γ ∗

R (f γ ∗
I (z)) = α

∫ M

0
gP(SX(z))df γ ∗

I (z).

For α ≤ ᾱ, it follows from the above lemma that f γ ∗
I and f γ ∗

R are the optimal solutions to problem
(20), or problem (19).
Proposition 4.2: In the constrained problem (19), we get for all (f ∗

I , f
∗
R ) ∈ F2 solving (4) that there

exists a pair of solution (f γ ∗
I , f γ ∗

R ) solving (19) such that

(i) f γ ∗
R (f γ ∗

I (X)) ≤ f ∗
R (f ∗

I (X));
(ii) f γ ∗

I (X) − f γ ∗
R (f γ ∗

I (X)) ≥ f ∗
I (X) − f ∗

R (f ∗
I (X)).

Proof: Let the pair (f ∗
I , f

∗
R ) ∈ F2 solve (4). Lemma 4.2 asserts that γ ∗ exists and is positive. By

denoting hγ ∗
(z) := (1+ γ ∗)h(SX(z)) and gγ ∗,α

P (z) := (1+ αγ ∗)gP(SX(z)), then it follows that
{
z ∈

[0,M] : h(SX(z)) < min{gI(SX(z)), gP(SX(z))}} ⊇ {
z ∈ [0,M] : hγ ∗

(z) < min{gI(SX(z)), gγ ∗,α
P (z)}}.

When we apply Theorem 3.1 and using the same κ(z) for both problems, we get (f γ ∗
R (f γ ∗

I (z)))′ ≤
(f ∗
R (f ∗

I (z)))′ for all z ∈ [0,M]. This, and together with f γ ∗
R (f γ ∗

I (0)) = f ∗
R (f ∗

I (0)) = 0, leads to
f γ ∗
R (f γ ∗

I (X)) ≤ f ∗
R (f ∗

I (X)). This holds for all (f ∗
I , f

∗
R ) ∈ F2 solving (4) due to

{
z ∈ [0,M] : h(SX(z)) =

min{gI(SX(z)), gP(SX(z))}} ⊆ {
z ∈ [0,M] : hγ ∗

(z) > min{gI(SX(z)), gγ ∗,α
P (z)}}.

Let us continue with the second result, where we again let the pair (f ∗
I , f

∗
R ) ∈ F2 solve (4). We

show this via the derivatives, i.e. we show that (f γ ∗
I (z))′ − (f γ ∗

R (f γ ∗
I (z)))′ ≥ (f ∗

I )′(z) − (f ∗
R (f ∗

I (z)))′.
We get from Theorem 3.1 that:

(
f γ ∗
I

)′
(z) −

(
f γ ∗
R

(
f γ ∗
I (z)

))′ =

⎧⎪⎨⎪⎩
1 if z ∈ {

z ∈ [0,M] : gI(SX(z)) < min{hγ ∗
(z), gγ ∗,α

P (z)},
ζ(z) if z ∈ {

z ∈ [0,M] : gI(SX(z)) = min{hγ ∗
(z), gγ ∗,α

P (z)},
0 otherwise.

Thus, it is sufficient to show that hγ ∗
(z) and gγ ∗,α

P (z) increase in γ ∗, which are true by the definitions
of hγ ∗(z) and gγ ∗,α

P (z). This holds for all (f ∗
I , f

∗
R ) ∈ F2 solving (4) due to

{
z ∈ [0,M] : gI(SX(z)) =

min{h(z), gP(z)}
} ⊆ {

z ∈ [0,M] : gI(SX(z)) < min{hγ ∗
(z), gγ ∗,α

P (z)}}. This concludes the proof. �
Recall that the generalized baseline models (15) and (19) are similar in that both impose an

additional constraint on the reinsurance premium budget. They differ from each other merely on
how we explicitly construct the budget constraint. As a result, there are some similarities as well as
differences on the effect of the constraint on the resulting models. In particular, the presence of the
reinsurance premium budget constraint implies that the risk retained by the insurer is higher for
problem (19), as in problem (15). However, as opposed to problem (15), the risk that is transferred to
a reinsurer decreases and that the insurance coverage fI(X) is not necessarily increasing or decreasing
for problem (19).

5. The presence of competition from the reinsurer

The optimal insurance–reinsurance models that we have considered so far assume that reinsurer can
only trade with the insurer. What if we relax this assumption and permit direct bargaining between
the policyholder and the reinsurer? In other words, the policyholder has the option of insuring its
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risk exclusively with the insurer, or with the reinsurer, or with both. Under this setting, what are the
implications on its insurance decision as well as its insurance premium?

To address these issues, wemodify our baselinemodel by assuming that a part of the policyholder’s
risk could be traded directly to a reinsurer. Therefore, wewill determine a pricing functionπI : L∞ →
R instead of a single price of the optimal contract. Then, a plausible generalization of the baseline
model can be formulated as follows:

max
fI ,fR ,πI

EgI
[
WI − fI(X) + πI(fI(X)) + fR(fI(X)) − πR

(
fR(fI(X))

)]
,

s.t. (fI , fR) ∈ F2,πI(f̂I(X)) ≥ 0,∀f̂I ∈ FM ,
EgP [WP − X + f̂I(X) − πI(f̂I(X))] ≥ EgP [WP − X],∀f̂I ∈ FM ,
πI(f̂I(X)) ≤ πI

(
f̂I(X) − f̂R(f̂I(X))

) + πR
(
f̂R(f̂I(X))

)
,∀(f̂I , f̂R) ∈ F2.

(23)

It is important to note that the individual rationality constraints are adjusted such that it holds for
every insurance contract. The term πI(f̂I(X)) on the left-hand side of the third constraint represents
the cost to the policyholder for the insurer to provide the insurance coverage f̂I(X). This assumes that
the entire risk f̂I(X) is ceded exclusively to the insurer. Suppose now the same amount of risk f̂I(X) is
partitioned into two portions, i.e. f̂I(X) − f̂R(f̂I(X)) and f̂R(f̂I(X)), and that these two parts of the risk
are insured with the insurer and reinsurer, respectively. The right-hand side of the third constraint
therefore denotes the total cost to the policyholder if it were to insure its risk from both insurer and
reinsurer. The presence of this constraint ensures that it is economically cheaper for the policyholder
to simply deal exclusively with the insurer, even though the policyholder could also insure directly
with the reinsurer. For this reason, we refer this constraint as the competition constraint. Because
of this constraint, Proposition 3.1 does not need to hold, i.e. competition from the reinsurer implies
that the insurer may no longer able to charge the highest acceptable insurance premium and hence
the participation constraint may be slack.

We assume that πI is a linear pricing function. Then, the last constraint can be rewritten as
πI(f̂R(f̂I(X))) ≤ πR(f̂R(f̂I(X))),∀(f̂I , f̂R) ∈ F2. Since

{
f̂R(f̂I(X)) : (f̂I , f̂R) ∈ F2} = {̃

fI(X) : f̃I ∈ FM
}
,

and that distortion risk measures are comonotonic additive and translation invariant, problem (23)
can be reduced to

max
fI ,fR ,πI

EgI
[
WI − fI(X) + πI(fI(X)) + fR(fI(X)) − πR

(
fR(fI(X))

)]
,

s.t. (fI , fR) ∈ F2,πI(fI(X)) ≥ 0,
πI(f̂I(X)) ≤ −EgP [−f̂I(X)],∀f̂I ∈ FM ,
πI(f̂I(X)) ≤ πR(f̂I(X)),∀f̂I ∈ FM .

(24)

By defining the function gA(s) := min{gP(s), h(s)} for all s ∈ [0, 1], which is a distortion function, we
show that πI(f̂I(X)) = −EgA( − f̂I(X)) for all f̂I ∈ FM , as asserted in the proposition below:
Proposition 5.1: For every solution to (24), it holds that πI(f̂I(X)) = −EgA [−f̂I(X)] for all f̂I ∈ FM.
Proof: Note that the constraint in problem (24) can be written as πI(f̂I(X)) ≤ min

{ − EgP ( −
f̂I(X)),πR(f̂I(X))

}
for all f̂I ∈ FM . Since the utility of the insurer is strictly increasing in πI(f̂I(X)), we

get thatπI is the largest linear function satisfying this constraint, i.e. theredoesnot exist a linear pricing
function π̃I satisfying the constraint such that there exist an f̃ ∈ FM with πI(f̃ (X)) < π̃I(f̃ (X)).

From gA(SX(z)) ≤ gP(SX(z)) and gA(SX(z)) ≤ h(SX(z)) for every z ∈ [0,M], we get −EgA
[−f̂I(X)] ≤ min

{ − EgP ( − f̂I(X)),πR(f̂I(X))
}
for all f̂I ∈ FM . Moreover, it follows from Boonen

et al. (2015, Theorem 3.2) that −EgA [−f̂I(X)] = min{−EgP [−f̂I(X) + f̃ (f̂I(X))] + πR(f̃ (f̂I(X))) :
f̃ ∈ Ff̂I (M)

}. Suppose that there exists an f̂I ∈ FM such that πI(f̂I(X)) > −EgA [−f̂I(X)]. Then,
there exists an f̃ ∈ Ff̂I (M)

such that πI(f̂I(X)) > −EgP [−f̂I(X) + f̃ (f̂I(X))] + πR(f̃ (f̂I(X))). Since
πI is a linear function, we have πI(f̂I(X)) = πI(f̂I(X) − f̃ (f̂I(X))) + πI(f̃ (f̂I(X))). So, we must have
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πI(f̂I(X) − f̃ (f̂I(X))) > −EgP [−f̂I(X) + f̃ (f̂I(X))] or πI(f̃ (f̂I(X))) > πR(f̃ (f̂I(X))). This is a violation
of the feasibility constraints. Hence, the feasible linear pricing function πI(f̂I(X)) = −EgA [−f̂I(X)]
is the largest. This concludes the proof. �

By denoting π̂I(f̂I(X)) := −EgA [−f̂I(X)] and together with Proposition 5.1, problem (24) simpli-
fies to

max
fI ,fR ,πI

EgI
[
WI − fI(X) + π̂I(fI(X)) + fR(fI(X)) − πR

(
fR(fI(X))

)]
,

s.t. (fI , fR) ∈ F2.
(25)

It is easy to show that the objective of (25) is equivalent to

∫ M

0
gA(SX(z))dfI(z) −

∫ M

0
gI(SX(z))dfI(z) +

∫ M

0
gI(SX(z))dfR(fI(z)) −

∫ M

0
h(SX(z))dfR(fI(z)).

(26)

Theorem 5.1: Every solution pair (f ∗
I , f

∗
R ) ∈ F2 solving (4) also solves problem (23). Within the set

of solutions to (23), every indemnity profile (f ∗
I , f

∗
R ) ∈ F2 solving (4) yields the highest utility of the

policyholder.
Proof: We define m1(z) := gA(SX(z)) − gI(SX(z)), and recall that n(z) = gI(SX(z)) − h(SX(z)).
It follows that m1(z) + n(z) = gA(SX(z)) − h(SX(z)) ≤ 0. Using Theorem 3.1 and defining A1 :={
z ∈ [0,M] : m1(z) = n(z) = 0

}
, B1 := {

z ∈ [0,M] : n(z) > 0,m1(z) + n(z) = 0
}
, and

C1 := {
z ∈ [0,M] : n(z) < 0,m1(z) = 0

}
, we have:

1 − (f ∗
I )′(z) a.e.=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if z ∈ {
z ∈ [0,M] : m1(z) < 0,m1(z) + n(z) < 0

}
,

u11(z), if z ∈ A1,
u21(z), if z ∈ B1,
u31(z), if z ∈ C1,
0, otherwise,

(27)

(
f ∗
R (f ∗

I (z))
)′ a.e.=

⎧⎪⎨⎪⎩
v11(z), if z ∈ A1,

v31(z), if z ∈ B1,
0, otherwise,

(28)

(
f ∗
I (z) − f ∗

R (f ∗
I (z))

)′ a.e.=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if z ∈ {

z ∈ [0,M] : m1(z) > 0, n(z) < 0
}
,

w11(z), if z ∈ A1,
w21(z), if z ∈ C1,
0, otherwise.

(29)

whereu11(z)+v11(z)+w11(z) = 1 for z ∈ A1,u21(z)+v31(z) = 1 for z ∈ B1, andu31(z)+w21(z) = 1
for z ∈ C1.

Then, according to the same analysis after Theorem 3.1, we obtain the following expressions of
the risks as borne by the three agents after the transactions in terms of Ki for i = 1, 2, 3 and Qj for
j = 1, 2, 3, 4 as
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1 − (f ∗
I )′(z) a.e.=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if z ∈ K2,

u11(z), if z ∈ Q1 ∪ Q2,
u21(z), if z ∈ Q4 ∪ K3,
u31(z), if z ∈ Q3,
0, otherwise,

(30)

(
f ∗
R (f ∗

I (z))
)′ a.e.=

⎧⎪⎨⎪⎩
v11(z), if z ∈ Q1 ∪ Q2,

v31(z), if z ∈ Q4 ∪ K3,
0, otherwise,

(31)

(
f ∗
I (z) − f ∗

R (f ∗
I (z))

)′ a.e.=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if z ∈ K1,

w11(z), if z ∈ Q1 ∪ Q2,
w21(z), if z ∈ Q3,
0, otherwise,

(32)

where u11(z) + v11(z) + w11(z) = 1 for z ∈ Q1 ∪ Q2, u21(z) + v31(z) = 1 for z ∈ Q4 ∪ K3, and
u31(z) +w21(z) = 1 for z ∈ Q3. The above contracts recover solutions solving the baseline model by
setting

u11(z)
a.e.=

{
u1(z), if z ∈ Q1,

0, if z ∈ Q2,

u21(z)
a.e.=

{
u2(z), if z ∈ Q4,

0, if z ∈ K3,

u31(z)
a.e.=

{
u3(z), if z ∈ Q3,

v11(z)
a.e.=

{
v1(z), if z ∈ Q1,

v2(z), if z ∈ Q2,

v31(z)
a.e.=

{
v3(z), if z ∈ Q4,

1, if z ∈ K3,

w11(z)
a.e.=

{
w1(z), if z ∈ Q1,

w3(z), if z ∈ Q2,

w21(z)
a.e.=

{
w2(z), if z ∈ Q3.

Hence, all contracts (f ∗
I , f

∗
R ) solving the baseline problem (4) are contracts that solve the problem

(23) as well.
Next, we show the second result. This result states that (f ∗

I , f
∗
R ) solving (4) also solves the following

optimization problem:

max
fI ,fR

EgP
[
WP − X + fI(X) − π̂I(fI(X))

]
,

s.t. (fI , fR) solves (23).
(33)
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where π̂I(fI(X)) = −EgA [−fI(X)]. Since Eg is comonotonic additive and translation invariant, the
objective of problem (33) is, modulo a constant, given by∫ M

0

(
gP(SX(z)) − gA(SX(z))

)
dfI(z)

=
∫
gP(SX (z))≤h(SX (z))

(
gP(SX(z)) − gP(SX(z))

)
dfI(z)

+
∫
gP(SX (z))>h(SX (z))

(
gP(SX(z)) − h(SX(z))

)
dfI(z)

=
∫
gP(SX (z))>h(SX (z))

(
gP(SX(z)) − h(SX(z))

)
dfI(z).

Therefore, it yields that for the solution of problem (23) in (30), it is optimal for the policyholder to
set u11(z) = 0 for z ∈ Q2, and u21(z) = 0 for z ∈ K3. This implies that every solution (f ∗

I , f
∗
R ) ∈ F2

solving (4) also solves (33). The proof is thus complete. �
From Theorem 5.1, we get that from the set of solutions to (23), the unconstrained indemnity

profile is the only one that is not Pareto dominated by another solution of (23). The competition
constraint does not affect the indemnity functions, which remain the ones that are improving total
welfare. It only lowers the insurance price, and therefore it affects the way the profits are shared
between the policyholder and the insurer. The policyholder pays a smaller price for the same coverage.

To conclude, we can straightforwardly see that if we introduce linear constraint on the reinsurance
premium to problem (23), an optimal pair of indemnity functions is the same as in Section 4, but
the insurance premium principle is as in Proposition 5.1. Therefore, introducing competition affects
prices, whereas linear constraints on the reinsurance premium affect the indemnity functions.

6. Conclusion

This paper is the first one to study insurance and reinsurance contract design in a single model. We
assume that thepreferences of theparties are givenbydistortion riskmeasures,which are equivalent to
dual utilities. We show the existence of optimal insurance and reinsurance contracts simultaneously.
We find that layering of the insurance risk is optimal, so are under various possible constrained
models. We give explicit expressions of the optimal risk sharing contracts and the insurance pricing
function. We show that classical risk sharing models do apply to the setting with insurance and
reinsurance jointly as well.

Moreover, we show the effect of a possible competition by permitting the reinsurer to join the
insurance market. In this setting, the policyholder can trade directly with the reinsurer. We show
that this competition between the insurer and reinsurer reduces prices, but that optimal indemnity
contracts remain the same as for the case without competition. This result shows the relevance of
competition in the insurance market. Hence, adding linear constraints on the reinsurance premium
affects the indemnity functions and not the insurance premium function. Moreover, introducing
a competition constraint does influence the insurance premium function, but not the indemnity
functions.
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Appendix 1
This Appendix 1 provides the proof of Lemma 4.1 and Lemma 4.2. In order to prove these lemmas, we first define the
sets Q := {(

fI (z), fR(fI (z))
) : (fI , fR) ∈ F2, for z ∈ [0,M]}, H := {(

k(z), j(z)
) : k(0) = j(0) = 0, 0 ≤ j′(z) ≤ k′(z) ≤

1, for z ∈ [0,M] a.e.}, as well as the inverse function of k as k−1(t) := inf {z ∈ [0,M] : k(z) ≥ t} for t ∈ [0, k(M)].
The following lemmas are essential in proving Lemma 4.1 and Lemma 4.2.
Lemma A.1: k(k−1(x)) = x for x ∈ [0, k(M)] and fR(fI (x)) = j(x) for x ∈ [0,M].
Proof: Let y := k−1(x) for a given x ∈ [0, k(M)]. If k(y) > x, then there exists q < y such that k(q) > x using the
property that k is continuous. Therefore, the definition of k−1(x) implies q ≥ k−1(x) = y, which contradicts q < y. If
k(y) < x, then there exists p > y such that k(p) < x. Then, it follows that p ≤ k−1(x) = y which contradicts p > y.
Consequently, we have k(k−1(x)) = x for x ∈ [0, k(M)].

By the definition of k−1, for any x ∈ [0,M], we have k−1(k(x)) ≤ x. Therefore, it follows that j(k−1(k(x))) ≤ j(x). If
j(k−1(k(x))) < j(x), we denote y := k−1(k(x)) < x which results in k(y) = k(k−1(k(x))) = k(x). Hence, j(x) − j(y) >
k(x) − k(y) = 0 which contradicts the fact that j′(z) ≤ k′(z) for z ∈ [0,M] a.e. The proof is thus complete. �

Using the above lemma, we obtain the following lemma which establishes the equivalence between Q and H.
Lemma A.2: The set Q is equivalent to the set H.
Proof: It is easy to show that Q ⊆ H by the chain rule. Next, we prove that the opposite direction. For any (k̂, ĵ),
define fI ( · ) := k( · ) and fR( · ) := j(k−1( · )). Then, by applying Lemma A.1, we have fR(fI (x)) = j(k−1(k(x))) = j(x)
and fR(s) − fR(t) = j(k−1(s)) − j(k−1(t)) ≤ k(k−1(s)) − k(k−1(t)) = s − t for any 0 ≤ t < s ≤ k(M) = fI (M). The
proof is thus complete. �

For any (k(z), j(z)) ∈ H, let us define

�(z) :=
{
k(z) if z ∈ [0,M],
k(M) + j(z) if z ∈ [M, 2M]. (A.1)

Moreover, we define H̄ := {
�(z) : �(z) is defined by Equation (A.1), (k(z), j(z)) ∈ H}

. By Arzela–Ascoli’s theorem,
H̄ is a compact set, i.e. for any sequence �i ∈ H̄, there exists a subsequence �ik that converges uniformly to l∗ which
belongs to H̄. Therefore, H is also a compact set under the norm ρ

(
(k1, j1), (k2, j2)

) := maxz∈[0,M] |k1(z) − k2(z)| +
|j1(z) − j2(z)|.

Lemma A.2 enables us to write problems (5), (16), and (17), respectively, as

max
k,j

UC(k, j) := ∫ M
0 m(z)dk(z) + ∫ M

0 n(z)dj(z),

s.t. k, j ∈ H,
(A.2)

max
k,j

UC(k, j) := ∫ M
0 m(z)dk(z) + ∫ M

0 n(z)dj(z),

s.t. k, j ∈ H,∫ M
0 h(SX(z))dj(z) ≤ C,

(A.3)

http://ssrn.com/abstract=2660113
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and

max
k,j

UC(λ, k, j) := ∫ M
0 m(z)dk(z) + ∫ M

0 n(z)dj(z) − λ
( ∫ M

0 h(SX(z))dj(z) − C
)
,

s.t. k, j ∈ H.
(A.4)

Let (̃k,̃ j) be an optimal solution to problem (A.2). If
∫ M
0 h(SX(z))d̃j(z) ≤ C, then (̃k,̃ j) solves (A.3). Therefore, we

assume that
∫ M
0 h(SX(z))d̃j(z) > C for all (̃k,̃ j) that solves (A.2). Then, we have the following lemma.

Lemma A.3: If (k∗, j∗) solves problem (A.3), then
∫ M
0 h(SX(z))dj∗(z) = C.

Proof: For any θ ∈ [0, 1], we define jθ := θ̃ j + (1 − θ)j∗. If
∫ M
0 h(SX(z))dj∗(z) < C, then there exists θ∗ such that∫ M

0 h(SX(z))djθ (z) = C. Moreover, it follows that

UC(θ ∗̃k + (1 − θ∗)k∗, θ ∗̃j + (1 − θ∗)j∗) =θ∗UC (̃k,̃ j) + (1 − θ∗)UC(k∗, j∗) > UC(k∗, j∗),

where we use the fact that (k∗, j∗) is not the optimal solution to problem (A.2). This is a contradiction to the fact that
(k∗, j∗) solves problem (A.3). Thus the proof is complete. �

For the following lemma, its proof can be found in Komiya (1988).
Lemma A.4: (Sion’s Minimax Theorem) Let X be a compact convex subset of a linear topological space and Y a
convex subset of a linear topological space. If f is a real-valued function on X × Y such that f (x, ·) is continuous and
concave on Y for all x ∈ X, and f (·, y) is continuous and convex on X for all y ∈ Y, then, minx∈X maxy∈Y f (x, y) =
maxy∈Y minx∈Xf (x, y).

We are now ready to present the proof of Lemma 4.1.
Proof of Lemma 4.1: Let C > 0. Moreover, we define v(C) and v(λ,C) as the optimal values of (A.3) and (A.4),
respectively. We first prove that v(λ,C) is a convex function in λ for a given C. Noting that UC(λ, k, j) is linear in λ for
any given (k, j), we have

v(αλ1 + (1 − α)λ2,C) = max
k,j

UC(αλ1 + (1 − α)λ2, k, j)

= max
k,j

{
αUC(λ1, k, j) + (1 − α)UC(λ2, k, j)

}
≤ max

k,j

{
αUC(λ1, k, j

} + max
k,j

{
(1 − α)UC(λ2, k, j

}
= αmax

k,j

{
UC(λ1, k, j

} + (1 − α)max
k,j

{
UC(λ2, k, j

}
= αv(λ1,C) + (1 − α)v(λ2,C).

Moreover, by Sion’s Minimax Theorem, the following equality holds: max0≤λmink,j∈H − UC(λ, k, j) = mink,j∈H
max0≤λ − UC(λ, k, j); hence min0≤λmaxk,j∈HUC(λ, k, j) = maxk,j∈Hmin0≤λUC(λ, k, j). Finally, we have v(C) =
inf 0≤λ v(λ,C) (i.e. UC(k∗, j∗) = min0≤λmaxk,j∈HUC(λ, k, j)).

By defining λ := v(C)+1
C = UC (k∗ ,j∗)+1

C > 0, then for any λ ≥ λ we have

v(λ,C) = max
k,j∈H

UC(λ, k, j) ≥ UC(λ, 0, 0) = λC ≥ v(C) + 1

which yields v(C) = inf 0≤λ v(λ,C) = inf 0≤λ≤λ v(λ,C).

Therefore, using the convexity of v(λ,C), there exists an λ∗ ∈ [0, λ] that minimizes the right part, and is such that
v(C) = v(λ∗,C). Moreover,

v(λ∗,C) ≥ UC(λ∗, k∗, j∗) =
∫ M

0
m(z)dk∗(z) +

∫ M

0
n(z)dj∗(z) − λ

( ∫ M

0
h(SX(z))dj∗(z) − C

)
=

∫ M

0
m(z)dk∗(z) +

∫ M

0
n(z)dj∗(z) = UC(k∗, j∗) = v(C).

The second equality follows from the fact that (k∗, j∗) is the optimal solution to (A.3) for a given C. Hence, it follows
from Lemma (A.3) that

∫ M
0 h(SX(z))dj∗(z) = C. By v(C) = v(λ∗,C) and v(λ∗,C) ≥ UC(λ∗, k∗, j∗) = v(C), we have

that (k∗, j∗) is optimal solution to (A.4) under a given λ∗. Hence, we know that (k∗, j∗) is the optimal solution to (A.4)
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under a given λ∗ and satisfying
∫ M
0 h(SX(z))dj∗(x) = C. If λ∗ = 0, then v(C) = v(0,C). This is a contradiction with

the assumption that
∫ M
0 h(SX(z))d̃j(x) > C for all (̃k,̃ j) which are the optimal solutions to problem (A.2). So, λ∗ > 0.

If λC is strictly increasing in C, then there exists C1 < C2 such that λC1 < λC2 . It follows from the definitions
of AC and λC that there exist λ1 and λ2 such that λ1 ∈ AC1 and λ2 ∈ AC2 with λ1 < λ2. Lemma 4.1 implies that∫ M
0 h(SX(z))d̃jλ1 (x) = C1 and

∫ M
0 h(SX(z))d̃jλ2 (x) = C2. Moreover, Theorem 3.1 suggests that j̃λ can be represented

as follows:

(̃jλ)′(z)
a.e.=

⎧⎪⎨⎪⎩
1, if (1 + λ)h(SX(z)) < min{gI (SX(z)), gP(SX(z))},
κ(z) if (1 + λ)h(SX(z)) = min{gI (SX(z)), gP(SX(z))},
0, if (1 + λ)h(SX(z)) > min{gI (SX(z)), gP(SX(z))},

(A.5)

where κ(z) is any [0, 1]-valued function on {z ∈ [0,M] : (1 + λ)h(SX(z)) = min{gI (SX(z)), gP(SX(z))}}. Obviously,
by (A.5), we have j̃′λ2 (z) ≤ j̃′λ1 (z) on {z ∈ [0,M] : h(SX(z)) �= 0}, which results in that

∫ M
0 h(SX(z))d̃jλ2 (z) ≤∫ M

0 h(SX(z))d̃jλ1 (z). This is a contradiction to the fact that
∫ M
0 h(SX(z))d̃jλ1 (z) = C1 < C2 = ∫ M

0 h(SX(z))d̃jλ2 (z).
This concludes the proof of Lemma 4.1.

Similarly, by Lemma A.2, problems (20) and (21) can be written, respectively, as

max
fI ,fR

Uα(k, j) := ∫ M
0 m(z)dk(z) + ∫ M

0 n(z)dj(z),

s.t. k, j ∈ H,∫ M
0 h(SX(z))dj(z) ≤ α

∫ M
0 gP(SX(z))dk(z),

(A.6)

and

max
fI ,fR

Uα(γ , k, j) := ∫ M
0 m(z)dk(z) + ∫ M

0 n(z)dj(z) − γ
( ∫ M

0 h(SX(z))dj(z) − α
∫ M
0 gP(SX(z))dk(z)

)
,

s.t. k, j ∈ H.
(A.7)

Let (̃k,̃ j) denote the optimal solution to problem (A.2). If
∫ M
0 h(SX(z))d̃j(z) ≤ α

∫ M
0 gP(SX(z))d̃k(z), then (̃k,̃ j) solves

problem (A.3). Therefore, we assume that
∫ M
0 h(SX(z))d̃j(z) > α

∫ M
0 gP(SX(z))d̃k(z) for all (̃k,̃ j). Before proving

Lemma 4.2, it is useful to have the following lemma.
Lemma A.5: If (k∗, j∗) solves problem (A.6), then

∫ M
0 h(SX(z))dj∗(z) = α

∫ M
0 gP(SX(z))dk∗(z).

Proof: We assume that
∫ M
0 h(SX(z))dj∗(z) < α

∫ M
0 gP(SX(z))dk∗(z). For any θ ∈ [0, 1], we define kθ := θ k̃ + (1 −

θ)k∗, jθ := θ̃ j + (1 − θ)j∗ and p(θ) := ∫ M
0 h(SX(z))djθ (z) − α

∫ M
0 gP(SX(z))dkθ (z). Since p is continuous, p(0) < 0

and p(1) > 0, there exists a θ∗ such that p(θ∗) = 0 due to the intermediate value theorem. Therefore, it follows that

Uα(θ ∗̃k + (1 − θ∗)k∗, θ ∗̃j + (1 − θ∗)j∗) =θ∗Uα(̃k,̃ j) + (1 − θ∗)Uα(k∗, j∗) > Uα(k∗, j∗),

where we use the fact that (k∗, j∗) is not an optimal solution to problem (A.2) as this would be a contradiction to the
fact that (k∗, j∗) solves problem (A.6). This concludes the proof. �
Proof of Lemma 4.2: As the proof to this lemma is very similar to that of Lemma4.1, we only highlight their difference.
We assume that α ∈ (0, 1] is given and let v̂(α) and v̂(γ ,α) be the optimal values of (20) and (21), respectively. By
Lemma A.2, problem (21) reduces to

max
fI ,fR

Û(γ , j, k) := ∫ M
0 m(z)dk(z) + ∫ M

0 n(z)dj(z) − γ
( ∫ M

0 h(SX(z))dj(z) − α
∫ M
0 gP(SX(z))dk(z)

)
,

s.t. (fI , fR) ∈ F2.
(A.8)

Thus, we need to set γ := v̂(α)+1−∫ M
0 m(z)dz

α
∫ M
0 gP (SX (z))dz

> 0. For any γ ≥ γ , we have

v̂(γ ,α) = max
k,j∈H

Û(γ , k, j) ≥ Û(γ , z, 0) =
∫ M

0
m(z)dz + γα

∫ M

0
gP(SX(z))dz ≥ v̂(α) + 1.

The remaining proof is analogous to that of the first part of the proof of Lemma 4.1.
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