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Abstract: The prospect of Line-of-Business Services (LoBSs) for infrastructure of Emerging Sensor
Networks (ESNs) is exciting. Access control remains a top challenge in this scenario as the service
provider’s server contains a lot of valuable resources. LoBSs’ users are very diverse as they may
come from a wide range of locations with vastly different characteristics. Cost of joining could be low
and in many cases, intruders are eligible users conducting malicious actions. As a result, user access
should be adjusted dynamically. Assessing LoBSs’ risk dynamically based on both frequency and
threat degree of malicious operations is therefore necessary. In this paper, we proposed a Quantitative
Risk Assessment Model (QRAM) involving frequency and threat degree based on value at risk.
To quantify the threat degree as an elementary intrusion effort, we amend the influence coefficient
of risk indexes in the network security situation assessment model. To quantify threat frequency as
intrusion trace effort, we make use of multiple behavior information fusion. Under the influence
of intrusion trace, we adapt the historical simulation method of value at risk to dynamically access
LoBSs’ risk. Simulation based on existing data is used to select appropriate parameters for QRAM.
Our simulation results show that the duration influence on elementary intrusion effort is reasonable
when the normalized parameter is 1000. Likewise, the time window of intrusion trace and the weight
between objective risk and subjective risk can be set to 10 s and 0.5, respectively. While our focus is
to develop QRAM for assessing the risk of LoBSs for infrastructure of ESNs dynamically involving
frequency and threat degree, we believe it is also appropriate for other scenarios in cloud computing.

Keywords: cloud computing; line-of-business services; access control; risk assessment; intrusion
effort
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1. Introduction

As one significant recent advance in the field of information technology [1], cloud computing [2]
provides access to a shared pool of configurable computing resources (e.g., services, applications,
networks, storage and servers) that is convenient for management and service provider interaction.
It can be classified according to the service models, such as Software as a Service (SaaS), Platform
as a Service (PaaS), and Infrastructure as a Service (IaaS) [2]. SaaS can be characterized as: software
deployed as a hosted service and accessed over the Internet [3]. As a completely innovative hosted
application service model, SaaS is one of development directions of software delivery. It has become
an important way for small and medium enterprises to acquire advanced technology. According to
the service type provided by the Service Provider (SP), SaaS can be further divided into two major
categories, namely: consumer-oriented services and Line-of-Business Services (LoBSs) [3]. Offering
to enterprises and organizations of all sizes, LoBSs are often large, customizable business solutions
aimed at facilitating business processes, such as finance, supply-chain management, and customer
relations. They are typically sold to customers on a subscription-basis [3].

Emerging Sensor Networks (ESNs) increase the requirements of computing and communication
technologies and systems, which should integrate technologies and methods with respect to resource
allocation, data mining, knowledge sensing, and intelligent control in order to satisfy the variety of
applications in industry and business [4]. ESNs are an inevitable trend with the development of the
Internet of Things (IoT), and intend to connect almost every intelligent device [4]. The infrastructure of
LoBSs may be ESNs in different application domains, including, for example, the medical equipment
of digital cameras, smart phones and medical imaging equipment [5], and vehicle detection in
autonomous vehicles, driver assistance systems, intelligent parking systems, or measurement of traffic
parameters [6], and monitoring and assessing fruit freshness in Internet-of-Things-based e-commerce
delivery using scenario analysis and interval number approaches [7], and helicopters and vehicles’
intermodal transportation of medical supplies [8]. In LoBSs, SP provides Internet-based software
delivery and services to the tenants in which the common software features sink into the infrastructure
and its operation and maintenance are provided by SP. At the same time, the tenants (business or
organization) consume and utilize the services as a user but not the owner [9]. This paper focuses
on LoBSs for infrastructure of ESNs, for its numerous advantages such as on-demand self-service,
extensive network access, resource sharing, rapid scalability, scalable services, and increasing the
quantity of tenant and information by geometric curve.

The prospect of LoBSs is exciting, but the security problem has become one of main obstacles
hindering its development. Many ways to protect LoBSs have been investiaged, such as fairly sharing
the sensitive information between two tenants [10–12], and the messages embedded by spatial least
significant bit [13], and arithmetic privacy homomorphism [9]. However, they cannot fully balance
LoBSs’ contradictory requirement between flexible access and absolute security. As both business’s
application and database are deployed on SP’s server, the ownership of both business’s application
and database are separated from its usufruct. The same is true for the ownership and maintenance of
data [9]. Thus, access permission is a top challenge in LoBSs’ security.

In contrast to a conventional attacker that needs to undertake huge efforts to break through the
access control, a LoBSs’ attacker only need to register as a legitimate user to gain access to the system.
In other words, most intruders in LoBSs are simply eligible users that misbehave. Since users who
have legitimate access are the cause of the security risk, authenticating each user once only during a
session cannot meet the security demand. A large number of valuable resources are gathered in SPs,
which has great appeal to attackers. To illegally obtain resources, an attacker may break through the
restrictions of access control by various means. In the traditional network information system, there is
a trusted domain including data, user, server, and so on, where the data is stored on the trusted server
maintained by the trusty user, and the user’s eligibility to access data is authenticated by the server,
and the users are constrained by the entity organization in addition to remaining within the bounds in
the virtual system. In LoBSs, there is not a trustworthy domain as the users are only kept within the
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virtual system. By operating as a legitimate user, an attacker could attack a SP’s servers to expose the
privacy and sensitive data of subscriber users [5]. More concretely, any attack will appear as a series
of malicious acts. In order to protecting a SP’s server, and ensure an acceptable quality of services
in a relatively unpredictable network environment [14] to subscribers, LoBSs’ risk must be assessed
dynamically. With the growing popularity of network applications, the potential security risks increase
sharply. To protect an information system, it is of prime importance to assess the information security
risks [15]. Risk is a likelihood function in which a particular potential vulnerability may be exercised
by a given threat-source and the adverse event maybe impact on the organization [16]. To avoid the
loss of resources, after the information system risk is assessed dynamically, the access permission
should be adjusted dynamically. Jing et al. [17] researched the risk of cloud servers from malicious
users dynamically to adjust users’ access rights based on the risk of the user’s operation. It does not,
however, consider the effect of frequency and threat degree of malicious operations. The higher is the
frequency of a malicious operation, the higher is the LoBSs’ risk. The higher is the degree of threat of a
malicious operation, the higher is the LoBSs’ risk. In order to quantify LoBSs’ risk more precisely, the
impact both frequency and threat degree of user behavior must be involved.

Motivated by the above observation, based on Value at Risk (VaR) [18], we propose herein
the Quantitative Risk Assessment Model (QRAM) which takes frequency and threat degree into
consideration to assess LoBSs’ risk. The model consists of the following components: first, the threat
degrees of malicious act are graded based on the Snort user manual [19] and quantified in equidistant
division. Second, the elementary intrusion effort is quantified based on a network security situation
assessment model [20]. Third, the intrusion trace effort is quantified based on multiple behavior
information fusion [21]. Fourth, LoBSs’ objective risk is quantified based on the rate of weighted
threats in intrusion traces. Fifth, LoBSs’ subjective risk is quantified based on the Shannon entropy [22]
of experts’ scores. Sixth, LoBSs’ comprehensive risk is quantified on both the intrusion trace probability
and the proportion between subjective risk and objective risk. Seventh, under the influence of intrusion
traces, QRAM involving frequency and threat degree is proposed to dynamically assess LoBSs’ risk
by the historical simulation method of VaR [18]. Besides LoBSs, we note that QRAM can be applied
to cloud computing in general, even prompted to the application layer multicast [23]. The special
contributions of this paper include:

• The efforts of both elementary intrusion and intrusion trace are quantified based on the evaluation
for security situation of networked systems.

• The subjective risk is determined based on Shannon entropy of experts’ scoring.
• QRAM involving frequency and threat degree is proposed to quantify LoBSs’ risk based on VaR.

The rest of this paper is organized as follows: Section 2 discusses related works, followed by
preliminaries in Section 3. The intrusion effort involving frequency and threat degree is assessed in
Section 4. The quantitative risk assessment model involving frequency and threat degree is proposed
in Section 5. Section 6 shows the simulation test and discussion, and Section 7 concludes the paper
with a summary and some future research directions.

2. Related Works

We review some related works including user behavior analysis and prediction, user behavior
analysis and trust management, user behavior risk assessment and trust management in this section.

2.1. User Behavior Analysis and Prediction

Based on the analysis of prevalent network intrusions about multiple behavior information fusion,
a new model of security threat evaluation [21] was presented with a set of quantitative indexes. In order
to defend against application layer distributed denial-of-service attacks, an anomaly detection based
on web user access behavior [24] was proposed, in which the web user’s browsing behavior is observed
at a web server by a hidden semi-Markov model. Concerning cloud computing, Tian et al. [25] mainly
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researched the evaluation importance of evaluation strategy and user behavior trust, including the
basic idea of evaluating user behavior trust, principles for evaluating user behavior trust, evaluation
strategies of behavior trust for each access, trust object analysis and long access. In terms of incomplete
information multi-stage dynamic games, Chen et al. [26] proposed a behavior analysis model, where
both negative and positive false factors are considered in network detection methods, and the actions
both current and historical improved the comprehensiveness and accuracy of the dynamic judgment
for end-use trustworthiness. Chen et al. [27] investigated the characteristics of cloud computing
requests received by the cloud infrastructure operators. These cluster usage datasets, released by
Google, were thoroughly studied. These researches could address the self-similarity and non-stationary
characteristics of the workload profile in a cloud computing system. Ashwini et al. [28] discussed user
browsing behavior and interest, and web mining technology, web log data.

2.2. User Behavior Analysis and Trust Management

A trust quantification algorithm [29] was presented based on grey fuzzy theory, and a new
trust-based dynamic access control model [29] was proposed, which used the arcsine function to
construct an algorithm to perform mapping between trust values and access permissions for effective
access control. With the trust levels’ idea for identity management, Parikshit et al. [30] proposed a
fuzzy approach to the trust based access control, which was sealed with the linguistic information of
devices to descript access control in the Internet of Things. Jaiganesh et al. [31] proposed a fuzzy logic
technique called fuzzy ART, where the consumption of resources was periodically scanned, and the
virtual machine states were classified into categories from stable to attackers based on the traced-out
behaviors. Kambiz and Mehdi et al. [32] used not only the trust manager component, but also machine
learning for the system to learn from the user’s behavior and recognize access patterns, which not
only limited the illegitimate access, but also predicted and prevented potential malicious events and
questionable accesses.

2.3. User Behavior Risk Assessment and Trust Management

Zhang et al. [33] proposed a trust model based on behavior risk evaluation, which established
a set of feature matching rules based on asset identification, vulnerability identification and threat
identification for the system, constructed a complex weighting function to compute the potential risk
implied in behaviors of the entities, and designed a trust computation method based on risk. Xu and
Dou [34] proposed a risk evaluation model based on asset evaluation, vulnerability evaluation and
threat evaluation by identifying and quantifying the risk factors, in which the value, vulnerability and
threat of asset were combined to compute the system risk, and a risk computation method merging
behaviors trust of external entities was presented using the quantitative calculation of information
entropy weight of each factor for overcoming subjectivity of direct assignment considering the risk of
system was influenced by the behavior of external entity. Jing et al. [14] proposed the user behavior
assessment based dynamic access control model by introducing user behavior risk value, user trust
degree and other factors into role based access control.

Three aspects of user behavior in network systems is reviewed: user behavior analysis and
prediction, user behavior analysis and trust management, user behavior risk assessment and trust
management. Under different conditions, user behavior has different characteristics. Frequency
and threat degree of user behavior in cloud services is not involved, nothing is retrieved about user
behavior under LoBSs.

3. Preliminaries

In this section, we introduce the notations and related technologies deployed in our scheme.
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3.1. Definitions

Definition 1. Elementary intrusion: any alert that is evoked by intrusion behavior and reported by an intrusion
detection system, described by A [aid] = {src, dst, sp, dp, t, type, sensor, sig}, whose elements’ descriptions are as
listed in Table 1 [21].

Table 1. Definitions of elements for elementary intrusion, intrusion trace, network packet and network
session [21].

Elements Definitions

aid sequence number of intrusion event
src/dst source/destination address
sp/dp source/destination port

t occurrence time
type event type

sensor name of intrusion detection sensor
count occurrence times of one elementary intrusion in one session
pid/cid sequence number of network packet/intrusion trace

flag TCP sign
pro communication protocol in the transport layer
load content of network packet
sid sequence number of network session
sig signature of intrusion event
seq sequence number of elementary intrusion in one intrusion trace

Definition 2. Intrusion trace: a trace constituted of a series of elementary intrusions that user privilege has
allowed to occur illegally, defined as C[cid] = {{src1, dst1, dp1, seq1, aid1, count1, sig1}, {src2, dst2, dp2, seq2,
aid2, count2, sig2}, . . . } [21].

Definition 3. Intrusion effort: effort expend by an individual hacker to get user privileges along an intrusion
trace [21].

Definition 4. Mean intrusion effort: according to the difficulty’s degree of each elementary intrusion in the
intrusion trace, the difficulty’s degree to get user privileges for the target is measured [21].

Definition 5. Time window frequency: the ratio between the number of a given level intrusions happening and
the total number of elementary intrusions happened in a unit of time.

Definition 6. Rate of weighted threat in intrusion trace: the summation of the products of the severity of the
malicious behavior at different levels by the time window frequencies in units of time.

Definition 7. Confidence interval: an observed interval, in theory distinct from sample to sample, that often
includes the value of an unobservable parameter of interest if the experiment is duplicated [35].

Definition 8. Confidence level: the proportion of such intervals that include the true value of the parameter will
adapt the given confidence level if the confidence intervals are structured by a lot of separate data analyses of
replicated (and possibly different) experiments [35–37].

3.2. Shannon Entropy

Shannon entropy [22] is the expected value (average) of the information contained in each message.
Supposed the entropy H(X) [38] of a discrete random variable X with possible n values {x1, . . . , xn}
and probability mass function Pr(X) is defined as:

H(X) = ∑n
i=1 Pr(xi)I(xi) = −∑n

i=1 Pr(xi) logb Pr(xi) (1)
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where I is the information content of X [39,40], I(X) is itself a random variable, and b is the base of
logarithm used. Common values of b are 2, Euler’s number e, and 10, and the unit of entropy is
Shannon for b = 2, nat for b = e, and hartley (unit) for b = 10 [37]. When b = 2, the units of entropy are
also commonly referred to as bits. Shannon entropy is characterized by a small number of criteria, any
definition of entropy satisfying the assumption as the form [41]:

− K∑n
i=1 pi log(pi) (2)

where K is a constant corresponding to a choice of measurement units, and pi = Pr(X = xi) is the
probability of xi, and Pr(xi) is the probability function of xi.

3.3. Historical Simulation Method of Value at Risk

As a measure of investments’ risk, VaR assesses how much a group of investments might lose [42].
Supposed a confidence level (Definition 8) α ∈ (0, 1), the VaR of portfolio at the confidence level α is
given by the smallest number l such that the probability Pr(L > l) that the loss L exceeds l is at most
(1 − α) [43]. Mathematically, if L is the loss of portfolio, then VaRα(L) [44] is the level α-quartile as:

VaRα(L) = inf{l ∈ R : Pr(L > l) ≤ 1− α} = inf{l ∈ R : FL ≥ α} (3)

The keys to calculate VaR include the speculation of future changes in market factors and the
relationship between portfolio value and market factors (linearity, non-linearity). The fundamental
computation methods of speculation of future changes in market factors include historical simulation
method, parametric method and Monte Carlo method [45].

As a nonparametric method, the core of historical simulation methods is to simulate the future
income distribution of portfolio based on historical sample changes, and then use the quartile to
calculate the VaR estimation under certain confidence. The method calculates the full value of portfolio
rather than the local approximation of a small change in price. At the same time, this method avoids the
simulation risk by using real data, and does not need to make specific assumptions on the distribution,
nor need to estimate the parameters, so it can deal with the asymmetric and rear tail problems. Because
the historical data reflect the simultaneous changes of all risk factors in the market, the problems of
volatility, correlation and back-end issues can be reflected in real historical data, which often need to
be considered separately.

The general method makes on assumption about the shape of the distribution of returns. Define
W0 as the initial investment and R as its rate of return, which is random. Assuming that the position
is fixed, or that there is no trading, the portfolio value at the end of the target horizon is W = W0

(1 + R) [46]. The expected return and volatility of R are defined as µ and σ. Define now the lowest
portfolio value at the given confidence level c as W* = W0 (1 + R*) [46]. VaR measures the worst loss at
some confidence level, so it is expressed as a positive number. The relative VaR(mean) [46] is defined
the dollar loss relative to the mean on the horizon as:

VaR (mean) = E (W) −W* = −W0 (R* − µ) (4)

Often trading VaR is defined the absolute VaR [46], that is, the dollar loss relative to zero or without
reference to the expected value as:

VaR (zero) = W0 −W* = −W0R* (5)

At a given confidence level c, we wish to find the worst possible realization W* such that the
probability of exceeding this value is c [46], that is:

c =
∫ ∞

W∗
f (w)dw (6)
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The probability of a value lower than W*, p = Pr(w ≤W∗), is 1 − c [46], that is:

1− c =
∫ W∗

−∞
f (w)dw = Pr(w ≤W∗) = p (7)

The number W* is called the quartile of distribution, which is the cutoff value with a fixed
probability of being exceeded. Note that we did not use the standard deviation to find the VaR.
The historical simulation methods have the above advantages, but there are still some limitations.
One is that they are entirely dependent on specific historical data, that is, it is assumed that the future
situation and the performance of historical data in the past will be the same, but in fact, some of the
past impact of the loss of events in the future does not necessarily repeat itself, and future events may
also never have occurred in the past. The other is that they are likely to be limited by the amount of
data, not fully reflect the risk of all situations, such as some extremes unlikely to happen.

4. The Intrusion Effort Involving Frequency and Threat Degree

Before assessing LoBSs’ risk, the intrusion efforts of both elementary intrusions and intrusion
traces should be calculated. The elementary intrusion effort under threat degree is quantified based
on network security situation assessment model. The intrusion trace effort under frequency effects is
quantified based on fusion of multiple behavior information.

4.1. The Overall Framework to Assess the Intrusion Effort

To study the impact of malicious operation on LoBSs’ risk, the intensity of attack is described by
the intrusion effort, which includes both the element intrusion and the intrusion trace. Situational
awareness [47] is the ability to evaluate, process, and understand the information of critical elements
about what is happening to the team regarding the mission. The security situation assessment [48]
is an effective means to quantify network security, which refers to perceiving and obtaining the
security-related elements through technical means from time and space dimensions, to determine
the security situation through integrated analysis of data and to forecast its future trends. Aiming
at the deficiency that is unable to provide useful security information encountered in the current
security evaluation systems, the log database of intrusion detection system is led to the hierarchical
and quantitative model, which is used to evaluate the security situation of network system, and its
corresponding computation method are proposed based on the importance of service, host, and the
structure of network system [20].

Based on the thought of everything as a service [49], the resources of hardware, software and
data are provided as a service, so user behavior of LoBSs belongs to a service. Base on the hierarchical
and quantitative model [20], the calculation process of intrusion effort involving frequency and threat
degree is proposed as Figure 1.

1 

 

 

Figure 1. Calculation process of intrusion effort.
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Step 1 The threat level of malicious act is graded and quantified by the threat index.
Step 2 Amending the network security situation assessment model, the elementary intrusion threat

is calculated.
Step 3 By combining with the duration which is normalized, the elementary intrusion effort

is calculated.
Step 4 By combining the time window frequency, the intrusion trace effort is calculated.

4.2. Threat Degree of Elementary Intrusion

LoBSs have the characteristics of openness and sharing [3], so the attacks against SPs’ servers are
becoming more and more common. Any attack is achieved through a series of malicious behaviors,
which must pose a risk to the SP’s server. The threat degree to LoBSs varies depending on the severity
degree of attacks. In order to quantify LoBSs’ risk, the attacks should be graded by their harmful level.
These attack classifications are listed in Table 2 [19].

Table 2. Snort default classification [19].

Class Type Description Priority

attempted-admin Attempted Administrator Privilege Gain high
attempted-user Attempted User Privilege Gain high

inappropriate-content Inappropriate Content was Detected high
policy-violation Potential Corporate Privacy Violation high
shellcode-detect Executable code was detected high

successful-admin Successful Administrator Privileges Gain high
successful-user Successful User Privilege high
trojan-activity A Network Trojan was detected high

unsuccessful-user Unsuccessful User Privilege Grain high
web-application-attack Web Application Attack high

attempted-dos Attempted Denial of Service medium
attempted-recon Attempted Information Leak medium

bad-unknown Potentially Bad Traffic medium
default-login-attempt Attempt to login by a default username and password medium

denial-of-service Detection of a Denial of Service Attack medium
misc-attack Misc Attack medium

non-standard-protocol Detection of a non-standard protocol or event medium
rpc-portmap-decode Decode of an RPC Query medium

successful-dos Denial of Service medium
successful-recon-large-scale Large Scale Information Leak medium

successful-recon-limited Information Leak medium
suspicious-filename-detect A suspicious filename was detected medium

suspicious-login An attempted login using a suspicious username was detected medium
system-call-detect A system call was detected medium

unusual-client-port-connection A client was using an unusual port medium
web-application-activity Access to a potentially vulnerable web application medium

icmp-event Generic ICMP event low
misc-activity Misc activity low
network-scan Detection of a Network Scan low
not-suspicious Not Suspicious Traffic low

Protocol-command-decode Generic Protocol Command Decode low
String-detect A suspicious string was detected low

unknown Unknown Traffic low
tcp-connection A TCP connection was detected very low

It can be seen from Table 2 that the attacks are currently graded with four default priorities, such
as very low, low, medium, and high, in which a priority of 4 (very low) is the least severe, and 1 (high)
is the most severe. Based on the severity degree of attacks from low to high, the most common attacks
listed are host discovery, port scanning, privilege escalation, denial of service, and covert scanning [20].
The Snort attack classifications are divided in equidistant divisions. In the equidistant division of
attacks, the priorities of attacks from low to high are quantified such as 0.2, 0.4, 0.6, 0.8 and 1 as shown
in Table 3.
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Table 3. Attack priority quantization.

Priority Quantization

high 1.0
medium 0.8

low 0.6
very low 0.4
unknown 0.2

Assuming that an undefined degree of harm behavior is a threat with a very low level, its initial
quantization level is 0.2. While quantifying LoBSs’ risk, the threat degree should be updated in time
based on detected user behavior.

4.3. Elementary Intrusion Effort under Threat Degree

Because the occurrence of malicious acts is random and dynamic, and is independent of the past,
it has the Markov property [50]. The Markov property of malicious acts leads LoBSs’ safety to change,
so only the current state is involved in calculating the elementary intrusion effort. Since the current
state corresponds to a time point, one cannot estimate the effect that the behavior at a time point has
on LoBSs’ risk. In order to calculate the elementary intrusion effort, a very short period (such as 1 ms,
10 ms, etc.) is seen as a time point, that is, the fully malicious acts in the set period are treated as an
elementary intrusion. Based on the theory of integrals, the elementary intrusion effort is assessed
during the set period (such as 1 ms, 10 ms, etc.).

The elementary intrusion effort is related to factors such as threat degree, financial costs, duration,
attacker’s experience, practicability of attack tools, attack time, counting ability, and so on [51]. Based
on a principal component analysis [52], the factors of threat degree and frequency are mostly considered
in this paper.

At the same time, a SP’s server may be attacked by different priority attacks from different sources.
Suppose that the evaluation time is t, and the attack’s priority is i ∈ {4, 3, 2, 1, 0} which corresponds
to {high, medium, low, very low, unknown} in Table 3, and the number of attacks of priority i during
evaluation time t is Ci, and the severity of the attacks is Wi ∈ {4, 3, 2, 1, 0}, in the network security
situation assessment model, Hu et al. [53] proposed the network security situation threati [53] under
the attack severity Pi as:

threati = 10Wi (8)

According to practical experience, the risk indexes for an event ocurring 100 times with severity 1,
10 times with severity 2 and 1 time with severity 3 [20] are equivalent, so the influence coefficient of
the risk indexes is 10i, i ∈ {4, 3, 2, 1, 0}. In order to accurately quantify the impact of threat degree on
the risk index, the attack priority quantization is Pi ∈ {1, 0.8, 0.6, 0.4, 0.2} in Table 3. Chen et al. [20]
put forward the threat degree Ci10Pij when optimizing Wi in [53], which does not reflect the influence
coefficient of risk indexes 10i, i ∈ {4, 3, 2, 1, 0}, so it should be amended to Ci10(i+1)Pi . Under the
condition of Ci10(i+1)Pi and Equation (8), the network security situation threati

’ under a number Ci of
attacks of severity Pi is optimized as:

threat′i = 10Ci10(i+1)Pi , i ∈ {4, 3, 2, 1, 0} (9)

Because a SP’s server in LoBSs may be attacked by different priority attacks from different
sources at the same time, an elementary intrusion may comprise many attacks which are from different
attackers at different threat levels. On the basis of Equation (9) and with reference to the mean intrusion
effort approach [21], the threat degree threat of an elementary intrusion is improved as:

threat = 10
∑4

i=0 Ci10(i+1)Pi

100∑4
i=0 Ci , i ∈ {4, 3, 2, 1, 0} (10)
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The network security situation assessment model [21] focuses on a qualitative analysis, which
uses a numerical range to illustrate the risk degree and the probability of occurrence of an attack.
In Equation (10), multiple threats are combined using quantitative analysis rather than qualitative
descriptions, so the calculated threat degree is more scientific and rigorous.

The dimensionless of attack duration last is defined as:

last = lasttime
/

10j (11)

where j represents the ratio order in the duration affecting the factor of an attack, and which is set
by experts.

As the main factors affect the intrusion effort, the threat degree is independent of the attack
duration. When calculating their effect on the elementary intrusion effort, the addition principle in
combinatorics is suitable. Integrating Equations (10) and (11), the elementary intrusion effort ElemEffort
is proposed as:

ElemEffort = threat + last (12)

where ElemEffort represents the elementary intrusion effort, and threat represents the threat degree,
and last represents the normalization of the duration.

4.4. Intrusion Trace Efforts under Frequency Conditions

The intrusion trace consists of a series of mutually independent elementary intrusions in a time
window which have the Markov property [50]. According to the addition principle in combinatorics,
the intrusion trace effort Effort is proposed as:

E f f ort = ∑rate
i=1 ElemE f f ort (13)

where Effort represents the intrusion trace effort, and rate represents the total count of the elementary
intrusions, and ElemEffort represents the elementary intrusion effort.

The malicious behavior may cause the Mean-Time-Between-Failures (MTBF) to be shorter [54].
The exponential distribution [55] is used to model the time between the occurrence of events in an
interval of time, or the distance between events in space. The exponential distribution has the property
of being memoryless [56], which is often used to describe the MTBF distribution of large, complex
systems. On the assumption that the potential hacker will eventually succeed in obtaining illegal
privileges on an intrusion trace and be willing to expend enough effort to do so, the effort f (Effort) [21]
has the nature of a negative exponential distribution described by:

f (E f f ort) =

{
λe−λ×E f f ort,E f f ort > 0, λ > 0

0,E f f ort ≤ 0
(14)

where Effort represents the intrusion trace effort, and λ for a negative exponential distribution, which
is the success probability assigned to the elementary intrusion, and e is the number 2.71828 . . . , the
base of the natural logs. By the cumulative distribution function, the probability Pri(E f f ort) [21] that
the time between events is less than a specified time Effort is given as:

Pri(E f f ort) = 1− e−λi×E f f ort (15)

The mean or expected value Ei(Effort) [21] of an exponentially distributed random variable Effort
with rate parameter λi is given as:

Ei(E f f ort) = 1
/

λi (16)
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In general, the harder it is for the malicious behavior to happen, the lower the probability of
a successful invasion is. The probability λi [21] of a successful intrusion can be represented by the
inverse of the degree of difficulty di as:

λi =
1

1/di
= di , di ∈ [0, 1] (17)

The degree of difficulty for launching an elementary intrusion is divided into 10 levels as listed in
Table 4 [21].

Table 4. Scale of the degree of difficulty to launch elementary intrusions [21].

Levels Description dj

1 very simple 1

2 relatively
simple 0.9

3 fairly simple 0.8
4 simple 0.7
5 non-trivial 0.6
6 not-so trivial 0.5
7 trivial 0.4
8 intermediate 0.3
9 moderate 0.2

10 difficult 0.1

4.5. The Algorithms of Intrusion Effort

The activity diagram of intrusion effort is shown as Figure 2.
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Step 1 The time window is set, and the duration of elementary intrusions is obtained one by one
according to the final data file in the Handel Data.

Step 2 The harm degree of a malicious act is graded based on Snort user manual and quantified in
equidistant divisions.

Step 3 The elementary intrusion effort under threat degree is quantified based on network security
situation assessment model, in which the influence coefficient of risk indexes is amended.

Step 4 Based on the elementary intrusion effort, the intrusion trace effort under frequency is
quantified based on multiple behavior information fusion.

The algorithm of intrusion effort can be described as follows (Algorithm 1):

Algorithm 1: Intrusion trace effort algorithm

Input: TimeInterval, SourceFilePath, TargetFilePath.
Output: TargetFileData.
1. Read SourceFile using the class of BufferedReader;
2. Assign by SourceFile to the variables of Begin, Last, and Degree, whose types are respectively Stack < Integer
>, Stack < Double >, Stack < Float >;
3. Set TimeInterval by expert and assign to the variable of Interval;
4. The time is initialized as follows:
5. public int getInitial(){
6. int time = begin.get(0);
7. int result = time/5;
8. int initial = result*5;
9. return initial;}
10. The elementary intrusion effort is calculated as follows:
11. int time = getInitial();
12. int ptime = time + (getInterval() − 1);
13. for (int j = 0; j < begin.size(); j++){
14. if ((begin.get(j) <= ptime&&begin.get(j) > time)||(begin.get(j) > (time + 60)&&begin.get(j) < 60)){
15. rate++;
16. The algorithm to calculate the occurrence number of different threat level attacks;
17. The algorithm to calculate the threat degree of elementary intrusion;
18. The algorithm to calculate the elementary intrusion effort integrating last and threat degree;
19. e += ElemEffort;}
20. else {
21. if (rate ! = 0){
22. Calculate tracep;}
23. else {
24. tracep = 0;}
25. Store the values of tracep and rate on the stack;
26. Based on the time windows, the elementary intrusions is divided into the intrusion trace. The intrusion
trace effort is calculated as follow:
27. Write into the file of TargetFile;
28. Initialization the parameters of rate, e, unknown, lowest, low, medium, high is 0;
29. time = ptime;
30. ptime += getInterval();
31. if (ptime > 59) {
32. time = time - 60;
33. ptime = ptime - 60;}
34. j =j - 1;}}

The algorithm to the occurrence number of threat level attacks based on Table 3 can be described
as follows (Algorithm 2):
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Algorithm 2: The occurrence number of threat level attacks algorithm

Input: ThreatDegree.
Output: The Stack of Integer value.
1. if the input value is 0.2, then{
2. unknown++;
3. push (unknown);}
4. else if the input value is 0.4, then{
5. verylow++;
6. push (verylow++);}
7. else if the input value is 0.6, then{
8. low++;
9. push (low);}
10. else if the input value is 0.8, then{
11. medium++;
12. push (medium);}
13. else if the input value is 1.0, then{
14. high++;
15. push(high);}
16. else printf (“the value is illegal”);
17. reuturn value.

The algorithm to the threat degree of elementary intrusion based on Equation (10) can be described
as follows (Algorithm 3):

Algorithm 3: The threat degree of elementary intrusion algorithm

Input: The Stack of Integer value.
Output: threat.
1. The number of different priorities attack from different source at the same time is stored in the object value;
2. h = value.get(4);
3. m = value.get(3);
4. l = value.get(2);
5. lst = value.get(1);
6. k = value.get(0);
7. for (int i = 0; i < 5; i++){
8. sum1 = h*Math.pow(10, 5*1) + m*Math.pow(10, 4*0.8) + l*Math.pow(10, 3*0.6) + lst*Math.pow(10, 2*0.4) +
k*Math.pow(10, 1*0.2);
9. int sum = h + m + l + lst +k;
10. if(sum==0){
11. return 0;}}
12. double weight = sum1/(sum*100);
13. double threat = Math.pow(10, weight);
14. Return threat.

The algorithm of the elementary intrusion effort integrating last and threat degree based on
Equation (12) can be described as follows (Algorithm 4):
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Algorithm 4: The elementary intrusion effort integrating last and threat degree algorithm

Input: TimeLast, ThreatDegree.
Output: ElemEffort.
1. The dimensionless of attack duration last is treated:
2. last = lasttime/Math.pow(10, j);
3. ElemEffort = threat + last;
4. Return ElemEffort.

5. A Quantitative Risk Assessment Model Involving Frequency and Threat Degree

Deployed on a SP’s server over the Internet, services can be accessed by users. Each access
event represents a user behavior, which affects LoBSs’ risk. The user behaviors of different frequency
and threat degree impact on LoBSs differently. An elementary intrusion is any alert that is evoked
by intrusion behavior and reported by an intrusion detection system. An intrusion trace is a trace
constituted of a series of elementary intrusions that user privilege has led to getting illegally. On the
basis of intrusion trace effort, QRAM involving frequency and threat degree under LoBSs is proposed
based on VaR.

5.1. Line-of-Business Services’ Risk involving Frequency and Threat Degree

LoBSs’ risk is impacted by many factors, so it has many evaluation methods. Its main evaluation
methods include the subjective risk evaluation method based on subjective data supplied by experts’
scoring and the objective risk evaluation method based on the data detected while running LoBSs.
Integrating the advantages of both a subjective risk evaluation method and an objective risk evaluation
method, a comprehensive risk evaluation method is proposed which is more suitable for LoBSs.

5.1.1. An Objective Risk Evaluation Method

The occurrence of malicious behavior is often driven by interest. The rate of weighted threat in
intrusion traces has different effects on LoBSs’ risk. In general, the greater is the rate of a weighted
threat in an intrusion trace, the greater is its effect on LoBSs’ risk.

The time window frequency (Definition 5) under different threat degree is defined as:

highp = high/rate
mediump = medium/rate

lowp = low/rate
verylowp = verylow/rate

unknownp = unknown/rate

(18)

where highp, mediump, lowp, verylowp separately represent the frequency of threat degree in an intrusion
trace, and high, medium, low, verylow, unknown separately represent the generation numbers of threat
degree in an intrusion trace, and rate represents the total generation number of elementary intrusions
in an intrusion trace.

Based on Table 3 and Equation (18), the rate of weighted threat in an intrusion trace Tracep
(Definition 6) is defined as:

Tracep = highp× 1 + mediump× 0.8 + lowp× 0.6 + verylowp× 0.4 + unknownp× 0.2 (19)

Corresponding to the degree of difficulty of an elementary intrusion divided into 10 levels, the
objective risk Io was quantified in 1, 2, ..., 10 by the equidistant division of Tracep following as:

(1) The objective risk Io = 10, if Tracep ≥ 90%;
(2) The objective risk Io = 9, if 90% > Tracep ≥ 80%;
(3) The objective risk Io = 8, if 80% > Tracep ≥ 70%;
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(4) The objective risk Io = 7, if 70% > Tracep ≥ 60%;
(5) The objective risk Io = 6, if 60% > Tracep ≥ 50%;
(6) The objective risk Io = 5, if 50% > Tracep ≥ 40%;
(7) The objective risk Io = 4, if 40% > Tracep ≥ 30%;
(8) The objective risk Io = 3, if 30% > Tracep ≥ 20%;
(9) The objective risk Io = 2, if 20% > Tracep ≥ 10%;
(10) The objective risk Io = 1, if 10% > Tracep ≥ 0.

The integer interval of objective risk is [1, 10]. The objective risk Io can be given by the rate of
weighted threats in an intrusion trace. For example, suppose that the rate of a weighted threat in a j-th
intrusion trace Tracpj is 0.75, then the objective risk Ioj is 8.

5.1.2. A Subjective Risk Evaluation Method

A subjective risk evaluation is calculated by experts’ scores. In order to ensure consistency with
the objective risk, the interval of expert’s score limits is [1, 10]. Supposing that expert’s score set is U =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and there are m experts to score n elemental intrusions of an intrusion trace,
then the expert score matrix for this intrusion trace is described as:

score =

 score11 · · · score1n
...

. . .
...

scorem1 · · · scoremn

 (20)

where scoreij represents the score of the i-th expert for the j-th element intrusion of an intrusion trace,
1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ scoreij ≤ 10.

It can be seen from Equation (20) that the score set of expert m for the j-th element intrusion of an
intrusion trace is scorej = {score1j, score2j, . . . , scoremj}. The expert’s score Sj of the j-th element intrusion
of an intrusion trace is averaged by expert m’s score as:

Sj =
score1j + socre2j + . . . + scoremj

m
(21)

Since the interval of scoreij (1 ≤ i ≤ m, 1 ≤ j ≤ n) is between [1, 10], it is normalized as:

pij =
scoreij

score1j + score2j + scoremj
, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ scoreij ≤ 10 (22)

The expert scoring matrix for intrusion trace is transformed as:

score′ =

 p11 · · · p1n
...

. . .
...

pm1 · · · pmn

, p1j + p2j + . . . + pmj = 1, j = 1, 2, .., n (23)

Since an intrusion trace comprises a lot of elementary intrusions which are evaluated by experts,
the subjective risk based on Shannon entropy [37] of expert score matrix Hj is proposed as:

Hj = −
1

ln m∑m
i=1 pij ln pij , j = 1, 2, . . . , n (24)

The subjective risk Isj of the j-th intrusion trace is calculated as:

Isj = Hj × Sj (25)
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5.1.3. A Comprehensive Risk Evaluation Method

Objective risk evaluation methods are susceptible to the bias of sample data. Subjective risk
evaluation methods are susceptible to experts’ subjectivity. Integrating the advantages of subjective
risk and objective risk, a comprehensive risk evaluation method is proposed, based on the intrusion
trace probability and the proportion between subjective risk and objective risk which is evaluated by
experts. If the interval of subjective risk p1j, p2j, . . . , pmj undulates violently, it is shown that expert’s
evaluations are serious differences. The effectiveness of subjective risk is weak, and the proportion of
subjective risk in the comprehensive risk should be reduced. On the contrary, the proportion should
be increased.

Supposing that the subjective risk’s weight of the j-th intrusion trace in the comprehensive risk is
Wsj, the weight of objective risk Woj is calculated as:

Woj = 1 −Wsj (26)

The comprehensive risk Icj of the j-th intrusion trace is calculated as:

Icj = Wsj × Isj + Woj × Ioj (27)

The comprehensive risk is limited to [1, 10], which is normalized as:

rj = Icj/10 (28)

The change rate Qj of risk affecting function is defined by the probability Prj (Equation (15)) of
intrusion trace multiplied by the normalization rj of comprehensive risk, that is:

Qj = Prj × rj (29)

5.2. A Quantitative Risk Assessment Model

Just like financial assets or a portfolio may lose value due to market fluctuations, users’ behavior
may lead to LoBSs’ risk. Based on VaR [18] which is commonly used in financial risk assessment,
QRAM involving frequency and threat degree is proposed to quantify LoBSs’ risk.

The keys to calculating VaR include the forecast of future market changes and the relationship
between the portfolio and the market (linearity, non-linearity). The fundamental calculation methods
of forecasting future market changes include historical simulation method, parametric method and the
Monte Carlo method [45], whose advantages can be listed as follows:

The implicit assumptions of parametric method are a normal distribution and the invariance of
volatility and correlation, but when the number of assets in the portfolio is large, it is difficult to ensure
that variance and covariance [45].

Based on stochastic simulations, the Monte Carlo method has many shortcomings, such as the
choice of models, the quality of random numbers, relying on a particular stochastic process, etc. [45].

The core of historical simulation method is to simulate the future income distribution of the
portfolio based on the historical sample changes, and then uses the quartile to calculate the VaR
under a certain degree of confidence [45]. Historical simulation method calculates the total value of
the portfolio, rather than the local approximation of small changes in price. At the same time, the
historical simulation method avoids the simulation risk by using real data, and it do not need to make
specific assumptions on the distribution, nor do it need to estimate the parameters, so it can deal with
asymmetric and fat tail problems. In addition, as the historical data reflects the simultaneous changes
of all risk factors in the market, the problems of volatility, relevance, and fat tail can be reflected by
the data.

Based on the comprehensive analysis of the three methods, in this work LoBSs’ risk is quantified
by the historical simulation method of VaR. Supposing that the initial risk of LoBSs is R0, and the
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change rate of the risk affecting function is Qj (Equation (29)), the risk R after happening the j-th
intrusion trace is calculated as:

R = R0 (1 − Qj) (30)

Supposing that the confidence level (Definition 8) is c, and the highest risk is R* = R0 (1 − Qj
*),

and the expectation of Qj (Equation (29)) is uj, and the expectation of R is E(R), then LoBSs’ VaR VaRR

based on Equation (4) is proposed as:

VaRR = E(R)− R∗ = R0(1− uj)− R0(1−Q∗) = R0(Q∗ − uj) (31)

In the other words, to calculate VaR is equivalent to calculate the maximum risk R* or the
minimum change rate of risk affecting function Q* of LoBSs. The probability density function f (R) of
LoBSs’ risk change can be calculated based on R = R0 (1 − Qj). Based on Equation (6), the maximum
risk R* for LoBSs at a certain confidence level c (Definition 8) is defined as:

c =
∫ R∗

0
f (R)dR (32)

5.3. The Algorithm to Assess Line-of-Business Services’ Risk

The activity diagram of LoBSs’ risk assessment is shown in Figure 3.
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Figure 3. Assessing LoBSs’ risk activity diagram.

Step 1 The parameters of confidence degree, initial risk, operational difficult degree, number of
expert are initialized.

Step 2 The objective risk are calculated according to the intrusion trace effort.
Step 3 The subjective risk was calculated according to the Shannon entropy of experts’ scores.
Step 4 A comprehensive risk is combined with objective risk and subjective risk.
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Step 5 The rate of risk impact is calculated by combining the comprehensive risk with the probability
of intrusion trace.

Step 6 LoBSs’ risk is calculated by the historical simulation method of VaR.

The algorithm to assess LoBSs’ risk can be described as follows (Algorithm 5):

Algorithm 5: LoBSs’ risk assessment algorithm

Input: SourceFilePath, ProfessorFilePath, WeightFilePath, InitialRisk, Confidence, Difficulty, NumberofProfessor.
Output: VaRR.
1. Assign the parameters of InitialRisk, Confidence, Difficulty, NumberofProfessor;
2. Read SourceFile Using BufferedReader;
3. the ObjectiveRisk Ioj is get by judging TraceP,then, push into the corresponding stack;
4. Read ProfessorFile using BufferedReader;
5. The files in ProfessorFile are stored with the type of List <double []>, the attack Shannon entropy is calculated;
6. Calculating the subjective risk Isj;
7. Read WeightFile using BufferedReader, the comprehensive risk Icj is calculated based on the weight between
subjective risk and objective risk;
8. The rate of risk impact is calculated by Qj = Prj × rj;
9. VaRR is calculated based on VaR;
10. Return VaRR.

6. Simulation Test and Discussion

In order to test QRAM, a prototype is designed based on the unified modeling language, and
implemented based on Java. In order to verify QRAM, we would need some data from a SP’s server,
but we cannot get. In SP server of LoBSs, the services are centrally provided to users by the multi-tenant
model which are used by tenant’s users over the Internet, so users are out of tenant entity management
domain when using a SP’s service. The behavior characteristics of user are similar to those in a
traditional network system, so for a test it is suitable to simulate LoBSs using a traditional information
system, whose data comes from the simple data of Windows NT attack data set (Sim-Data-NT) in 2000
defense advanced research projects agency intrusion detection evaluation data set of massachusetts
institute of technology lincoln laboratory [57].

6.1. Simulation Data

There are 358 elementary intrusion data in Sim-Data-NT [57], whose threat level includes six high,
46 medium, 306 unknown, and hardly any low and very low. Because there is hardly any data of threat
level both low and very low, it is not consistent with reality. In order to be consistent with the real
situation, the set of Sim-Data-NT should be optimized. Supposing that SMTP packets are altered by an
icmp-event attack, and the FTP packets are altered by a tcp-connetion attack, according to Snort default
classification [19], there are 358 elementary intrusion data in the optimized Sim-Data-NT, whose threat
level includes six high, 46 medium, 24 low, 18 very low, 264 unknown. According to Table 3, the threat
degree of test data in the optimized Sim-Data-NT is quantified.

Because the information of the optimized Sim-Data-NT is imperfect as it cannot determine the
intrusion trace constituted by the elementary intrusions, it is assumed that the elementary intrusions
within the time window constitute an intrusion trace. By testing the intrusion trace effort for different
time windows (such as 1 s, 10 s, 20 s, etc.), the suitable maximum and minimum time windows can
be obtained. An intrusion trace is simulated by randomly splitting the time windows between the
maximum and the minimum.

In order to facilitate post-processing, the ternary coding system is adopted, for example the
number 1 is coded as 001. The source data including the parameters of attack time, duration and type
are selected as seen in Figures 4 and 5. By the Snort default classification [19], the threat degree of
attack is quantified as shown in Table 5.
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Table 5. Threat degree of attack and quantification.

Attack Type Quantization

- 0.2
phf 1
rsh 1
rcp 1

guess 0.8
rlogin 0.8

port-scan 0.8
portsweep 0.6
icmp-event 0.6

tcp-connection 0.4

6.2. Testing and Results

Based on the optimized Sim-Data-NT, the simulation test items by our prototype system
include: (1) elementary intrusion effort; (2) intrusion trace effort; (3) objective risk; (4) subjective
risk; (5) comprehensive risk; (6) LoBSs’ Quantitative Risk. The simulation testing and results are
as follows:

• Elementary Intrusion Effort: Suppose the parameter j of Equation (11) is respectively assigned
values of 2, 3, 4, then the relationship between elementary intrusion effort and duration based on
Equation (12) is as shown in Figure 6.
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It can be seen from Figure 6 that:

• The cures of elementary intrusion effort deviate greatly between j = 2 and no duration, that is,
the duration interferes with the elementary intrusion effort too much.

• The cures of elementary intrusion effort hardly coincide between j = 4 and no duration, that is,
the duration interferes with the elementary intrusion effort next to nothing.

• The cures of elementary intrusion effort are almost synchronized between j = 3 and no duration,
that is, the duration strengthens the elementary intrusion effort.

It can be concluded that j = 3 is suitable for the experiment because it takes into account the effects
of both threat degree and duration, that is, the duration influence on the elementary intrusion effort is
reasonable when the normalized parameter is 1000.
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• Intrusion Trace Effort: Suppose that the time window is respectively assigned as 1 s, 5 s, 10 s, 15 s,
20 s, 25 s, 30 s, the relationship between intrusion trace effort and time widow of Equation (13) is
shown in Figure 7.
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It can be seen from Figure 7 that:

• When the time window is 1 s, an intrusion trace only includes an elementary intrusion, that is, an
intrusion trace degenerates to an elementary intrusion, and the intrusion trace effort fluctuates
with high-frequency.

• When the time window is 5 s, like an elementary intrusion, the intrusion trace effort fluctuates
with high-frequency.

• When the time window is 30 s, the curve of intrusion trace effort is level and smooth, and many
malicious attacks are smoothed and therefore skipped.

• When the time window is 10 s, the tendency of the intrusion trace effort coincides with the
elementary intrusion effort.

It can be concluded that 10 s are suitable for the time window of intrusion traces which can
effectively avoid the curve fluctuations in small time window, but avoid the curve smoothing in a large
time window.

• Objective Risk: The objective risk is calculated by the rate of weighted threat in an intrusion trace,
and the relationship between intrusion trace effort and objective risk is shown in Figure 8.
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It can be seen from Figure 8 that the tendencies between intrusion trace effort and objective
risk coincide in the overwhelming majority of cases. Only in specific individual time intervals the
objective risk is inactivated since the intrusion trace effort fluctuates little, so it is practical to estimate
the objective risk by the rate of weighted threat in the intrusion trace.

• Subjective Risk: The subjective risk is calculated by Shannon entropy based on the experts’ scoring
matrix, then the relationship between intrusion trace effort and subjective risk is shown in Figure 9.
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It can be seen from Figure 9 that the tendency between intrusion trace effort and subjective
risk coincides in the overwhelming majority of cases. Only in specific individual time intervals the
subjective risk is inactivated since the intrusion trace effort fluctuates little, so it is practical to estimate
the subjective risk by Shannon entropy based on the experts’ scoring matrix.

• Comprehensive Risk: The comprehensive risks under different ratio between objective risk and
subjective risk are shown as Figure 10.

It can be seen from Figure 10 that when the ratio of objective risk is 0.5, the tendency between
intrusion trace effort and comprehensive risk coincides, so it is practical to adopt a comprehensive risk
between objective risk and subjective risk under a ratio of 0.5.
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• LoBSs’ Quantitative Risk: Under the conditions of confidence level, number of experts, attack
difficulty degree, initial risk, and time window, the change tendency of LoBSs’ quantitative risk
based on QRAM is individually investigated.
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• Under the condition that the confidence level is 95%, and the number of experts is 5, and the
attack difficult degree is 0.1, the relationship between initial risk and LoBSs’ quantitative risk
based on QRAM is shown in Figure 11.
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It can be seen from Figure 12 that LoBSs’ quantitative risk based on QRAM hardly changes when
the attack difficulty degree is less than 0.3, and it can be quantified in accordance with the quadratic
polynomial y = 0.0127x2 + 0.018x + 45.108.
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• Under the condition that the number of experts is 5, and the initial risk is 100, and the attack
difficulty degree is 0.1, the relationship between confidence level and LoBSs’ quantitative risk
based on QRAM is shown in Figure 13.
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It can be seen from Figure 13 that there is a linearly-decreasing relation between confidence level
and LoBSs’ quantitative risk based on QRAM. The lower the confidence level is, the rougher LoBSs’
quantitative risk is; the higher the confidence level is, the more accurate LoBSs’ quantitative risk is.

• Under the condition that the number of experts is 5, and the initial risk is 100, and the attack
difficulty degree is 0.1, and the confidence level is 95%, the relationship between time window
and LoBSs’ quantitative risk based on QRAM is shown in Figure 14.
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It can be shown from Figure 14 that LoBSs’ quantitative risk based on QRAM hardly changes
when the time widow is larger than 15 s, and it can be quantified in accordance with the quadratic
polynomial y = −0.0146x3 + 0.5356x2 − 4.4012x + 51.543. The study just selects the data of elementary
intrusions rather than the intrusion trace in the optimized Sim-Data-NT. The intrusion traces are
defined by the elementary intrusions in a splitting time window. The splitting time window will
influence the constitution of the intrusion traces, and furthermore its effort, but hardly affect LoBSs’
quantitative risk based on QRAM.

7. Conclusions

As one of cloud computing’s service models, SaaS is one of development directions of software
delivery. As one of SaaS’s service types, LoBSs are often large, customizable business solutions
offered to enterprises and organizations and aimed at facilitating business processes. A lot of valuable
resources are accumulated on SP’s server, so the access permission is a top priority in LoBSs’ security,
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which is one of the biggest challenges to LoBSs. LoBSs’ users are very diverse as they may come from
a wide range of locations with vastly different characteristics. The cost of joining could be low and in
many cases, the intruders are just eligible users conducting malicious actions. In order to dynamically
adjust user access, LoBSs’ risk must be dynamically assessed. Both frequency and threat degree of
malicious operation have an important effect on LoBSs’ risk. The higher is the frequency of malicious
operations, the higher is the risk of LoBSs. The larger is the threat degree of malicious actions, the
greater is the risk of LoBSs. In order to quantify LoBSs’ risk more precisely, the impact both frequency
and threat degree of user behavior must be considered.

Based on VaR, QRAM involving frequency and threat degree is proposed under LoBSs for
infrastructure of ESNs. The degree of harm of a malicious act is graded based on Snort user manual [19]
and quantified in equidistant divisions. The elementary intrusion effort under threat degree is
quantified based on a network security situation assessment model [20], in which the influence
coefficient of risk indexes is amended. The intrusion trace effort under frequency is quantified based
on multiple behavior information fusion [21]. The objective risk of LoBSs is quantified based on the
rate of weighted threat in intrusion traces. The subjective risk of LoBSs is quantified based on Shannon
entropy [38] of experts’ scores. The comprehensive risk of LoBSs is quantified on both the intrusion
trace probability and the proportion between subjective risk and objective risk. Under the influence of
intrusion trace, LoBSs’ risk is accessed dynamically by the historical simulation method of VaR.

In order to perform a simulation test, a prototype is designed based on the unified modeling
language, and implemented based on Java. Based on the optimized Sim-Data-NT, simulation testing
by the prototype, it can be shown that the duration influence on elementary intrusion effort is
reasonable when the normalized parameter is 1000; 10 s are suitable for the time window of intrusion
trace; the comprehensive risk can be correctly reflected when the weight ratio between objective
risk and subjective risk is 0.5. Under the conditions of confidence level, number of expert, attack
difficulty degree, initial risk and time window, after the change tendency of LoBSs’ quantitative risk
is respectively tested, LoBSs’ risk can be assessed dynamically by QRAM involving frequency and
threat degree.

QRAM involving frequency and threat degree focuses on LoBSs for infrastructure of ESNs, and
may promote to other cloud computing scenarios, but there are more factors such as financial cost,
attacker’s experience, practicability of attack tool, counting ability, and so on, which may influence on
LoBSs’ risk, and should be involved in any evaluation.
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