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Abstract

We derive a stage-structured model for an insect population in which a larva ma-
tures on reaching a certain size, and in which there is intra-specific competition among
larvae which hinders their development thereby prolonging the larval phase. The model,
a system of delay differential equations for the total numbers of adults and larvae, as-
sumes two forms. One of these is a system with a variable state-dependent time delay
determined by a threshold condition, the other has constant and distributed delays,
a size-like independent variable and no threshold condition. We prove theorems on
boundedness and on the linear stability of equilibria.

Keywords: competition; delay differential equation; size-structure; boundedness; linear
stability

1 Introduction

In insects, and other species that undergo metamorphosis, individuals often undergo a larval
stage of development before becoming sexually mature adults. Mathematical models of such
populations often take the form of delay differential equations for the total numbers of larval
and adult individuals, in which the delay is the developmental time from egg to adult which
is often assumed to be constant. These are stage-structured models, derived from well known
modelling frameworks for age structured populations such as the McKendrick – von Foerster
equation. It is a well known and straightforward way to model a population if the maturation
delay is constant. However, in reality, larval developmental times for mosquitoes depend on
a number of factors such as the weather (particularly temperature), diet and intra- or inter-
specific competition (Araújo et al [2], Hardstone and Andreadis [6], Silberbush et al [12],
Couret et al [4], Jannat and Roitberg [7]). Intra-specific larval competition is known to
occur in some mosquito populations (Reiskind and Lounibos [10]). In insects generally, the
metamorphic molt is actually triggered by the size of the larva and not by chronological age
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(Callier and Nijhout [3], Blakley [1], Rewitz et al [11]). In Drosophila, pupariation seems to
be triggered by a large pulse of a steroid hormone known as 20-hydroxyecdysone (ecdysone),
and this happens when enough larval growth has been achieved to produce an adult of the
correct size (Moeller et al [9], Rewitz et al [11]).

Adopting the view that maturation is triggered by size, not age, this paper considers
the role of intra-specific competition in determining the developmental time of insect larvae.
The immediate effect of competition among larvae is to slow down their growth, with the
consequence that maturation is delayed. In this paper maturation is triggered when a larva
reaches a prescribed length l, and the maturation time for the cohort that matures at time
t is τ(t), which is determined from the threshold condition (2.11) and involves the number
of larvae I present at all times during the maturation, since those other larvae were exerting
competitive pressure. Larval development rate decreases as larval density increases, and we
model this using equation (2.2) with P decreasing in its second variable. These assumptions
lead to a system of delay differential equations for the numbers of adults A(t) and larvae
I(t). These equations have a variable (state-dependent) delay determined from the threshold
condition and, unlike in many similar models with a constant delay, are fully coupled. The
model can be transformed into one that has terms with constant delay, and other terms
with distributed delay. In the second model a size-like variable x is used as the independent
variable, and for larvae it corresponds to actual physical length.

We prove theorems that provide conditions sufficient for the population to be bounded or
to go extinct. Delay equation models for stage-structured populations commonly involve a
function B(·) which is the birth rate (egg-laying rate) and it seems to be common practice
to assume that this function is bounded, because such an assumption usually makes it
possible to prove that solution variables remain bounded. The birth function is usually
a function B(A) of the number of adults A. It is usually argued that the assumption
of boundedness of the birth function is reasonable, because the per-capita egg-laying rate
B(A)/A tends to decrease at higher densities due to competition among adults; thus one often
has in mind a function such as B(A) = rA exp(−qA), the Nicholson’s blowflies birthrate [5],
which is indeed bounded. However, in this paper we prefer to establish boundedness results
without the requirement of boundedness of our birth function B(A). This is because of the
expectation that intra-specific competition among insect larvae should prolong maturation,
thereby exposing larvae to mortality risks for longer, lowering the maturation rate and
stabilising the population that way. We have therefore aimed to prove boundedness results
that admit unbounded birth functions (within certain restrictions) and results that elucidate
the role of a decreasing function P0 that specifies how the growth rate of an individual larva
depends, due to the intra-specific competition, on the total number of larvae.

We also establish a result on the linear stability of any equilibrium. The characteristic
equation is of a format that does not lend itself well to commonly used tricks, but in some
situations (particularly if the competition is sufficiently weak, in a sense that can be quan-
tified) a technique involving the use of Rouché’s theorem can be applied to yield verifiable
conditions sufficient for the local stability of an equilibrium.
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2 Model derivation

We have in mind an insect population with larval and adult life stages. Maturation is
triggered by size or weight, but the growth of an individual larva is at each instant affected
by the total number of larvae present, since all larvae compete for resources thereby slowing
the growth of each individual. For larvae, we work with a variable x which could denote the
size or weight (we choose size, to be definite) of a larva. Rather than specifying that a larva
matures on reaching a certain age, we specify that it matures when its size x reaches a fixed
threshold l. We derive a delay differential equation for the total number of adults, following
an approach similar to that used in Smith [13]. (Smith [13] non-dimensionalises and takes
l = 1, but we do not do that here).

Let A(t) denote the number of mature adult insects at time t and let i(x, t) denote the
larvae population density at time t of length x. The total number I(t) of larvae is given by

I(t) =

∫ l

0

i(x, t) dx. (2.1)

Suppose that the rate of change of the length of a larva at time t is given by

dx

dt
= P (t, I(t)) (2.2)

i.e. the rate of change depends explicitly on t and also on the total number of larvae I(t) (in
reality it may also depend on other factors). If P (t, I) is decreasing in I then (2.2) models
competition among the larvae because an increase in their numbers will slow down the rate
at which larvae grow.

After a small time δt a larva will have grown an amount δx and therefore

i(x+ δx, t+ δt) = i(x, t)− µii(x, t) δt

where µi is the per-capita mortality rate for larvae. From a Taylor expansion, and using (2.2),

∂i(x, t)

∂t
+ P (t, I(t))

∂i(x, t)

∂x
= −µii(x, t). (2.3)

Note that since larvae metamorphose into adults it makes no sense to write down an equation
for i(x, t) for lengths x exceeding l. Equation (2.3) is strictly for x ∈ (0, l) only. We may
still derive an equation for the number of adults A(t).

Differentiating (2.1) and using (2.3),

I ′(t) = −µiI(t) + P (t, I(t))(i(0, t)− i(l, t)).

Thus, P (t, I(t)) i(0, t) is the birth rate and P (t, I(t)) i(l, t) is the maturation rate. For the
birth rate, we assume that

P (t, I(t)) i(0, t) = B(A(t)) (2.4)

whereB(·) is a non-negative function such thatB(0) = 0. The maturation rate P (t, I(t)) i(l, t)
needs to be calculated in terms of the birth rate at a previous time t−τ(t). The time-varying
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delay τ(t) turns out to be the solution of the integral condition (2.11) later. We proceed by
solving (2.3) by the method of integration along characteristics.

The (x, t) plane can be partitioned into two subsets, with some characteristics lying above
the characteristic x = X(t) and others below it, where

X(t) =

∫ t

0

P (ξ, I(ξ)) dξ

The curve x = X(t) is a special characteristic which passes through the origin (like the line
t = a in age structured models). The expression for i(x, t) depends on whether (x, t) is above
or below this special characteristic x = X(t).

In general, characteristics satisfy (2.2). Let s be a parameter describing position along a
particular characteristic, such that s = 0 corresponds to a boundary (which could be either
the x or the t axis), and such that dt/ds = 1. Then dx/ds = P (t, I(t)).

Recall that we are only concerned with x ∈ (0, l). First let us consider the situation when
x ≥ X(t). This will only in practice be the case for small t, since x ∈ (0, l) and X(t) is
increasing. A characteristic (x(s), t(s)) in the region x ≥ X(t) of the (x, t) plane meets the
x-axis and has t = 0 when s = 0. Since t(0) = 0 these characteristics are given by t = s and
x− x(0) = X(t). Now, from (2.3),

d

ds
i(x(s), t(s)) = −µi i(x(s), t(s)) (2.5)

so that
i(x(s), t(s)) = i(x(0), t(0))e−µis. (2.6)

At a particular given point (x, t), with x ≥ X(t), we have s = t and thus

i(x, t) = i(x−X(t), 0)e−µit, x ≥ X(t). (2.7)

Expression (2.7) is the solution of (2.3) during an initial transient of times t such that
x ≥ X(t), and involves the initial size distribution i(x, 0).

Next we consider the region x ≤ X(t) in the (x, t) plane (equivalent to t ≥ T (x, t), where
T (x, t) is defined in (2.8)), typically holding for larger t and ultimately giving rise to a
delay equation that describes the adult population dynamics after the initial transient. A
characteristic (x(s), t(s)) in this region meets the t axis and has x(0) = 0 and t = s+ t(0).

We need to find the s value for a particular point (x, t). From (2.2), using that x = 0
when t = t(0),

x =

∫ t

t(0)

P (ξ, I(ξ)) dξ =

∫ t

t−s

P (ξ, I(ξ)) dξ

which determines the required s. The root s of the above equation is denoted T (x, t), so
that the function T (x, t) is defined by∫ t

t−T (x,t)

P (ξ, I(ξ)) dξ = x. (2.8)

Equation (2.6) still holds but now x(0) = 0, t(0) = t− s and s is the quantity T (x, t) defined
in (2.8). Therefore

i(x, t) = i(0, t− T (x, t))e−µiT (x,t), x ≤ X(t). (2.9)
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The birth law is (2.4) and is used to compute i(0, t− T (x, t)), giving

i(0, t− T (x, t)) =
B(A(t− T (x, t)))

P (t− T (x, t), I(t− T (x, t)))
. (2.10)

We require the maturation rate P (t, I(t)) i(l, t) and we can now find i(l, t) from (2.9) and (2.10),
giving

i(l, t) = i(0, t− T (l, t))e−µiT (l,t) =
B(A(t− T (l, t)))

P (t− T (l, t), I(t− T (l, t)))
e−µiT (l,t).

Since the size variable x only applies to larvae, for the adults A(t) we simply write

dA(t)

dt
= −µaA(t) + maturation rate.

We also write τ(t) = T (l, t). From (2.8), the delay τ(t) in (2.12) satisfies the threshold
condition ∫ t

t−τ(t)

P (ξ, I(ξ)) dξ = l. (2.11)

The equation for the number of adults A(t) is

dA(t)

dt
= −µaA(t) + P (t, I(t))

B(A(t− τ(t)))

P (t− τ(t), I(t− τ(t)))
e−µiτ(t) (2.12)

and the equation for the number of larvae I(t) is

dI(t)

dt
= −µiI(t) + B(A(t))− P (t, I(t))

B(A(t− τ(t)))

P (t− τ(t), I(t− τ(t)))
e−µiτ(t). (2.13)

Equation (2.13) can be replaced by the integral equation

I(t) =

∫ t

t−τ(t)

B(A(ξ))e−µi(t−ξ) dξ (2.14)

with τ(t), which depends on the function I, defined by (2.11). Equation (2.14) can be directly
derived from the fact that

I(t) =

∫ l

0

i(x, t) dx =

∫ l

0

i(0, t− T (x, t))e−µiT (x,t) dx

=

∫ l

0

B(A(t− T (x, t)))

P (t− T (x, t), I(t− T (x, t)))
e−µiT (x,t) dx

which becomes (2.14) on changing variables from x to ξ, where t− T (x, t) = ξ with T (x, t)
defined by (2.8), noting that T (0, t) = 0, T (l, t) = τ(t) and, using (2.8), ∂ξ/∂x = −∂T/∂x =
−1/P (ξ, I(ξ)).
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3 Model analysis

We start by considering the autonomous case when P (t, I) = P0(I). In this case it is possible
to convert the model (2.12)–(2.13) into one without a threshold condition of the form (2.11).
To do so, we introduce the new independent variable

x =

∫ t

0

P0(I(ξ)) dξ

and write

A(t) = A
(∫ t

0

P0(I(ξ)) dξ

)
= A(x), I(t) = I

(∫ t

0

P0(I(ξ)) dξ

)
= I(x).

Note that

x =

∫ t−τ(t)

0

P0(I(ξ)) dξ +

∫ t

t−τ(t)

P0(I(ξ)) dξ =

∫ t−τ(t)

0

P0(I(ξ)) dξ + l

by (2.11). Thus, if x corresponds to t then x− l corresponds to t− τ(t). Also

A(t− τ(t)) = A

(∫ t−τ(t)

0

P0(I(ξ)) dξ

)
= A(x− l) and I(t− τ(t)) = I(x− l)

so the effect of the transformation is to transform (2.12)–(2.13) into a model with a constant
delay l, and without a threshold condition. We calculate τ(t) in terms of x as follows:

τ(t) = t− (t− τ(t)) =

∫ x

x−l

dt

dx̄
dx̄ =

∫ x

x−l

1

P0(I(x̄))
dx̄ =

∫ 0

−l

1

P0(I(x+ x̄))
dx̄

=

∫ 0

−l

1

P0(Ix(x̄))
dx̄ = τ0(Ix)

where the subscript notation has its standard meaning in delay equations, i.e. Ix(x̄) =
I(x+ x̄) for x̄ ∈ [−l, 0] and the functional τ0(·) is defined by

τ0(ϕ) =

∫ 0

−l

1

P0(ϕ(x̄))
dx̄. (3.15)

The model equations (2.12)–(2.13) become

dA(x)

dx
= −µa

A(x)

P0(I(x))
+ e−µiτ0(Ix)B(A(x− l))

P0(I(x− l))
(3.16)

and
dI(x)
dx

= −µi
I(x)

P0(I(x))
+

B(A(x))

P0(I(x))
− e−µiτ0(Ix)B(A(x− l))

P0(I(x− l))
. (3.17)

In the autonomous case P (t, I) = P0(I) that is now under consideration, either of the
systems (2.12)–(2.13) or (3.16)–(3.17) can be used to study the linear stability of an equilib-
rium. In Section 3.2 we present an approach that uses (2.12)–(2.13) for this purpose. Next,
we establish bounds for A(t) and I(t) from a study that uses both systems. The second
equation (3.17) can be replaced by the integral equation

I(x) =
∫ x

x−l

B(A(z))

P0(I(z))
exp

(
−µi

∫ x

z

dx̄

P0(I(x̄))

)
dz. (3.18)
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3.1 Boundedness

Good bounds on the variables A(t) and I(t) can be obtained from a study that uses both
system (2.12)–(2.13) and the reformulated system (3.16)–(3.17) in which x is the independent
variable. Theorem 3.1 admits some unbounded birth functions B(·), and establishes bounds
that depend on the function P0(·) which describes the intra-specific competitive effect among
larvae and its tendency to prolong the larval stage by slowing down the rate at which a larva
grows.

Theorem 3.1 Suppose the function B(·) is non-negative and satisfies B(A) ≤ B(A) for
all A ≥ 0, where B(A) is some non-decreasing function with the property that there exists
K > 0 such that B(A) < min(µa, µi)A whenever A > K. Then, solutions of (2.12)–(2.13)
subject to non-negative initial data satisfy

lim sup
t→∞

(A(t) + I(t)) ≤ K. (3.19)

Suppose further that P (t, I) = P0(I) in (2.2), with P0(·) a strictly positive decreasing func-
tion. Then, if (A, I) satisfies system (3.16)–(3.17):

(i) if
e−µil/P0(0)

P0(K)
B(A) <

µa

P0(0)
A (3.20)

for all A > 0, then (A(x), I(x)) → (0, 0) as x → ∞;

(ii) if (3.20) does not hold for all A > 0 but there exists K1 > 0 such that (3.20) holds for
all A > K1, then

lim sup
x→∞

A(x) ≤ K1 (3.21)

and

lim sup
x→∞

I(x) ≤ B(K1)

P0(K)

P0(0)

µi

(
1− e−µil/P0(0)

)
. (3.22)

Proof. It is straightforward to see that A(t) ≥ 0 and I(t) ≥ 0 for all t ≥ 0. For A(t) this
follows immediately from the structure of (2.12) and an argument similar to that described
in the proof of Theorem 5.2.1 in Smith [14]. For I(t), non-negativity follows from the integral
equation (2.14). Adding (2.12) and (2.13) gives

d

dt
(A(t) + I(t)) = B(A(t))− µaA(t)− µiI(t)

≤ B(A(t))−min(µa, µi) (A(t) + I(t))

≤ B(A(t) + I(t))−min(µa, µi) (A(t) + I(t)).

From a standard comparison argument, and basic properties of one-dimensional ordinary
differential equations, we immediately deduce (3.19).

Obviously, lim supt→∞ A(t) and lim supt→∞ I(t) are independently bounded byK, and the
same asymptotic bound also applies to the functions A(x) and I(x) satisfying (3.16)–(3.17).
In what follows, we treat the bound K as if it applies to A(t) and I(t) for all t, and A(x)
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and I(x) for all x. This can be justified by standard arguments involving the addition of
a small quantity ϵ to K. For example, A(t) ≤ K + ϵ for t sufficiently large, so K + ϵ can
be used as a true bound on A(t) if all analysis is understood to be for large enough t. But,
eventually, ϵ is shrunk to zero. For brevity we omit these routine details of justification and
use the asymptotic bound K on each variable as if it were valid for all times.

Since P0(·) is decreasing, P0(I(x)) ≤ P0(0) and therefore, from (3.16) and the definition
of τ0(Ix),

dA(x)

dx
≤ − µa

P0(0)
A(x) +B(A(x− l))

[
1

P0(I(x− l))
exp

(
−µi

∫ x

x−l

1

P0(I(x̄))
dx̄

)]
. (3.23)

Since 0 ≤ I(x) ≤ K,

dA(x)

dx
≤ − µa

P0(0)
A(x) +

e−µil/P0(0)

P0(K)
B(A(x− l)). (3.24)

The proof of statement (i), that A(x) → 0 as x → ∞ under the assumption that (3.20)
holds for all A > 0, follows from a comparison argument using that B(·) is non-decreasing.
Theorem 5.1.1 of Smith [14] assures us that A(x) is bounded above by the solution of
the differential equation corresponding to (3.24), i.e. the differential equation obtained if
≤ in (3.24) is replaced by =. Zero is the only equilibrium of that equation under the
assumptions of statement (i). By the results on generic convergence to equilibria in [14],
Chpt. 5, A(x) → 0 as x → ∞. It then follows from the integral equation (3.18) that
I(x) → 0. Note that P0(I(z)), in the denominator of the integrand of (3.18), is bounded
away from zero because of the boundedness of I.

Next we prove statement (ii) of the theorem. Let A∞ = lim supx→∞ A(x), and let ϵ > 0
be an arbitrary small number. There exists X > 0 such that A(x) ≤ A∞ + ϵ whenever
x ≥ X. Also, by the fluctuation lemma (see [15], Proposition A.22), there is a sequence
xj → ∞ such that A(xj) → A∞ and A′(xj) → 0 as j → ∞. From (3.24), for j sufficiently
large

A′(xj) ≤ − µa

P0(0)
A(xj) +

e−µil/P0(0)

P0(K)
B(A(xj − l))

≤ − µa

P0(0)
A(xj) +

e−µil/P0(0)

P0(K)
B(A∞ + ϵ)

since B is non-decreasing. Letting j → ∞ and then ϵ → 0,

µa

P0(0)
A∞ ≤ e−µil/P0(0)

P0(K)
B(A∞).

But we are now assuming (3.20) holds when A > K1, so it follows that A∞ ≤ K1. Finally
to deduce (3.22) we use (3.18) and the bounds A∞ ≤ K1, I∞ ≤ K. Let ϵ be an arbitrary
small positive number, then A(z) ≤ K1 + ϵ and I(z) ≤ K + ϵ for all z sufficiently large.
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Therefore, for x sufficiently large, and using that B ≤ B with B increasing,

I(x) =

∫ x

x−l

B(A(z))

P0(I(z))
exp

(
−µi

∫ x

z

dx̄

P0(I(x̄))

)
dz

≤ B(K1 + ϵ)

P0(K + ϵ)

∫ x

x−l

exp

(
− µi

P0(0)
(x− z)

)
dz

=
B(K1 + ϵ)

P0(K + ϵ)

P0(0)

µi

(
1− e−µil/P0(0)

)
.

Taking the lim sup as x → ∞ and then letting ϵ → 0, we obtain (3.22). □

Our next boundedness result has the advantage of holding under much weaker assumptions
on the birth function B(·). Theorem 3.2 holds for any increasing birth function that grows
no faster than linearly. There is no restriction on the linear growth rate κ in Theorem 3.2,
and in this respect the theorem admits a wider class of birth functions than Theorem 3.1.
However, Theorem 3.2 is restrictive to the extent that it only ensures the nonexistence of
monotone solutions that increase without bound.

Theorem 3.2 Suppose that B(·) is continuous, non-negative, monotone non-decreasing,
and satisfies B(A) ≤ κA for some κ > 0. Suppose further that P (t, I) = P0(I) in (2.2), with
P0(·) a strictly positive decreasing function such that P0(∞) = 0. Then, it is impossible for
a monotone solution (A, I) of system (3.16)–(3.17) to increase without bound.

Proof. From (3.18), for a solution of (3.16)–(3.17) with A and I increasing, we have

I(x) ≥
∫ x

x−l

B(A(z))

P0(I(z))
exp

(
−µi

∫ x

x−l

dx̄

P0(I(x̄))

)
dz

= e−µiτ0(Ix)
∫ x

x−l

B(A(z))

P0(I(z))
dz ≥ l e−µiτ0(Ix)B(A(x− l))

P0(I(x− l))
. (3.25)

From (3.18) again,

I(x) ≤ max
z∈[x−l,x]

B(A(z))

∫ x

x−l

1

P0(I(z))
exp

(
−µi

∫ x

z

dx̄

P0(I(x̄))

)
dz

=
1

µi

max
z∈[x−l,x]

B(A(z))

∫ x

x−l

d

dz
exp

(
−µi

∫ x

z

dx̄

P0(I(x̄))

)
dz

=
1

µi

max
z∈[x−l,x]

B(A(z))

[
1− exp

(
−µi

∫ x

x−l

dx̄

P0(I(x̄))

)]
so that

I(x) ≤ 1

µi

max
z∈[x−l,x]

B(A(z)). (3.26)

It follows from (3.16), and the bound for I(x) in (3.25), that

dA(x)

dx
≤ −µa

A(x)

P0(I(x))
+

I(x)
l

.
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By (3.26), for increasing functions A(x) we have I(x) ≤ B(A(x))/µi and therefore

dA(x)

dx
≤ −µa

A(x)

P0(I(x))
+

B(A(x))

µil
≤ −µa

A(x)

P0(I(x))
+

κA(x)

µil
.

Now suppose that I(x) increases monotonically without bound. Then, since P0(∞) = 0 it fol-
lows that, for x sufficiently large, dA(x)/dx < 0 and therefore A(x) is bounded. From (3.26),
I(x) is also bounded, a contradiction. □

3.2 Linear stability of equilibria (t equations)

When P (t, I) = P0(I), any equilibrium (A∗, I∗) of system (2.12)–(2.13) must satisfy

µaA
∗ = e−µiτ0(I

∗)B(A∗), µiI
∗ = B(A∗)

(
1− e−µiτ0(I

∗)
)

(3.27)

with

τ0(I
∗) =

l

P0(I∗)
.

To investigate the linear stability of an equilibrium we set A(t) = A∗ + Ã(t) and I(t) =
I∗ + Ĩ(t) with Ã and Ĩ small. System (2.12)–(2.13) is a system with state-dependent delay,
since τ(t) is given by (2.11) (with P (t, I) = P0(I) now) and involves the variable I and
its history. In the linearisation of an autonomous system with state-dependent delay about
an equilibrium solution, it is usually understood that the state-dependent delays end up
evaluated at the equilibrium under consideration. This turns out to be the case for (2.12)–
(2.13) for the delays that appear in the arguments, but not for the delays in the e−µiτ(t)

terms. For those terms, τ(t), which is really a functional of I, needs to be expanded for
small Ĩ keeping linear terms, and not simply replaced by its value at the equilibrium I∗.
Such an expansion can be calculated as follows. From (2.11),

1− τ ′(t) =
P0(I

∗ + Ĩ(t))

P0(I∗ + Ĩ(t− τ(t)))
.

If we expand the right hand side for small Ĩ and replace τ(t), where it appears in the right
hand side, by its equilibrium value τ0(I

∗) = l/P0(I
∗), we obtain

−τ ′(t) =
P ′
0(I

∗)

P0(I∗)

{
Ĩ(t)− Ĩ(t− l/P0(I

∗))
}

and therefore, since we need τ(t) to equal l/P0(I
∗) when Ĩ = 0, the linearisation of τ(t) at

the equilibrium (A∗, I∗) is

τ(t) ≈ l

P0(I∗)
− P ′

0(I
∗)

P0(I∗)

∫ t

t−l/P0(I∗)

Ĩ(ξ) dξ. (3.28)
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With this information, tedious calculations yield that the linearisation of (2.12)–(2.13) at
the equilibrium (A∗, I∗) is

dÃ(t)

dt
= −µaÃ(t) + e−µil/P0(I∗)

[
µiB(A∗)P ′

0(I
∗)

P0(I∗)

∫ t

t−l/P0(I∗)

Ĩ(ξ) dξ

+B′(A∗)Ã(t− l/P0(I
∗)) +

B(A∗)P ′
0(I

∗)

P0(I∗)

{
Ĩ(t)− Ĩ(t− l/P0(I

∗))
}]

,

(3.29)

dĨ(t)

dt
= −µiĨ(t) + B′(A∗)Ã(t)− e−µil/P0(I∗)

[
µiB(A∗)P ′

0(I
∗)

P0(I∗)

∫ t

t−l/P0(I∗)

Ĩ(ξ) dξ

+B′(A∗)Ã(t− l/P0(I
∗)) +

B(A∗)P ′
0(I

∗)

P0(I∗)

{
Ĩ(t)− Ĩ(t− l/P0(I

∗))
}]

.

(3.30)

Equation (3.30) can be replaced by the following integral equation:

Ĩ(t) = −B(A∗)P ′
0(I

∗)

P0(I∗)
e−µil/P0(I∗)

∫ t

t−l/P0(I∗)

Ĩ(ξ) dξ+B′(A∗)

∫ t

t−l/P0(I∗)

Ã(ξ)e−µi(t−ξ) dξ (3.31)

which can also be derived by linearising (2.14) and using that the linearisation of τ(t) is
given by (3.28). The most tractable form of the characteristic equation of the linearisation
seems to arise from the combination of (3.29) with the linearised integral equation (3.31).
With

µ̂i =
µil

P0(I∗)
, µ̂a =

µal

P0(I∗)
, ϵ =

lB(A∗)P ′
0(I

∗)e−µ̂i

P 2
0 (I

∗)
(3.32)

non-trivial solutions of that system of the form (Ã(t), Ĩ(t)) = (c1, c2) exp(λt) exist whenever
Λ := λl/P0(I

∗) satisfies the characteristic equation

P0(I
∗)

l
(Λ + µ̂a)−B′(A∗)e−(Λ+µ̂i) =

ϵB′(A∗)(Λ + µ̂i)k(Λ)k(Λ + µ̂i)

1 + ϵ k(Λ)
(3.33)

where

k(x) =
1− e−x

x
. (3.34)

If developing larvae grow in size at a constant rate (i.e. the function P in (2.2) is constant
and so is P0), then P ′

0(I
∗) = 0 and the linearised equations decouple with (3.29) involving Ã

only. In this situation ϵ = 0 and the characteristic equation (3.33) simplifies considerably.
Indeed, if P0(I) ≡ P ∗

0 is a constant function then the time taken for a larva to reach length l
and mature is always l/P ∗

0 . In this case τ(t) = l/P ∗
0 , the P terms in equation (2.12) cancel,

and that equation then assumes a well studied form, for which general results can be found
in Kuang [8]. The effect of competition among larvae is that P in (2.2) is not a constant, the
development time τ(t) for the cohort that matures at time t is dependent on the number of
larvae and how this has been changing over the time when the cohort was developing. The
linearised equations become fully coupled with a characteristic equation (3.33) that is not
easy to treat. We may, however, prove Theorem 3.3 concerning any equilibrium (A∗, I∗) of
system (2.12)–(2.13). The theorem establishes that if an equilibrium is locally asymptotically
stable in the absence of competition among the larvae (which is the case if (3.35) holds),
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then it remains stable in the presence of competition if the competitive effect as measured by
ϵ is sufficiently small (more precisely, small enough such that (3.36) and (3.37) both hold).
Complete absence of larval competition arises as a particular case of the model, namely, the
case when the function P in (2.2), and hence also the function P0, is constant. In this case
ϵ = 0 and larvae grow at a rate independent of how many larvae are present.

Theorem 3.3 Let (A∗, I∗) be any equilibrium of system (2.12)–(2.13). With µ̂i, µ̂a and ϵ
defined in (3.32), and the function k(·) in (3.34), suppose that

P0(I
∗)

l
µ̂a > |B′(A∗)|e−µ̂i (3.35)

and that ϵ ∈ (0, 1) is sufficiently small that

P0(I
∗)

l
min

(
1,

µ̂i

µ̂a

)
>

ϵ

1− ϵ
|B′(A∗)|k(µ̂i) (3.36)

and
P0(I

∗)

l
µ̂a −

ϵ

1− ϵ
|B′(A∗)|k(µ̂i) µ̂i > |B′(A∗)|e−µ̂i . (3.37)

Then the equilibrium (A∗, I∗) of (2.12)–(2.13) is locally asymptotically stable.

Proof. We prove the theorem using Rouché’s theorem, which states that if two functions
f(z) and g(z), z ∈ C, are holomorphic inside and on a contour Γ in the complex plane, and
if |f(z)| > |g(z)| on Γ, then f and f + g have the same number of zeros inside Γ. We take

f(z) =
P0(I

∗)

l
(z + µ̂a)−B′(A∗)e−(z+µ̂i)

and

g(z) = −ϵB′(A∗)(z + µ̂i)k(z)k(z + µ̂i)

1 + ϵ k(z)

and the contour Γ = ΓR to be the semicircle of radius R in Re z ≥ 0 with curved part
z = Reiθ, θ ∈ [−π/2, π/2] and straight part z = iy, y ∈ [−R,R]. We claim that, under the
hypotheses, |f(z)| > |g(z)| on ΓR for all R sufficiently large. This establishes that the full
characteristic equation (3.33), corresponding to f + g = 0, has the same number of roots in
Re z > 0 as does the equation f = 0, in other words, none at all under assumption (3.35)
as we shall show. The absence of roots on the imaginary axis will follow from a particular
step in our argument. These facts establish the local asymptotic stability of the equilibrium
(A∗, I∗) under inequalities (3.35)–(3.37).

Clearly f(z) is holomorphic. Since k(z) is holomorphic, g(z) can only fail to be holomor-
phic in the region of interest if there exists z0, with Re z0 ≥ 0, such that 1+ ϵ k(z0) = 0. But
then, using the integral representation of k (expression (3.38)),

1 = ϵ|k(z0)| ≤ ϵ

∫ 1

0

|e−ξz0 | dξ = ϵ

∫ 1

0

e−ξRe z0 dξ ≤ ϵ

which contradicts ϵ ∈ (0, 1). Thus, g(z) is holomorphic in Re z ≥ 0.
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The equation f = 0 is

P0(I
∗)

l
(z + µ̂a) = B′(A∗)e−(z+µ̂i).

Suppose for a contradiction that it has a root z with Re z ≥ 0. Then, taking the modulus,

P0(I
∗)

l
|z + µ̂a| = |B′(A∗)|e−(Re z+µ̂i) ≤ |B′(A∗)|e−µ̂i

so that z lies in the circle in C of radius |B′(A∗)|e−µ̂i(l/P0(I
∗)) centred at the point −µ̂a

in C. But (3.35) implies that this circle is contained entirely in the open left half plane
Re z < 0, giving a contradiction. Thus, f = 0 has no roots with Re z ≥ 0, as claimed.

With bar denoting complex conjugate, f(z) = f(z) and g(z) = g(z) and therefore it is
enough to check that |f(z)| > |g(z)| on the upper half Im z ≥ 0 of the contour ΓR. Thus,
for the curved part, z = Reiθ with θ ∈ [0, π/2]. The function k defined in (3.34) can be
expressed in the form

k(x) =

∫ 1

0

e−ξx dξ (3.38)

and therefore

|k(Reiθ)| ≤
∫ 1

0

| exp(−ξReiθ)| dξ =

∫ 1

0

exp(−ξR cos θ) dξ ≤ 1

and, similarly,

|k(Reiθ + µ̂i)| ≤
∫ 1

0

exp(−ξ(R cos θ + µ̂i)) dξ ≤
∫ 1

0

e−ξµ̂i dξ = k(µ̂i).

These estimates, and standard triangle inequalities for sums and differences of complex
numbers, yield

|g(Reiθ)| ≤ ϵ|B′(A∗)|(R + µ̂i)k(µ̂i)

1− ϵ
.

Similarly,

|f(Reiθ)| ≥
∣∣∣∣P0(I

∗)

l
(Reiθ + µ̂a)

∣∣∣∣− |B′(A∗)|| exp(−(Reiθ + µ̂i))|

≥ P0(I
∗)

l
(R− µ̂a)− |B′(A∗)| exp(−(R cos θ + µ̂i))

≥ P0(I
∗)

l
(R− µ̂a)− |B′(A∗)| exp(−µ̂i).

Therefore, on the curved part of the contour ΓR, we have |f(z)| > |g(z)| if

P0(I
∗)

l
(R− µ̂a)− |B′(A∗)| exp(−µ̂i) >

ϵ|B′(A∗)|(R + µ̂i)k(µ̂i)

1− ϵ
. (3.39)

But assumption (3.36) implies that

P0(I
∗)

l
>

ϵ

1− ϵ
|B′(A∗)|k(µ̂i) (3.40)
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holds, and therefore it follows that (3.39) is true for all R sufficiently large.
On the upper half of the straight part of the contour ΓR, z = iy with y ∈ [0, R]. It is easy

to show that |k(iy)| ≤ 1, |k(iy + µ̂i)| ≤ k(µ̂i) and |1 + ϵk(iy)| ≥ 1 − ϵ|k(iy)| ≥ 1 − ϵ, and
therefore

|g(iy)| = ϵ |B′(A∗)||iy + µ̂i||k(iy)||k(iy + µ̂i)|
|1 + ϵ k(iy)|

≤
ϵ |B′(A∗)|

√
y2 + µ̂2

i k(µ̂i)

1− ϵ
.

Similarly,

|f(iy)| ≥ P0(I
∗)

l
|iy + µ̂a| − |B′(A∗)||e−(iy+µ̂i)| = P0(I

∗)

l

√
y2 + µ̂2

a − |B′(A∗)|e−µ̂i .

We claim that |f(iy)| > |g(iy)| for all y ∈ [0,∞), and this is the case if

P0(I
∗)

l

√
y2 + µ̂2

a −
ϵ |B′(A∗)|

√
y2 + µ̂2

i k(µ̂i)

1− ϵ
> |B′(A∗)|e−µ̂i ∀y ∈ [0,∞). (3.41)

We now prove (3.41). The left hand side has the structure A1

√
y2 + α2 − A2

√
y2 + β2 and

routine differentiation shows that it is a monotonic increasing function of y ∈ [0,∞) if√
y2 + β2

y2 + α2
>

A2

A1

∀y ∈ [0,∞),

i.e. if

min

(
1,

β

α

)
>

A2

A1

which is the origin of assumption (3.36). With its left hand side being monotonically in-
creasing in y, (3.41) holds for all y ∈ [0,∞) if and only if it holds when y = 0, and the latter
is guaranteed by assumption (3.37). Thus, |f | > |g| on the straight part of the contour ΓR.

We have now shown that |f(z)| > |g(z)| on all parts of ΓR. By Rouché’s theorem, the full
characteristic equation (3.33) has the same number of roots in Re z > 0 as does f = 0, i.e.
none at all. The absence of roots of (3.33) on the imaginary axis follows from what has just
been shown, since such a root would imply the existence of a real y such that f(iy) = −g(iy),
contradicting |f(iy)| > |g(iy)| for all y ∈ [0,∞). Thus, all roots of (3.33) satisfy ReΛ < 0,
completing the proof. □

3.3 Linear stability of equilibria (x equations)

NB: this subsection might not be needed
Any equilibrium (A∗, I∗) of system (3.16)–(3.17) must satisfy

µaA∗ = e−µiτ0(I∗)B(A∗), µiI∗ = B(A∗)
(
1− e−µiτ0(I∗)

)
(3.42)

with

τ0(I∗) =

∫ 0

−l

dx̄

P0(I∗)
=

l

P0(I∗)
.
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To investigate the linear stability of an equilibrium we set A(x) = A∗ + Ã(x) and I(x) =
I∗ + Ĩ(x) with Ã and Ĩ small. The functional τ0 evaluated at Ix may be expanded as

τ0(Ix) = τ0(I∗)− P ′
0(I∗)

P 2
0 (I∗)

∫ 0

−l

Ĩ(x+ x̄) dx̄+ · · ·

and the linearised system is

dÃ(x)

dx
=

µa

P0(I∗)

[
A∗P ′

0(I∗)

P0(I∗)
Ĩ(x)− Ã(x)

]
+

e−µiτ0(I∗)

P0(I∗)

[
−B(A∗)P ′

0(I∗)

P0(I∗)
Ĩ(x− l) + B′(A∗)Ã(x− l) +

µiB(A∗)P ′
0(I∗)

P 2
0 (I∗)

∫ 0

−l

Ĩx(x̄) dx̄

]
,

(3.43)

dĨ(x)
dx

= − µi

P0(I∗)

(
1− I∗P ′

0(I∗)

P0(I∗)

)
Ĩ(x)

+
1

P0(I∗)

[
−B(A∗)P ′

0(I∗)

P0(I∗)
Ĩ(x) + B′(A∗)Ã(x)

]
− e−µiτ0(I∗)

P0(I∗)

[
−B(A∗)P ′

0(I∗)

P0(I∗)
Ĩ(x− l) +B′(A∗)Ã(x− l) +

µiB(A∗)P ′
0(I∗)

P 2
0 (I∗)

∫ 0

−l

Ĩx(x̄) dx̄

]
.

(3.44)
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