
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 1

Efficient Sub-Window Nearest Neighbor
Search on Matrix

Tsz Nam Chan, Man Lung Yiu, Kien A. Hua, Fellow, IEEE

Abstract—We study a nearest neighbor search problem on a matrix by its element values. Given a data matrix D and a query
matrix q, the sub-window nearest neighbor search problem finds a sub-window of D that is the most similar to q. This problem
has a wide range of applications, e.g., geospatial data integration, object detection and motion estimation. In this paper, we
propose an efficient progressive search solution that overcomes the drawbacks of existing solutions. First, we present a generic
approach to build level-based lower bound functions on top of basic lower bound functions. Second, we develop a novel lower
bound function for a group of sub-windows, in order to boost the efficiency of our solution. Furthermore, we extend our solution
to support irregular-shaped queries. Experimental results on real data demonstrate the efficiency of our proposed methods.

Index Terms—nearest neighbor, similarity search

F

1 INTRODUCTION

Multimedia databases [22], [24], [33] support similarity
search on image objects by their feature vectors. In contrast,
we consider a similarity search problem on a matrix (e.g.,
pixel value in an image) by its element values. Specifically,
given a data matrix D and a query matrix q, the Sub-
Window Nearest Neighbor Search (SWNNS) problem finds
a sub-window c of D such that c is the best match of q
with the same size, i.e., having the smallest distance from
q [34]. The typical distance function dist(q, c) is the Lp-
norm distance (usually L1 or L2).

This problem has a wide range of applications, e.g.,
geospatial data integration [8], [9], [11], motion esti-
mation [27], object detection [6], [14], [23], image
editing [10] and compact encoding for scientific array
databases [35]. Figure 1 illustrates the SWNNS problem on
satellite images in two applications. Note that each pixel in
a satellite image represents a certain area on Earth.
• Weather forecasting involves estimating cloud motion

on a sequence of weather satellite images [1], [5]. In
this case, D can be the latest image (cf. Figure 1a),
and q is a cloud pattern (cf. Figure 1b) extracted from
a previous image. SWNNS returns the best match (i.e.,
yellow rectangle in Figure 1a), whose location can
then be utilized to estimate cloud motion.

• An example of geospatial data integration is to stitch
multiple satellite map images into a single map im-
age [8], [9], [11]. Let D be a map image (cf. Fig-
ure 1d), and q be a road junction pattern (cf. Figure 1e)
extracted from another map image. The best match
position of SWNNS enables us to stitch map images.

• T. N. Chan and M. L. Yiu are with the Department of Computing, Hong
Kong Polytechnic University, Hong Kong.
E-mail: {cstnchan, csmlyiu}@comp.polyu.edu.hk

• K. A. Hua is with the College of Engineering & Computer Science,
University of Central Florida.
E-mail: kienhua@cs.ucf.edu

In subsequent discussion, the query q can either take a
rectangular shape [2], [17], [18], [28], [29], [34], [38] or
an irregular shape [3], [13], [30], [31], [39]. We illustrate
rectangular queries in Figures 1b and e and irregular-shaped
queries in Figures 1c and f, respectively.

data matrix rectangular irregular-shaped
D query query

(a) weather satellite image (b) cloud with (c) cloud
background

(d) satellite map image (e) junction with (f) junction
background

Fig. 1: Sub-window nearest neighbor search (SWNNS)

Dual-Bound [34] is the state-of-the-art exact method
for the SWNNS problem on rectangular queries. The
idea is to utilize both lower and upper distance bound
functions (LB(q, c)/UB(q, c)) for candidates (i.e., sub-
windows) such that LB(q, c) ≤ dist(q, c) ≤ UB(q, c).
This method terminates when the smallest upper bound

This is the Pre-Published Version.

The following publication T. N. Chan, M. L. Yiu and K. A. Hua, "Efficient Sub-Window Nearest Neighbor Search on Matrix," in IEEE Transactions 
on Knowledge and Data Engineering, vol. 29, no. 4, pp. 784-797, 1 April 2017 is available at https://doi.org/10.1109/TKDE.2016.2633357

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 2

is less than the lower bounds of all other candidates. In
addition, it iteratively refines the bounds of candidates by
using a sequence of tighter lower and upper bound func-
tions. However, this solution may invoke a large number of
bounding functions per candidate in the worst case, leading
to a high cost.

exact dist.

Level-based:

LBlevel , l

bound 

tightness

(2)

(3)

logarithmic 

O(1)

time

O(4l)

Group-based:

LBgroup

O(α)

group size

(0)

(1) LBbasic

O(Nq)

logarithmic 

number of functions

Fig. 2: Illustration of our progressive approach

Our preliminary work [7] focuses on rectangular queries.
Specifically, we contribute a solution with a group-based
lower bound function LBgroup and a level-based lower
bound function LBlevel,`, as shown in Figure 2. Instead
of examining candidates individually, we first gather candi-
dates into groups and attempt pruning unpromising groups
by using LBgroup. For the surviving groups, we divide
them into smaller groups and repeat the above process.
When a group degenerates to a candidate, we attempt
pruning it by using LBlevel,`. Our LBlevel,` is designed
in a fashion such that: (i) it is generic and can take any
lower bound function as a building block, (ii) it limits the
worst-case cost by using a logarithmic number of levels
(for `).

To obtain meaningful results in the aforementioned ap-
plications, it is important to ignore irrelevant pixels in
the ‘background’ of a query (e.g., Figure 1b) and exclude
them from matching. As such, it is more appropriate to
model a query (e.g., cloud, road junction) by an irregular
shape, as shown in Figure 1c. The state-of-the-art exact
method for this problem [13] is an extended version of
Dual-Bound [34]. To cope with an irregular shape, it incre-
mentally partitions candidates into rectangles on-the-fly in
order to tighten their lower and upper bounds. However,
this solution needs to maintain a set of rectangles for
each candidate, thus incurring high overhead on both the
memory space and the response time.

Compared to our preliminary work [7], our new con-
tribution is to develop an efficient solution for answering
SWNNS on irregular-shaped queries (Section 5). To reduce
the memory space for managing candidates, we adopt
the same partitioning scheme for all candidates. In this
approach, it is desirable to find the optimal partitioning
scheme that can minimize the computation cost. We show
that it is hard to find the optimal partitioning efficiently,
and then propose several heuristics for this issue.

The rest of the paper is organized as follows. Section 2
elaborates on the related work. Section 3 defines our
problem and introduces background information. Section 4
presents our proposed solution for rectangular queries.

Section 5 studies the SWNNS problem for queries with
irregular shapes. Section 6 discusses our experimental re-
sults. Section 7 concludes the paper with future research
directions.

2 RELATED WORK

2.1 Nearest Neighbor Search on Feature Vectors

The nearest neighbor (NN) search problem has been exten-
sively studied in multimedia databases [22], [24], [33] and
in time series databases [15], [32], [42].

Multimedia databases [22], [24], [33] usually conduct
similarity search (i.e., NN search) on feature vectors of
images (e.g., their color / texture histograms) rather than on
raw pixel values in images. Various techniques on index-
ing [4], [21], [33], data compression [41], and hashing [20],
[37] have been developed to process NN search efficiently.
Recall that those multimedia techniques require knowing
feature vectors in advance. Those techniques are applicable
to our problem context, when the query size Nq (i.e. total
number of pixels in query) is fixed, as we can convert
each candidate (sub-window) cx,y to a Nq-dimensional
feature vector offline. However, those techniques become
inapplicable if we need to support arbitrary query size (i.e.,
Nq is only known at the query time). It is infeasible to do
precomputation for every possible query size as it would
require O(ND

3) storage space, where ND is the data image
size (in pixels).

Generic NN search algorithms [25], [36] are applicable
to any types of objects and distance function dist(q, c).
Ref. [36] requires using a lower bound function LB(q, c),
where LB(q, c) ≤ dist(q, c) always holds. Its search
strategy [36] is to examine candidates in ascending order
of LB(q, c) and then compute their exact distances to q,
until the current LB(q, c) exceeds the best NN distance
found so far. Ref. [25] takes an additional upper bound
function UB(q, c) as input and utilizes it to further reduce
the searching time. Observe that the lower bound functions
for a specific problem (e.g., our SWNNS problem) are
not provided in [25], [36]. In this paper, we focus on
developing lower bound functions like LBlevel,`, LBgroup
for the SWNNS problem.

2.2 Similarity Search Methods on Matrix

Similarity search methods on matrix can be classified
along two dimensions: (i) whether they support rectangular
queries or irregular-shaped queries, and (ii) whether they
support range search or NN search.

We first discuss the works for rectangular queries on
a matrix. Various lower bound functions [2], [17], [18],
[28], [29], [34], [38] have been developed for similarity
search problems on a matrix, in order to prune unpromising
candidates efficiently and thus avoid expensive distance
computations. Ouyang et al. [29] propose a unified frame-
work that covers range search solutions [2], [17], [18],
[28], [38]. The state-of-the-art NN search method is [34]. It
applies both lower and upper bound functions to accelerate



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 3

NN search. Its lower / upper bound functions are based on
a Fourier transform on matrix (called the Walsh-Hadamard
transform), which can only support query of the size 2r×2r

but not arbitrary query size. Also, [34] has not explored our
group-based lower bound function LBgroup, which enables
efficient pruning for a group of candidates.

Although the idea of multi-level pruning originates from
[17], our method (in Section 4) differs from [17] in two
aspects. First, our method is applicable to any rectangular
query, but [17] can only handle square queries of the size
µr × µr (where µ and r are integers). Second, as we
will explain in Section 4, our multi-level pruning takes a
a given lower bound function LBbasic as building block.
Thus, our method is extensible and can benefit from future
developments of LBbasic.

Ref. [26] assigns candidates into groups and exploits
the similarities of candidates within the same group for
pruning. However, it still processes candidates in each
group one-by-one. In contrast, our group-based pruning
technique enables pruning at the group granularity.

We then discuss the works for irregular-shaped queries
on a matrix [3], [13], [30], [31], [39]. Like [3], our method
partitions an irregular-shaped query into regions. While
Ref. [3] allows only partitioning with square regions of
sizes 2r × 2r, we allow a more flexible partitioning with
rectangles. Our partitioning leads to fewer regions than [3]
and thus reduces the computation overhead during pruning.
Several heuristics [30], [31], [39] have been proposed to
compute the results, but they do not always return the
best match. The state-of-the-art method for NN search [13]
is an extension of [34]. This method decomposes each
candidate into a set of disjoint rectangles, and associates
each rectangle Ri with a lower bound lbi and an upper
bound ubi. When it refines the bound of a candidate,
it chooses the rectangle with the largest ubi − lbi, then
splits that rectangle based on an entropy idea. While this
approach tends to produce a good partitioning for each
individual candidate, it incurs high space and time overhead
on maintaining the above partitions / rectangles. In contrast,
our method eliminates such overhead by using the same
partitioning scheme for all candidates.

The above works assume that the image and the query
have the same orientation. Several methods have been de-
veloped to deal with deformation or rotation of images dur-
ing matching [6], [10], [23]. A representative method [10]
requires solving template matching (SWNNS) as a sub-
problem. As such, our proposed method can be applied
to speed up the method in [10].

The similarity search on a time series [15], [32], [42]
can be considered as a special case of our problem, where
both the data image D and the query q are modeled
as vectors instead of matrices. While some simple lower
bound functions (e.g., LB⊕) originate from them, our
proposed level-based and group-based lower bound func-
tions (LBlevel,`, LBgroup) are specifically designed for the
SWNNS problem.

3 PRELIMINARIES

We first give our problem definition and provide back-
ground on prefix-sum matrices and lower bound functions.

3.1 Problem Definition
In this paper, we represent each image as a matrix. Let D
be the data matrix (of size ND = LD ×WD) and q be the
query matrix (of size Nq = Lq ×Wq). A candidate cx,y is
a sub-window of D with the same size as q.

cx,y[1..Lq, 1..Wq] = D[x..(x+ Lq − 1), y..(y +Wq − 1)]

The subscript of cx,y denotes the start position in D; we
drop it when the context is clear.

Problem 1 (Sub-window NN Search). Given a query
matrix q and a data matrix D, this problem finds the
candidate cbest such that it has the minimum dist(q, cbest),
where the distance is the Lp norm:

dist(q, c) = (

Lq∑
i=1

Wq∑
j=1

|q[i, j]− c[i, j]|p)
1
p

The value of p is predefined by the application.

Figure 3 shows a query q of size 4×4 and a data matrix
D of size 8×8. There are (8−4+1)2 = 25 candidates in D.
For instance, the dotted sub-window refers to the candidate
c3,3. The right-side of Figure 3 enumerates the distances
from q to each candidate, assuming the L1 distance (i.e.,
p = 1) is used. In this example, the best match is c3,3 as
it has the smallest distance dist(q, c3,3) = 27 from q.

1 2 3 4 5 6 7 8

1 16 24 26 13 18 16 20 13

2 14 10 11 12 19 14 16 161 2 3 4

candidate cx

dist1(q,c)2 14 10 11 12 19 14 16 16

3 24 25 20 16 23 20 17 19

4 16 12 17 16 22 11 18 14

5 11 15 14 15 21 25 17 24

6 17 19 14 30 24 26 25 31

7 14 26 22 33 26 19 20 20

8 23 21 18 21 24 23 18 22

1 2 3 4

1 16 13 22 21

2 18 17 20 11

3 13 15 20 22

4 15 32 22 22

query q

x

y

103 109 77 76 89

95 79 71 79 77

88 86 27 87 86

70 91 74 105 110

98 96 98 108 106

dist1(q,c)

8 23 21 18 21 24 23 18 22query q

data matrix D

y
distances from q

to candidates

Fig. 3: Example for the problem

3.2 Prefix-Sum Matrix & Basic Lower Bounds
For convenience, we define a shorthand notation below,
which will be used in later discussions.

Definition 1 (Accessing a matrix by region). Let R =
[x1..x2, y1..y2] be a rectangular region and let A be a
matrix. The notation A[R] represents A[x1..x2, y1..y2].

As we will introduce shortly, lower bound functions
require summing the values in a rectangular region in a ma-
trix. We can speed up their computation by using a prefix-
sum matrix [19], also known as an integral image [40] in
the computer vision community.

Definition 2 (Prefix-sum matrix). Given a matrix A (of size
NA = LA×WA), we define its prefix-sum matrix PA with
entries: PA[x, y] =

∑x
i=1

∑y
j=1A[i, j]



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 4

The prefix-sum matrix occupies O(NA) space and takes
O(NA) construction time [19]. It supports the following
region-sum operation, i.e., finding the sum of values of a
rectangular region (say, R = [x1..x2, y1..y2]) in a matrix
A, in O(1) time, according to Equation 1.

∑
A[R] =



PA[x2, y2] if x1 = 1, y1 = 1

PA[x2, y2]− PA[x1 − 1, y2] if x1 > 1, y1 = 1

PA[x2, y2]− PA[x2, y1 − 1] if x1 = 1, y1 > 1

PA[x2, y2] + PA[x1 − 1, y1 − 1]

−PA[x1 − 1, y2]− PA[x2, y1 − 1] otherwise
(1)

Figure 4 illustrates a data matrix D and its corresponding
prefix-sum matrix PD. The sum of values in the dotted
region ([4..7,2..5]) in D can be derived from the entries
(7,5), (3,1), (3,5), (7,1) in PD.

1 2 3 4 5 6 7 8

1 16 24 26 13 18 16 20 13

Σ D[4..7,2..5] = P
D
[7,5] – P

D
[3,5] – P

D
[7,1] + P

D
[3,1]

x

1 2 3 4 5 6 7 8

1 16 40 66 79 97 113 133 146
x

1 16 24 26 13 18 16 20 13

2 14 10 11 12 19 14 16 16

3 24 25 20 16 23 20 17 19

4 16 12 17 16 22 11 18 14

5 11 15 14 15 21 25 17 24

6 17 19 14 30 24 26 25 31

7 14 26 22 33 26 19 20 20

x
1 16 40 66 79 97 113 133 146

2 30 64 101 126 163 193 229 258

3 54 113 170 211 271 321 374 422

4 70 141 215 272 354 415 486 548

5 81 167 255 327 430 516 604 690

6 98 203 305 407 534 646 759 876

7 112 243 367 502 655 786 919 1056

x

14 26 22 33 26 19 20 20

8 23 21 18 21 24 23 18 22

data matrix D
y

8 135 287 429 585 762 916 1067 1226

prefix-sum matrix P
D

of D
y

Fig. 4: Example of a prefix-sum matrix

We introduce the basic lower bound function LBbasic,
which is used as a building block in Figure 2. We require
that: (i) LBbasic(q, c) ≤ dist(q, c) always holds, and
(ii) LBbasic supports any query size. In this paper, we
introduce two functions that satisfy the above requirements
of LBbasic. The first one (LB⊕(q, c)) is given in [42].
The second one (LB∆(q, c)) is derived from the triangle
inequality of the Lp distance [12], [21]. Both of them can
be computed in O(1) time, by using a prefix-sum matrix as
discussed before. Regarding the summation term for q, we
can compute it once and then reuse it for every candidate c.
For LB⊕(q, c), the term

∑Lq

i=1

∑Wq

j=1 c[i, j] can be derived
from the prefix-sum matrix PD (of data matrix D). For
LB∆(q, c), the term

∑Lq

i=1

∑Wq

j=1 |c[i, j]|p can be derived
from the prefix-sum matrix PD′ , where the matrix D′ is
defined with entries: D′[i, j] = |D[i, j]|p.

LB⊕(q, c) =
p
√
Nq

Nq
·

∣∣∣∣∣
Lq∑
i=1

Wq∑
j=1

q[i, j]−
Lq∑
i=1

Wq∑
j=1

c[i, j]

∣∣∣∣∣ (2)

LB∆(q, c) =

∣∣∣∣∣ p

√√√√√ Lq∑
i=1

Wq∑
j=1

|q[i, j]|p − p

√√√√√ Lq∑
i=1

Wq∑
j=1

|c[i, j]|p
∣∣∣∣∣ (3)

As a remark, we are aware of lower bound functions
used in the pattern matching literature [2], [18], [28], [29],
[38]. However, since those lower bound functions take more
than O(1) time, we choose not to use them as LBbasic (the
building block) in our solution.

4 PROGRESSIVE SEARCH APPROACH

We first present our idea and algorithm in Section 4.1.
Then, we elaborate the lower bound functions used in the
algorithm in Sections 4.2, 4.3, 4.4.

4.1 The Flow of Proposed Algorithm
We illustrate the flow of our proposed NN search method
in Figure 5. Like [25], [36], we employ a min-heap H in
order to process entries in ascending order of their lower
bound distance. The main difference is that H contains
two types of entries: (i) a candidate and (ii) a group of
candidates. As discussed before, a candidate corresponds to
a sub-window of D. On the other hand, a group represents
a region of candidates. Initially, H contains a group entry
that represents the entire D.

When we deheap an entry from H , we check whether it
is a group or a candidate.

1) If it is a group G, then we divide it into several
smaller groups Gi. For each Gi, we compute the
group-based lower bound LBgroup(q,Gi) and then
enheap Gi into H .

2) If it is a candidate c, then we compute the level-based
lower bound LBlevel,`(q, c) at the next level `, and
then enheap c into H again.

During this process, a group would degenerate into a candi-
date when it covers exactly one candidate. Similarly, when
a candidate reaches the deepest level, we directly apply the
exact distance function dist(q, c) on it and update the best
NN distance found so far τbest. The search terminates when
the lower bound of a deheaped entry exceeds τbest.

a group 

apply LBgroup to these groups, then enheap them

a group 
(of candidates)

min-heap H
deheap an entry

divide it into 

4 groups

increment 

level

apply LBlevel to it, then enheap it

a candidate
(at level l)

or compute 

exact distance

Fig. 5: The flow of our progressive search method

Table 1 lists the lower bound functions to be used in
our NN search method. We measure the cost of each
function as the number of region-sum operations (i.e.,
calls to Equation 1). We have introduced LBbasic (e.g.,
LB∆, LB⊕) in Section 3.2. We will develop a level-based
bound LBlevel,` and a group-based bound LBgroup in
Sections 4.2 and 4.3, respectively. Section 4.4 explores an
efficient technique for computing LBgroup, which involves
a tunable parameter α.

We summarize our method in Algorithm 1. Like [25],
[36], we employ a min-heap H in order to process entries
in ascending order of their lower bound distance. We also



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 5

TABLE 1: Types of lower bound functions
Function Apply to Cost: # of region-sum operations

Basic: LBbasic candidate 1
Level: LBlevel,` candidate 4`

Group: LBgroup group α

maintain the best distance found thus far τbest during the
search. The algorithm terminates when the deheaped entry’s
lower bound distance is larger than τbest (Line 10), as the
remaining heap entries can only have the same or larger
bounds than the deheaped entry. The main difference from
[25], [36] is that we apply multiple lower bound functions
on candidates (Line 20) and also consider lower bound
function for groups of candidates (Lines 6 and 15).

As a remark, at Line 19, `max denotes the maximum
possible level, which is computed as follows:

`max = dlog2(max{Lq,Wq})e (4)

Algorithm 1 Progressive Search Algorithm for NN search
1: procedure PROGRESSIVE SEARCH(query q, data matrix D)
2: τbest ←∞; ebest ← ∅ . the best entry found so far
3: create a min-heap H
4: create a heap entry eroot
5: eroot.G← [0..LD − 1, 0..WD − 1] . the entire region
6: eroot.bound← LBgroup(q, e.G)
7: enheap eroot to H
8: while H 6= ∅ do
9: e← deheap an entry in H

10: if e.bound ≥ τbest then . termination condition
11: break
12: if |e.G| 6= 1 then . group entry
13: divide e into 4 entries e1, e2, e3, e4
14: for each ei, i← 1 to 4 do
15: ei.bound← LBgroup(q, ei.G)
16: ei.`← 0
17: if ei.bound < τbest then enheap ei to H
18: else . candidate entry
19: if e.` < `max then
20: e.bound← LBlevel,`(q, e)
21: increment e.`
22: if e.bound < τbest then enheap e to H
23: else . the deepest level
24: temp← dist(q, e)
25: if temp < τbest then τbest ← temp; ebest ← e

4.2 Progressive Filtering for Candidates
As discussed in Section 1, the lower bound LBbasic and
the exact distance dist have a significant gap in terms of
computation time and bound tightness (cf. Figure 2). In
order to save expensive distance computations, we suggest
applying tighter lower bound functions progressively.

In this section, we present a generic idea to construct
a parameterized lower bound function LBlevel,` by using
LBbasic as a building block. The level parameter ` controls
the trade-offs between the bound tightness and the compu-
tation time in LBlevel,`. A small ` incurs small computation
time whereas a large ` provides tighter bounds.

Intuitively, we build LBlevel,` by using divide-and-
conquer. We can partition the space [1..Lq, 1..Wq] into 4`

disjoint rectangles {Rv : 1 ≤ v ≤ 4`}, and then apply
LBbasic (for q and c) in each rectangle Rv .1 Then, we

1. In general, the space [1..Lq , 1..Wq ] may have less than 4` disjoint
rectangles.

combine these 4` lower bound distances into LBlevel,` in
Equation 5. LBlevel,` takes at most 4` region-sum opera-
tions, as each LBbasic takes one region-sum operation.

LBlevel,`(q, c) =
( 4`∑
v=1

LBbasic(q[Rv], c[Rv])
p
)1/p

(5)

For example, in Figure 6, when ` = 2, both the query q
and the candidate c are divided into 4` = 16 rectangles.
We apply LBbasic on each rectangle in order to compute
LBlevel,`(q, c).

Next, we show that LBlevel,` satisfies the lower bound
property.

Lemma 1. Let LBbasic(q, c) be a lower bound function
for dist(q, c). It holds that, LBlevel,`(q, c) ≤ dist(q, c),
for any candidate c. [ Proved in Ref. [7] ]

Note that [17], [42] have considered a similar lemma,
but only for the case where LBbasic(q, c) = LB⊕(q, c). In
contrast, our lemma is applicable to any LBbasic(q, c).

During search, we apply LBlevel,` on a candidate c in
the ascending order of ` as shown in Figure 6. If we cannot
filter c at level `, then we attempt to filter it with minimal
extra effort, i.e., at level `+ 1.

l = 1 l = 2 l = 3 

… 

apply LBbasic to each region Rv 

l = 0 

Fig. 6: LBlevel,` at different levels

4.3 Progressive Filtering for Groups
We first introduce the concept of a group and then propose
a lower bound function for it. A group G represents a
consecutive region of candidates as shown in Figure 7.
Specifically, we define G as the region [xstart..xstart +
Lg − 1, ystart..ystart + Wg − 1], where (i) Lg and Wg

represent the size of the group, and (ii) xstart and ystart
represent the start position (i.e., top-left corner) of the
group. In order to cover all candidates in the group (e.g.,
those at bottom-right corner), we define the extended region
of G as extq(G) = [xstart..xend, ystart..yend], where
xend = min(xstart + Lg + Lq − 2, LD) and yend =
min(ystart + Wg + Wq − 2,WD). Then, D[extq(G)] =
D[xstart..xend, ystart..yend] represents the submatrix of D
in the region extq(G).

Our lower bound functions require the following con-
cepts.

Definition 3 (The lowest/highest k elements in D[extq(G)]
). We define Lk(D[extq(G)]) and Hk(D[extq(G)]) as
the lowest and highest k elements in the submatrix
D[extq(G)] respectively.

Definition 4 (Summation of the lowest/highest k ele-
ments in D[extq(G)]). We define SLk(D[extq(G)]) as
the sum of lowest k elements in D[extq(G)], and



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 6

(xstart , ystart) 

Lq 

(xend , yend) 

Wq 

Wg 

group region 

extended group region 

candidates 

Fig. 7: A group with Lg ×Wg consecutive candidates

SHk(D[extq(G)]) as the sum of highest k elements in
D[extq(G)].

We illustrate these concepts in Figure 8. Assume
that the query size is Nq = 2 × 2 = 4. Con-
sider the group G = [2..5, 2..5] (as dotted square)
and the extended region extq(G) = [2..6, 2..6] (as
bolded square). In this example, the lowest Nq values in
D[extq(G)] are: LNq (D[extq(G)]) = {9, 9, 10, 10}. Thus,
SLNq

(D[extq(G)]) = 9 + 9 + 10 + 10 = 38.
1 2 3 4 5 6 7 8 

1 8 6 3 7 9 3 1 5 

2 5 11 10 11 10 10 1 7 

3 2 11 11 12 11 11 2 10 

4 4 11 10 11 10 10 11 9 

5 7 11 9 10 11 12 8 7 

6 10 9 11 10 11 10 9 12 

7 8 3 5 6 4 1 3 2 

8 5 10 4 10 4 2 2 4 

1 2 

1 3 2 

2 2 4 

query q 

data matrix D 

group region G 

x 

y 

x 

y 

extended region extq(G) 

Fig. 8: Illustration of LNq (D[extq(G)]) (in light color)
and HNq

(D[extq(G)]) (in dark color)

)])([( GextDSH qNq

Group G 

)])([( GextDSL qNq

q3 

* 2q
Accumulation  

       Value 

q2 q1 c 

* 3q*
c* 1q

Fig. 9: Illustration of the idea in LB⊕group(q,G)

We then extend basic lower bound functions (e.g.,
LB⊕, LB∆) for a group G. We propose the lower bound
functions LB⊕group and LB∆

group for G in Equations 6, 7.
In Equation 7, the term D◦p denotes the element-
wise power of the matrix D with power index p, i.e.,
D◦p[i, j] = (D[i, j])p. These functions serve as lower
bounds of LB⊕(q, c), LB∆(q, c) for any candidate c in G
(cf. Lemmas 2,3).

Lemma 2. Given a group G, for any candidate c in G, we
have: LB⊕group(q,G) ≤ LB⊕(q, c).

Lemma 3. Given a group G, for any candidate c in G, we
have: LB∆

group(q,G) ≤ LB∆(q, c).

The proofs of Lemmas 2 and 3 can be found in our
preliminary work [7]. Figure 9 explains why LB⊕group(q,G)
is a lower bound function. We use three query points
q1, q2, q3 (with same size Nq) to illustrate the three
cases in LB⊕group(q,G), respectively. For convenience, we
drop the subscript Nq in the notations SL and SH.
By Equation 2, the lower bound between query q and
candidate c depends on two summation terms (

∑
∗ q and∑

∗ c =
∑Lq

i=1

∑Wq

j=1 c[i, j]). The latter term
∑
∗ c is always

bounded between SL(D[extq(G)]) and SH(D[extq(G)]),
provided that c is a member of the group G. For example,
for query q1, the lower bound distance is the difference
between

∑
∗ q1 and SL(D[extq(G)]). For query q2, it

is symmetric to the above case, so the lower bound
is the difference between

∑
∗ q2 and SH(D[extq(G)]).

For query q3, the lower bound distance is zero because∑
∗ q3 falls into the range between SL(D[extq(G)]) and

SH(D[extq(G)]). The above idea can also be applied to
LB∆

group(q,G).
During our search procedure (cf. Figure 5 and Algo-

rithm 1), we apply LBgroup(q,G) on a group G. If we
cannot filter G, then we partition its group region G
into four sub-groups G1, G2, G3, G4 accordingly and apply
LBgroup(q,Gi) on each sub-group Gi. We will discuss
how to compute LBgroup(q,G) efficiently in the next
subsection.
4.4 Supporting Group Filtering Efficiently
The lower bound LBgroup(q,G) involves the terms
SLNq

(D[extq(G)]) and SHNq
(D[extq(G)]) (Equation 6)

or SLNq (D◦p[extq(G)]) and SHNq (D◦p[extq(G)]) (Equa-
tion 7), which require finding the lowest Nq and the highest
Nq values in D[extq(G)] or D◦p[extq(G)].

In this section, we design a data structure called prefix
histogram matrix to support the above operations efficiently.
The parameter α allows trade-off between the running time
and the bound tightness. A larger α tends to provide tighter
bounds, but it incurs more computation time.

We proceed to elaborate on how to construct the prefix
histogram matrix for a data matrix D. First, we partition
the values in matrix D into α bins and convert each value
D[i, j] to the following bin number β(D[i, j]):

β(D[i, j]) =

⌊
α · D[i, j]−Dmin

Dmax −Dmin + 1

⌋
+ 1

where Dmin and Dmax denote the minimum and maximum
values in D, respectively. Consider one example using
Figure 8, D[2, 2] = 11, Dmin = 1 and Dmax = 12 in
this case. We can notice that β(D[2, 2]) = 6 when we set
α = 6 bins.

We define the prefix histogram matrix PHβ as a matrix
where each element PHβ [i, j] is a count histogram:

PHβ [i, j] = 〈P1[i, j], P2[i, j], · · · , Pα[i, j]〉

where

Pv[i, j] = count(x,y)∈[1..i,1..j](β(D[x, y]) = v)



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 7

LB⊕group(q,G) =


p
√

Nq

Nq
(SLNq (D[extq(G)])−

∑
∗ q) if SLNq (D[extq(G)]) >

∑
∗ q

p
√

Nq

Nq
(
∑
∗ q − SHNq (D[extq(G)])) if SHNq (D[extq(G)]) <

∑
∗ q

0 otherwise

(6)

LB∆
group(q,G) =


p

√
SLNq (D

◦p[extq(G)])− p
√∑

∗ |q[i, j]|p if SLNq (D
◦p[extq(G)]) >

∑
∗ |q[i, j]|p

p
√∑

∗ |q[i, j]|p − p

√
SHNq (D

◦p[extq(G)]) if SHNq (D
◦p[extq(G)]) <

∑
∗ |q[i, j]|p

0 otherwise

(7)

LB′⊕group(q,G) =


p
√

Nq

Nq
(SL′Nq (CHD[extq(G)])−

∑
∗ q) if SL′Nq (CHD[extq(G)]) >

∑
∗ q

p
√

Nq

Nq
(
∑
∗ q − SH′Nq (CHD[extq(G)])) if SH′Nq (CHD[extq(G)]) <

∑
∗ q

0 otherwise

(8)

where
∑
∗
q =

Lq∑
i=1

Wq∑
j=1

q[i, j] and
∑
∗
|q[i, j]|p =

Lq∑
i=1

Wq∑
j=1

|q[i, j]|p

As a remark, the prefix histogram matrix occupies O(αND)
space.

Figure 10a illustrates a histogram matrix PHβ in which
each element PHβ [i, j] stores a count histogram for values
in region [1..i, 1..j] in the data matrix D.

1 2 3 4 5 6 7 8 

1 

2 

3 

4 

5 

6 

7 

8 

x 

y 

extended region  

extq(G) 

(a) prefix histogram matrix PH 
(b) count histogram for D[extq(G)] 

 

(= PH[6,6] – PH[6,1] – PH[1,6] + PH[1,1]) 

0 
2 
4 
6 
8 

10 
12 
14 
16 

count 

value 

Fig. 10: Prefix histogram matrix,
α = 6, Dmin = 1, Dmax = 12

Given an extended group region extq(G), we first re-
trieve count histograms at four corners of D[extq(G)],
and then combine them into the histogram as shown in
Figure 10b. With this histogram, we can derive bounds for
the sum of minimum / maximum Nq values of D[extq(G)]
i.e. SLNq (D[extq(G)]) and SHNq (D[extq(G)]) by Defi-
nition 5.

Definition 5 (Sum of the lowest / highest Nq values in
a count histogram). Let CHD[extq(G)] be a count his-
togram for D[extq(G)]. We define SL′Nq (CHD[extq(G)])
as the sum of the lowest Nq values in CHD[extq(G)], and
SH′Nq

(CHD[extq(G)]) as the sum of the highest Nq values
in CHD[extq(G)].

While scanning the bins of CHD[extq(G)] from left to
right, we examine the count and the minimum bound of
each bin to derive SL′Nq

(CHD[extq(G)]). A similar method
can be used to derive SH′Nq

(CHD[extq(G)]). The cost of
computing a group-based lower bound equals to α region-
sum operations because CHD[extq(G)] contains α bins and
each bin requires 1 region-sum operation to compute.

As an example, consider the count histogram
CHD[extq(G)] obtained in Figure 10b. Assume that
α = 6 and Nq = 4. Thus, the width of each bin is

Dmax−Dmin+1
α = 12

6 = 2. Since the count of bin 9..10 is
above Nq , we derive: SL′Nq

(CHD[extq(G)]) = 9 · 4 = 36.
Note that SL′Nq

(CHD[extq(G)]) = 36 is looser than
the actual value SLNq

(D[extq(G)]) = 38 (obtained in
Figure 8). Then we propose LB′⊕group(q,G) in Equation 8
to replace LB⊕group(q,G).

Since SL′Nq
(CHD[extq(G)]) ≤ SLNq

(D[extq(G)])
and SH′Nq

(CHD[extq(G)]) ≥ SHNq
(D[extq(G)]),

LB′⊕group(q,G) ≤ LB⊕group(q,G). Similarly, we can
adapt the above technique to derive a lower bound of
LB∆

group(q,G) efficiently.

5 EXTENSION FOR IRREGULAR-SHAPED
QUERIES

As discussed in the introduction, some applications may
need to deal with irregular-shaped queries. For example,
in geospatial data integration [8], [9], [11], the query can
be a road junction which may have a T-shape. In cloud
motion detection [5], the query can be an irregular cloud.
Figure 11 illustrates the differences between rectangular
queries and irregular-shaped queries. For each irregular-
shaped query, we employ a binary mask matrix to indicate
irrelevant pixels [13]. The binary mask matrix can be
extracted by image segmentation methods or by application
requirements [5], [9], [39].

rectangular queries irregular-shaped queries

(a) cloud with (b) junction with (c) cloud (d) junction
background background

Fig. 11: Examples of irregular-shaped queries

Problem 2 (Sub-window NN Search for Irregular-Shaped
Query). Given a query matrix q, a binary mask matrix
m, and a data matrix D, this problem finds the candidate



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 8

cbest such that it has the minimum dist♦(q, cbest) where
the distance is defined as:

dist♦(q, c) =
( Lq∑
i=1

Wq∑
j=1

m[i, j] · |q[i, j]− c[i, j]|p
)1/p

(9)

We illustrate this problem in Figure 12. In the mask,
relevant entries have m[i, j] = 1 and irrelevant entries have
m[i, j] = 0. The best match is indicated by the candidate
in a dashed square.

data matrix D 

1 2 3 4 5 6 7 8 

1 16 24 26 13 18 16 20 13 

2 14 10 11 12 19 14 16 16 

3 24 25 26 16 23 20 17 19 

4 16 12 17 16 22 11 18 14 

5 11 15 14 15 21 25 17 24 

6 17 19 14 29 24 26 25 31 

7 14 26 22 33 26 19 20 20 

8 23 21 18 21 24 23 18 22 

x 

y 

2 13 1 4 

3 17 20 2 

13 15 20 22 

3 32 22 1 

query q 

85 76 41 50 56 

57 47 41 49 42 

56 51 16 54 47 

36 51 34 61 64 

50 65 67 64 58 

distances from q 

to candidates 

0 1 0 0 

0 1 1 0 

1 1 1 1 

0 1 1 0 

mask m 

Fig. 12: Example for the irregular-shaped query

We will present two approaches in extending our pro-
gressive search method to solve the above problem. First,
we propose an intuitive extension in Section 5.1. Second,
we develop a more efficient extension by partitioning the
mask in Section 5.2.

5.1 Is Progressive Search still applicable?
Recall that our progressive search method (Algorithm 1)
applies two lower bound functions LBlevel,` and LBgroup.
The correctness of the algorithm depends on whether both
LBlevel,` and LBgroup satisfy the lower bound property. In
the following, we demonstrate that, for the case of irregular-
shaped query, (i) LBgroup can be slightly modified to
satisfy the lower bound property, and (ii) LBlevel,` violates
the lower bound property.

We can modify LBgroup (Equations 6,7) in order to
satisfy the lower bound property. Intuitively, we replace
Nq (i.e., the size of q) by the number of relevant entries in
the mask matrix m. For this purpose, we define the set of
relevant entries as

Mq = {(i, j) : m[i, j] = 1} (10)

By using Mq , we revise the equations for LBgroup into
LB⊕,♦group(q,G) and LB∆,♦

group(q,G), in Equations 11 and
12, respectively. We omit the proofs of their lower bound
property as they are similar to the proofs of Lemmas 2
and 3. Figure 13 illustrates how to compute LB⊕,♦group(q,G).
Note that there are |Mq| = 5 relevant entries in q. For the
group G, we indicate the lowest 5 and the highest 5 entries
in light gray and dark gray, respectively. Then we obtain:
LB⊕,♦group(q,G) = (|12 + 14 + 16 + 16 + 16| − |7 + 5 + 5 +
5 + 5|) = 47.

However, it is not trivial to simply extend LBlevel,`.
We provide an example to show that LBlevel,` can violate
the lower bound property. Consider the candidate c3,3 (in

a dashed square) in Figure 12 and assume p = 1. By
Equation 9, the exact distance is: dist♦(q, c3,3) = 16.
For the lower bound distance, suppose that we use LB⊕
as an instance of LBbasic. At level ` = 0, we compute:
LBlevel,0(q, c3,3) = LB⊕(q, c3,3) = |

∑
∗ q −

∑
∗ c3,3| =

|190 − 319| = 129. This violates the lower bound prop-
erty as LBlevel,0(q, c3,3) > dist♦(q, c3,3). This happens
because LBbasic considers all entries (including irrelevant
entries) in a candidate. To prevent such violation, a simple
solution is to disable LBlevel,`.

We then summarize how to extend our progressive search
algorithm (Algorithm 1) for irregular-shaped queries. First,
we disable LBlevel,` by removing Lines 18–21. Second, we
replace LBgroup by LB♦group at Lines 6 and 15. Third, we
replace dist(q, c) by dist♦(q, c) at Line 23, and compute
it efficiently by Equation 13.

dist♦(q, c) =
( ∑

(i,j)∈Mq

|q[i, j]− c[i, j]|p
)1/p

(13)

5.2 Extension for LBlevel,` based on Partitioning
To achieve efficient extension of Algorithm 1, it is im-
portant to develop a replacement for the level-based lower
bound LBlevel,`.

We plan to decompose the mask m into a set of disjoint
rectangles. To enable the lower bound property, we should
use a partition that covers no ‘0’-entry of m. We formally
define a valid partition as follows.

Definition 6 (Valid partition). Let Γ be a set of disjoint
rectangles, where each rectangle R ∈ Γ can be described
by [R.xstart..R.xend, R.ystart..R.yend].
Given a mask matrix m, we call Γ a valid partition if,
∀ R ∈ Γ, ∀ (i, j) ∈ R, m(i, j) = 1.

Figure 14 illustrates a mask m and a valid partition of
three rectangles: Γ = {[1..1, 3..3], [2..3, 2..4], [4..4, 3..3]}.
Note that a valid partition cannot cover any ‘0’-entry of m.

Given a valid partition Γ of a mask m, we define the
lower bound function LBΓ(q, c) in Equation 14.

LBΓ(q, c) =
(∑

R∈Γ

LBbasic(q[R], c[R])p
)1/p

(14)

Since each term LBbasic(q[R], c[R]) takes one region-sum
operation, the cost of computing LBΓ(q, c) equals to |Γ|
region-sum operations.

Then we prove that LBΓ(q, c) satisfies the lower bound
property (cf. Lemma 4).

Lemma 4. LBΓ(q, c) ≤ dist♦(q, c).

Proof:

dist♦(q, c)
p

=

Lq∑
i=1

Wq∑
j=1

m[i, j]|q[i, j]− c[i, j]|p

≥
∑
R∈Γ

∑
(i,j)∈R

m[i, j]|q[i, j]− c[i, j]|p

≥
∑
R∈Γ

LBbasic(q[R], c[R])
p

= LBΓ(q, c)p



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 9

LB⊕,♦
group(q,G) =


p
√
|Mq|
|Mq|

(SL|Mq|(D
◦1[extq(G)])−

∑
Mq

q) if SL|Mq|(D
◦1[extq(G)]) >

∑
Mq

q
p
√
|Mq|
|Mq|

(
∑

Mq
q − SH|Mq|(D

◦1[extq(G)])) if SH|Mq|(D
◦1[extq(G)]) <

∑
Mq

q

0 otherwise

(11)

LB∆,♦
group(q,G) =


p

√
SL|Mq|(D

◦p[extq(G)])− p

√∑
Mq
|q[i, j]|p if SL|Mq|(D

◦p[extq(G)]) >
∑

Mq
|q[i, j]|p

p

√∑
Mq
|q[i, j]|p − p

√
SH|Mq|(D

◦p[extq(G)]) if SH|Mq|(D
◦p[extq(G)]) <

∑
Mq
|q[i, j]|p

0 otherwise

(12)

where L|Mq|(D[G.Rext]) is the lowest |Mq | values in the submatrix D[G.Rext] (13)

SL|Mq|(D
◦ω [extq(G)]) =

∑
v∈L|Mq|(D[G.Rext])

vω

1 2 3 4 5 6 7 8 

1 14 12 12 14 19 23 28 32 

2 10 14 16 16 30 29 26 23 

3 9 10 17 8 15 33 37 39 

4 10 8 7 9 10 5 6 7 

5 4 5 3 5 1 4 10 22 

6 2 2 5 2 3 4 10 26 

7 4 4 7 1 3 5 18 29 

8 3 3 2 5 3 3 40 35 

x 

y 

1 2 3 

1 * 12 * 

2 14 16 16 

3 * 16 * 

x 

y 

group region G extended region extq(G) 

query q 
data matrix D 

Fig. 13: Group-based lower bound for irregular-shaped
query

1 2 3 4

1 0 1 0 0
x

2 0 1 1 0
3 1 1 1 1
4 0 1 1 0

y

1 2 3 4

1 0 1 0 0
x

2 0 1 1 0
3 1 1 1 1
4 0 1 1 0

y

Fig. 14: A valid partition Γ of a mask m

In general, we may employ a sequence of valid partitions
〈Γ0,Γ1,Γ2, · · · ,Γ`♦max−1〉 with an increasing number of
rectangles, where `♦max denotes the number of levels.
During search, we apply LBΓ`

on a candidate c in the
ascending order of ` as shown in Figure 15. If we cannot
filter c at level `, then we attempt to filter it with minimal
extra effort, i.e., at level `+ 1.

l = 1 l = 2 l = 3 

… 

l = 0 

apply LBbasic to each rectangle 

0 1 2 3 

Fig. 15: Level ` in irregular partition plan

We propose to apply the same sequence Γseq for all
candidates. This would eliminate the overhead of on-the-
fly partitioning and allow us to manage each candidate with

O(1) space only (i.e., the current lower bound and level of
the candidate).

We then discuss the extension to the progressive search
algorithm. First, before Line 1, we construct a sequence
of valid partitions Γseq = 〈Γ0,Γ1,Γ2, · · · ,Γ`♦max−1〉 from
the mask m, by using heuristics to be discussed in Sec-
tion 5.2.2. Second, at Line 19, we replace LBlevel,`(q, e)
by LBΓ`

(q, e).

5.2.1 Cost Formulation and Hardness
We first formulate the computation cost of our algorithm.
The cost depends on a query matrix q, a binary mask
matrix m, a data matrix D, and a sequence of parti-
tions Γseq = 〈Γ0,Γ1,Γ2, · · · ,Γ`♦max−1〉. To simplify our
analysis, we disable group-based pruning and measure the
computation cost as the total number of rectangles used in
calling LBΓ`

(q, c), dist♦(q, c) only.
Given a candidate c of D, we have:

cost(LBΓ`
(q, c)) = |Γ`|

cost(dist♦(q, c)) = |Mq|

where Mq was defined in Equation 10.
We denote the NN distance by τopt = minc dist

♦(q, c).
order of lower bound distance until reaching τopt. For
simplicity, we can assume that τopt is known in advance
in this model. If a candidate c can be pruned before or at
level `♦max−1, then it incurs cost

∑F (q,c)
`=0 |Γ`| only, where

F (q, c) denotes the last level for computing the lower bound
LBΓ`

(q, c):

F (q, c) = min({` : LBΓ`
(q, c) ≥ τopt} ∪ {`♦max − 1})

In addition, we must compute the exact distance
dist♦(q, c) for the following subset of candidates:

Cexact = {c : F (q, c) = `♦max−1, LBΓ
`♦max−1

(q, c) < τopt}

In summary, the total cost of Γseq is:

cost(Γseq, q,m,D) =
∑
c

F (q,c)∑
`=0

|Γ`|+ |Cexact||Mq|

Generally, we wish to find the best sequence
〈Γ0,Γ1,Γ2, · · · ,Γ`♦max−1〉 that minimizes
cost(Γseq, q,m,D). Although our solution computes



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 10

Γseq only once, we cannot afford to spend too much time
(e.g., more than O(NDNq) which is the time complexity
of brute force method) to compute Γseq . Unfortunately,
we will show that this problem is NP-hard, let alone to
solve it in O(NDNq) time.

In Theorem 1, we will show that the decision version
of our problem (in Definition 7) is NP-hard via reduction
from a known NP-complete problem called the Rectilinear
Picture Compression (RPC) decision problem [16] (p.232)
(in Definition 8).

Definition 7 (Γ-decision problem).
INSTANCE: 〈q,D,m, `♦max, LBbasic,K〉, where q,D are
matrices, m is a binary matrix, `♦max,K are integers, and
LBbasic is a basic lower bound function.
PROBLEM: Is there any sequence Γseq =
〈Γ0,Γ1,Γ2, · · · ,Γ`♦max−1〉 such that it satisfies Definition 6
and cost(Γseq, q,m,D) ≤ K?

Definition 8 (RPC-decision problem).
INSTANCE: 〈K ′,m′[1..n, 1..n]〉, where K ′, n are integers,
and m′ is a n× n binary matrix.
PROBLEM: Is there any set S of disjoint rectangles
{R1, R2, ...} that satisfies both conditions below?
• |S| ≤ K ′
•
⋃
Rz∈S Rz = {(i, j) : m′[i, j] = 1}

Theorem 1. The Γ-decision problem is NP-hard.

Proof:
First, we present the reduction scheme from the RPC-
decision problem to our Γ-decision problem.
• Set m[1..n, 1..n] to m′[1..n, 1..n]
• Set q[1..n, 1..n] with all ‘0’ entries
• Set D[1..n, 1..n] with all ‘1’ entries
• Set K to K ′, set `♦max to 1, and set LBbasic to LB⊕

The above reduction scheme takes polynomial time.
We proceed to show that the RPC-decision instance

returns true if and only if the Γ-decision instance returns
true. For convenience, we define the notation Mq = {(i, j) :
m[i, j] = 1}. Since D has only one candidate c, we obtain:

τopt = dist♦(q, c) =
(∑

(i,j)∈Mq
|0− 1|p

) 1
p

= |Mq|
1
p .

If the RPC-decision instance returns true, then there
exists a set S of disjoint rectangles such that:
• |S| ≤ K ′ = K
•
⋃
Rz∈S Rz = Mq (since m = m′)

Thus, S also satisfies the valid partition condition in Defini-
tion 6. We then set Γ0 = S and plan to show that Γ-decision
instance returns true. By Equation 14, we derive:

(LBΓ0(q, c))
p =

∑
Rz∈Γ0

LB⊕(q[Rz], c[Rz])
p

=
∑

Rz∈Γ0

(
p
√
|Rz|
|Rz|

∣∣∣∣ ∑
(i,j)∈Rz

q[i, j]− c[i, j]

∣∣∣∣)p

=
∑

Rz∈Γ0

(
p
√
|Rz|
|Rz|

|Rz|
)p

=
∑

Rz∈Γ0

|Rz| = |Mq|

We get LBΓ0(q, c) ≥ τopt and thus F (q, c) = 0. Then we
obtain: cost(Γseq, q,m,D) = |Γ0|+0 ≤ K. Therefore, the
Γ-decision instance returns true.

If the Γ-decision instance returns true, then there exists
〈Γ0〉 such that cost(Γseq, q,m,D) ≤ K. Since D has only
one candidate, we have two cases to consider:

Case when |Cexact| = 1
We have: cost(Γseq, q,m,D) = |Γ0|+ |Mq| ≤ K. Since

K = K ′ and |Γ0| ≥ 0, we get |Mq| ≤ K ′. We then set
S = {[i..i, j..j] : m[i, j] = 1}. Since |Mq| ≤ K ′ and
m = m′, we infer that S covers m′ exactly and thus the
RPC-decision instance returns true.

Case when |Cexact| = 0
We have: cost(Γseq, q,m,D) = |Γ0| ≤ K = K ′. Since

|Cexact| = 0, we derive: LBΓ0(q, c) ≥ τopt. By the lower
bound property of LBΓ0

, we get τopt = dist♦(q, c) ≥
LBΓ0

(q, c). Thus, we obtain LBΓ0
(q, c) = τopt. By substi-

tuting q, c, τopt into the above equation, we get:∑
Rz∈Γ0

|Rz| = |Mq|.

By Definition 6, Γ0 contains disjoint rectangles that cover
only ‘1’-entries. Combining this fact with the above equa-
tion, we infer that Γ0 covers all ‘1’-entries in Mq (i.e., in
m′).

Finally, we set S = Γ0. The RPC-decision instance
returns true because we have shown that: (i) |Γ0| ≤ K ′,
and (ii) Γ0 covers all ‘1’-entries in m′.

5.2.2 Split-and-Mend Partitioning
In this section, we present several O(Nq)-time heuristics for
partitioning a mask m at level `. We propose a split-and-
mend strategy to obtain good partitioning heuristics. First,
we apply ‘split’ to divide m into at most 4` rectangles.
Second, we apply ‘mend’ to ensure that each rectangle is
valid (cf. Definition 6).

We consider two ‘split’ heuristics based on tree structures
for 2D points:
• Quad-tree split: We build a level-` quad-tree on m,

and then output each leaf node as a rectangle.
• KD-tree split: We build a level-2` KD-tree on ‘1’-

entries of m. Note that the KD-tree divides m by the
x-axis and the y-axis in an alternate manner. Then, we
output each leaf node as a rectangle.

We show the results of Quad-tree split at level ` = 1 in
Figure 16a and KD-tree split at level ` = 2 in Figure 16b,
respectively.

Suppose that, after splitting, we obtain the rectangles
in Figure 17a. However, the top-right and the bottom-
left rectangles are invalid because they cover some ‘0’-
entries in m. We then suggest ‘mend’ heuristics on the
above rectangles in order to generate a valid partition (cf.
Definition 6).
• Drop: We simply drop invalid rectangles, as shown in

Figure 17b.
• Grow: Consider the bottom-left invalid rectangle in

Figure 17c. We choose a ‘1’-entry (in gray color) and
then find the maximal rectangle containing it.

While ‘Drop’ returns fewer rectangles, ‘Grow’ tends to
produce rectangles that lead to tighter bounds. We will
compare them in the experimental study.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 11

1 1 0 0

1 1 1 0

1 1 1 1

0 1 1 1

(a) Quad-tree split (b) KD-tree split

1 1 0 0

1 1 1 0

1 1 1 1

0 1 1 1

Fig. 16: Examples on split

1 1 0 0

1 1 1 0

1 1 1 1

0 1 1 1

(a) after splitting

1 1 0 0

1 1 1 0

1 1 1 1

0 1 1 1

(b) refine by dropping

1 1 0 0

1 1 1 0

1 1 1 1

0 1 1 1

(c) refine by growing

Fig. 17: Examples on mend
Based on the split-and-mend strategy, we obtain four

combinations of heuristics for partitioning the mask: Quad-
Drop, Quad-Grow, KD-Drop and KD-Grow.

6 EXPERIMENTAL EVALUATION

We present our experiments for rectangular queries and
irregular-shaped queries in Sections 6.1 and 6.2, respec-
tively. We implemented all algorithms in C++ and con-
ducted experiments on an Intel i7 3.4GHz PC running
Ubuntu.

6.1 Experiments for Rectangular Queries
6.1.1 Experimental Setting
We summarize our methods and the state-of-the-art [34]
(denoted as Dual) in Table 2a. We label our progressive
search methods with the same prefix PS. Their suffixes
represent which techniques are used.
• PSL applies LBlevel only, and
• PSLG applies both LBlevel and LBgroup.

The subscripts (e.g., ⊕ or ∆) indicate whether their lower
bound functions are built on top of LB⊕ or LB∆.

TABLE 2: The list of our methods and the competitors

Method Techniques used

Dual [34] [34]
PSL⊕ Section 4.2
PSL∆ Section 4.2

PSLG⊕ Sections 4.2 and 4.3
(a) methods for rectangular queries

Method Techniques used

iDual [13] [13]
iPSG Section 5.1

iPSLquad,drop, iPSLquad,grow Section 5.2
iPSLkd,drop, iPSLkd,grow

iPSLGquad,drop, iPSLGquad,grow Sections 5.1, 5.2
iPSLGkd,drop, iPSLGkd,grow

(b) methods for irregular-shaped queries

Note that each method (in Table 2) requires a preprocess-
ing step — scan a data image D to compute its prefix-sum
matrix. This step is done only once before queries arrive.

For example, the preprocessing time is only 0.22s per image
for the Weather dataset in Table 3.

Table 3a lists the details of our datasets and queries. We
collect these datasets from [1], [29]. Photo640, Photo1280
and Photo2560 [29] contain 30 images of the size 640×480,
1280 × 960 and 2560 × 1920 respectively. Weather [1]
contains 30 weather satellite images of the size 1800×1800;
the timestamps of these images are from 00:00 on 1/4/2014
to 06:00 on 2/4/2014. For each image, we generate 10
random starting positions by the uniform distribution to
extract queries from that image. Since our competitors
only support the L2 norm, we use the L2 norm in all
experiments.

In each experiment, we execute the methods for 300
queries (= 30 images × 10 queries) and then report the
average response time.

TABLE 3: Our datasets and queries

Dataset Image size Number of Number of
images queries per image

Photo2560 2560× 1920 30 10
Photo1280 1280× 960 30 10
Photo640 640× 480 30 10
Weather 1800× 1800 30 10

(a) the setting for rectangular queries

Dataset Number of Number of Query extraction
images queries per image method

Photo2560 30 10 Matlab segmentation
Weather 30 1 Manual extraction

(b) the setting for irregular-shaped queries

6.1.2 Results
First, we study the effect of the number of bins α on
the response time of our method PSLG⊕. Figure 18 plots
the running time as a function of α. When α increases,
the group-based lower bound LBgroup becomes tighter
(i.e., higher pruning power) so the response time drops.
Nevertheless, when α is too large, it incurs high overhead
to compute LBgroup so the response time rises slightly. In
subsequent experiments, we set α = 16 by default.

 0

 0.2

 0.4

 0.6

 0.8

21 22 23 24 25 26

Ti
m

e 
(s

ec
)

α

PSLG⊕

 0

 0.2

 0.4

21 22 23 24 25 26

Ti
m

e 
(s

ec
)

α

PSLG⊕

(a) Photo2560 (b) Weather

Fig. 18: Effect of the number of bins α

We have also collected measurements to study the ef-
fectiveness of techniques in PSLG⊕, at the default setting
(α = 16). First, the exact distance calculation incurs only
5% of the running time, whereas the computation of bounds
incurs 95% of the running time. Second, the majority of
candidates (99%) are pruned at the group level and the
remaining candidates are pruned at the candidate level.

Next, we evaluate the scalability of methods with respect
to the query size Nq . Figure 19 shows the response time



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 12

of methods versus the query size Nq . Since Dual [34] can
only support query size of the form 2r × 2r, we use query
sizes like 322, 642, · · · in this experiment. Thanks to the
group lower bound function, PSLG⊕ outperforms all other
methods and scales better with respect to Nq . On the other
hand, Dual, PSL∆ and PSL⊕ need to obtain candidates
one-by-one and incur higher overhead on maintaining the
min-heap. Since PSL⊕ performs better than PSL∆, we omit
PSL∆ in the next experiment.

 0
 0.08
 0.16
 0.24
 0.32
 0.4

 0.48
 0.56

162 322 642 1282

Ti
m

e 
(s

ec
)

query size

PSLG⊕
PSL⊕
PSLΔ
Dual

 0
 0.08
 0.16
 0.24
 0.32
 0.4

 0.48

162 322 642 1282

Ti
m

e 
(s

ec
)

query size

PSLG⊕
PSL⊕
PSLΔ
Dual

(a) Photo2560 (b) Weather

Fig. 19: Effect of the query size Nq
Then, we test the scalability of methods with different

data sizes (by using three datasets Photo640, Photo1280
and Photo2560), while fixing the query size to 64 × 64.
Figure 20 shows the response time of methods with respect
to the data size. Our methods perform better than the
competitor Dual. When the data size increases, our group-
based pruning technique becomes more powerful and thus
the gap between PSLG⊕ and the other methods widens.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

640x480 1280x960 2560x1920

Ti
m

e 
(s

ec
)

data size

PSLG⊕
PSL⊕
Dual

Fig. 20: Effect of the data size ND
To test the robustness of methods, we follow [34] and

add Gaussian noise into each query image. The query size
is fixed to 128× 128 in this experiment. Figure 21 shows
the response time of methods as a function of the noise
(in standard deviation). The performance gap between our
methods and Dual widens as the noise increases. At a
high noise, the pruning power of all lower bound functions
becomes weaker. In the worst-case, Dual may invoke a long
sequence of bounding functions per candidate, whereas our
methods invoke at most a logarithmic number of LBlevel
(in terms of Nq) per candidate. In summary, our methods
are more robust than Dual against noise.

6.2 Experiments for Irregular-Shaped Queries
6.2.1 Experimental Setting
We summarize our methods and the state-of-the-art [13]
(denoted as iDual) in Table 2b. We label our methods
with the same prefix iPS. Their suffixes (G or L or both)
represent which lower bound techniques are used. Their
subscripts represent which partitioning techniques are used.

 0

 0.8

 1.6

 2.4

 3.2

 4

 0 1 2  5  10  15  20

Ti
m

e 
(s

ec
)

noise

PSLG⊕
PSL⊕
Dual

 0

 40

 80

 120

 160

 0 1 2  5  10  15  20

Ti
m

e 
(s

ec
)

noise

PSLG⊕
PSL⊕
Dual

(a) Photo2560 (b) Weather

Fig. 21: Effect of the noise

Table 3b lists the details of our datasets and queries.
The experiments in [13] have tested with three synthetic
query shapes only. In contrast, we test with a wider variety
of query shapes in our experiments. For the Photo2560
dataset [29], we apply the Matlab segmentation function
on each rectangular query in order to obtain an irregular-
shaped query. For the Weather dataset [1], we follow the
same approach as in [39] and manually extract a cloud
pattern from each data image.

The response time of our iPSLG methods includes the
partitioning time. In all of our experiments, the partitioning
time is at most 1.2% of the response time only, implying
that our partitioning heuristics incur very low overhead.

6.2.2 Results
We first compare the effectiveness of our partition-
ing heuristics and name these methods as iPSLkd,drop,
iPSLquad,drop iPSLkd,grow and iPSLquad,grow. Figures 22a
and b plot the response time of these methods with respect
to the Gaussian noise as described in Section 6.1.2. In
general, ‘grow’ is better than ‘drop’ because ‘grow’ can
produce more rectangles and thus provide tighter bounds.
On the other hand, ‘quad’ performs slightly better than ‘kd’.
The best method iPSLquad,grow is faster than others up to
20% and 40%, on the Photo2560 and the Weather datasets,
respectively.

In Section 5.2, we have formulated a cost equation to
express the computation cost of our method. We then
measure this cost in the above experiment and show it in
Figures 22c and d. We observe that the trends are similar to
those in Figures 22a and b. Again, iPSLquad,grow achieves
the lowest cost, and it performs better than other methods
by up to 37% and 53%, on the Photo2560 and the Weather
datasets, respectively.

In the next experiment, we compare the competitor
(iDual) with three variants of our methods: one using
group-based lower bound (iPSG), one using level-based
lower bound (iPSLquad,grow), and one using both types of
lower bounds (iPSLGquad,grow). Figure 23a and b show
the response time of these methods as a function of the
noise. iDual is the worst since it incurs high overhead
on maintaining a set of rectangles for each candidate.
Both iPSLquad,grow and iPSLGquad,grow outperform iPSG,
implying that our lower bounds in Section 5.2 are more
powerful than the simple bound in Section 5.1. We then plot
the maximum heap space of these methods, in terms of the



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 13

 0

 2

 4

 6

 8

 0  5  10  15  20

Ti
m

e 
(s

ec
)

noise

iPSLkd,drop
iPSLkd,grow
iPSLquad,drop
iPSLquad,grow

 0

 2

 4

 6

 0  5  10  15  20

Ti
m

e 
(s

ec
)

noise

iPSLkd,drop
iPSLkd,grow
iPSLquad,drop
iPSLquad,grow

(a) response time on Photo2560 (b) response time on Weather

 0

 20

 40

 60

 0  5  10  15  20

Co
st

 (
#

 r
ec

ta
ng

le
s 

x1
07

)

noise

iPSLkd,drop
iPSLkd,grow
iPSLquad,drop
iPSLquad,grow

 0

 8

 16

 24

 32

 0  5  10  15  20

Co
st

 (
#

 r
ec

ta
ng

le
s 

x1
07

)

noise

iPSLkd,drop
iPSLkd,grow
iPSLquad,drop
iPSLquad,grow

(c) cost on Photo2560 (d) cost on Weather

Fig. 22: Comparisons of partitioning heuristics, varying
the noise

number of rectangles, in Figure 23c and d. iDual occupies
considerable amount of space on maintaining rectangles
for candidates. iPSLquad,grow requires only O(1) space per
candidate. Since iPSLGquad,grow can perform group-based
pruning, it consumes the smallest amount of space.

 0
 10
 20
 30
 40
 50
 60

 0  5  10  15  20

Ti
m

e 
(s

ec
)

noise

iPSLquad,grow
iPSLGquad,grow
iPSG
iDual

 0

 20

 40

 60

 80

 0  5  10  15  20

Ti
m

e 
(s

ec
)

noise

iPSLquad,grow
iPSLGquad,grow
iPSG
iDual

(a) response time on Photo2560 (b) response time on Weather

 0

 5

 10

 15

 20

 0  5  10  15  20

M
ax

im
um

 H
ea

p 
Sp

ac
e 

(x
10
6 )

noise

iPSLquad,grow
iPSLGquad,grow
iDual

 0

 5

 10

 15

 20

 0  5  10  15  20

M
ax

im
um

 H
ea

p 
Sp

ac
e 

(x
10
6 )

noise

iPSLquad,grow
iPSLGquad,grow
iDual

(c) max. heap space on Photo2560 (d) max. heap space on Weather

Fig. 23: Comparisons of methods, varying the noise

Finally, we test the effect of the query size on the
response time of our method iPSLquad,grow and the com-
petitor iDual, without noise. We measure the query size as
the number of ‘1’-entries in the mask. The sizes of queries
range from 960 to 16384 in the Photo2560 dataset and
from 5400 to 84710 in the Weather dataset. We plot the
results in Figure 24. Both the average response time and
the worst-case response time of iPSLquad,grow outperform
iDual significantly.

 0

 0.2

 0.4

1 2 4 8 16 32

Ti
m

e 
(s

ec
)

query size (number of pixel x103)

 0

 2

 4

 6

 8

 10

1 2 4 8 16 32

Ti
m

e 
(s

ec
)

query size (number of pixel x103)

(a) iPSLquad,grow on Photo2560 (b) iDual on Photo2560

 0

 0.2

 0.4

 0.6

 0.8

1 2 4 8 16

Ti
m

e 
(s

ec
)

query size (number of pixel x104)

 0

 1

 2

 3

1 2 4 8 16

Ti
m

e 
(s

ec
)

query size (number of pixel x104)

(c) iPSLquad,grow on Weather (d) iDual on Weather

Fig. 24: Effect of query size, fixing σ = 0

7 CONCLUSION

The contribution of our work is twofold. First, the proposed
technique can support irregular-shaped queries. This new
flexibility makes the new solution much more effective.
Second, this new advantage is achieved with substantially
less computation in comparison with the current state of
the art, about 20 times faster when the noise level is low
to medium and at least 9 times faster when the noise
level is high. Our experiments on real datasets indicate that
the proposed method is capable of real-time computation
and therefore enables a wide range of new applications
not possible before. In the future, we plan to investigate
approximation algorithms to further reduce the running time
with theoretical guarantee.

ACKNOWLEDGEMENT

This work was supported by grant GRF 152043/15E from
the Hong Kong RGC.

REFERENCES
[1] Weather datasets. http://weather.is.kochi-u.ac.jp/sat/GAME/.
[2] G. Ben-Artzi, H. Hel-Or, and Y. Hel-Or. The gray-code filter kernels.

IEEE Trans. Pattern Anal. Mach. Intell., 29(3):382–393, 2007.
[3] M. Ben-Yehuda, L. Cadany, and H. Hel-Or. Irregular pattern

matching using projections. In ICIP, pages 834–837, 2005.
[4] C. Böhm, S. Berchtold, and D. A. Keim. Searching in high-

dimensional spaces: Index structures for improving the performance
of multimedia databases. ACM Comput. Surv., 33(3):322–373, 2001.

[5] R. Brad and I. A. Letia. Extracting cloud motion from satellite image
sequences. In ICARCV, pages 1303–1307, 2002.

[6] Y. Cai and G. Baciu. Detecting, grouping, and structure inference
for invariant repetitive patterns in images. IEEE Trans. Image
Processing, 22(6):2343–2355, 2013.

[7] T. N. Chan, M. L. Yiu, and K. A. Hua. A progressive approach for
similarity search on matrix. In SSTD, pages 373–390, 2015.

[8] C. Chen, C. A. Knoblock, and C. Shahabi. Automatically conflating
road vector data with orthoimagery. GeoInformatica, 10(4):495–530,
2006.

[9] C. Chen, C. Shahabi, and C. A. Knoblock. Utilizing road network
data for automatic identification of road intersections from high
resolution color orthoimagery. In STDBM 04, pages 17–24, 2004.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 14

[10] M. Cheng, F. Zhang, N. J. Mitra, X. Huang, and S. Hu. Repfinder:
finding approximately repeated scene elements for image editing.
ACM Trans. Graph., 29(4):83:1–83:8, 2010.

[11] Y. Chiang, C. A. Knoblock, C. Shahabi, and C. Chen. Automatic
and accurate extraction of road intersections from raster maps.
GeoInformatica, 13(2):121–157, 2009.

[12] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access
method for similarity search in metric spaces. In VLDB, pages 426–
435, 1997.

[13] R. Deng. Fast Matching Techniques Utilizing Integral Images. PhD
thesis, University of Texas at Dallas, 2011.

[14] R. M. Dufour, E. L. Miller, and N. P. Galatsanos. Template matching
based object recognition with unknown geometric parameters. IEEE
Transactions on Image Processing, 11(12):1385–1396, 2002.

[15] A. W. Fu, E. J. Keogh, L. Y. H. Lau, C. A. Ratanamahatana, and
R. C. Wong. Scaling and time warping in time series querying.
VLDB J., 17(4):899–921, 2008.

[16] M. R. Garey and D. S. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
New York, NY, USA, 1990.

[17] M. Gharavi-Alkhansari. A fast globally optimal algorithm for
template matching using low-resolution pruning. IEEE Transactions
on Image Processing, 10(4):526–533, 2001.

[18] Y. Hel-Or and H. Hel-Or. Real-time pattern matching using projec-
tion kernels. IEEE Trans. Pattern Anal. Mach. Intell., 27(9):1430–
1445, 2005.

[19] C. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range queries in
OLAP data cubes. In SIGMOD, pages 73–88, 1997.

[20] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In STOC, pages 604–613,
1998.

[21] H. V. Jagadish, B. C. Ooi, K. Tan, C. Yu, and R. Zhang. idistance:
An adaptive b+-tree based indexing method for nearest neighbor
search. ACM Trans. Database Syst., 30(2):364–397, 2005.

[22] D. A. Keim and B. Bustos. Similarity search in multimedia
databases. In ICDE, page 873, 2004.

[23] Y. Kong, W. Dong, X. Mei, X. Zhang, and J. Paul. Simlocator:
robust locator of similar objects in images. The Visual Computer,
29(9):861–870, 2013.

[24] F. Korn, N. Sidiropoulos, C. Faloutsos, E. L. Siegel, and Z. Protopa-
pas. Fast nearest neighbor search in medical image databases. In
VLDB, pages 215–226, 1996.

[25] H. Kriegel, P. Kröger, P. Kunath, and M. Renz. Generalizing the
optimality of multi-step k -nearest neighbor query processing. In
SSTD, pages 75–92, 2007.

[26] A. Mahmood and S. Khan. Exploiting transitivity of correlation for
fast template matching. IEEE Trans. Image Processing, 19(8):2190–
2200, 2010.

[27] Y. Moshe and H. Hel-Or. Video block motion estimation based
on gray-code kernels. IEEE Transactions on Image Processing,
18(10):2243–2254, 2009.

[28] W. Ouyang and W. Cham. Fast algorithm for walsh hadamard
transform on sliding windows. IEEE Trans. Pattern Anal. Mach.
Intell., 32(1):165–171, 2010.

[29] W. Ouyang, F. Tombari, S. Mattoccia, L. di Stefano, and W. Cham.
Performance evaluation of full search equivalent pattern matching
algorithms. IEEE Trans. Pattern Anal. Mach. Intell., 34(1):127–143,
2012.

[30] O. Pele and M. Werman. Accelerating pattern matching or how
much can you slide? In ACCV, pages 435–446, 2007.

[31] O. Pele and M. Werman. Robust real-time pattern matching using
bayesian sequential hypothesis testing. IEEE Trans. Pattern Anal.
Mach. Intell., 30(8):1427–1443, 2008.

[32] T. Rakthanmanon, B. J. L. Campana, A. Mueen, G. E. A. P. A.
Batista, M. B. Westover, Q. Zhu, J. Zakaria, and E. J. Keogh.
Searching and mining trillions of time series subsequences under
dynamic time warping. In KDD, pages 262–270, 2012.

[33] H. Samet. Techniques for similarity searching in multimedia
databases. PVLDB, 3(2):1649–1650, 2010.

[34] H. Schweitzer, R. A. Deng, and R. F. Anderson. A dual-bound
algorithm for very fast and exact template matching. IEEE Trans.
Pattern Anal. Mach. Intell., 33(3):459–470, 2011.

[35] A. Seering, P. Cudré-Mauroux, S. Madden, and M. Stonebraker.
Efficient versioning for scientific array databases. In ICDE, pages
1013–1024, 2012.

[36] T. Seidl and H. Kriegel. Optimal multi-step k-nearest neighbor
search. In SIGMOD, pages 154–165, 1998.

[37] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and efficiency in high
dimensional nearest neighbor search. In SIGMOD, pages 563–576,
2009.

[38] F. Tombari, S. Mattoccia, and L. di Stefano. Full-search-equivalent
pattern matching with incremental dissimilarity approximations.
IEEE Trans. Pattern Anal. Mach. Intell., 31(1):129–141, 2009.

[39] D. Truong, V. Nguyen, A. D. Duong, C. N. Ngoc, and M. Tran.
Realtime arbitrary-shaped template matching process. In ICARCV,
pages 1407–1412, 2012.

[40] P. A. Viola and M. J. Jones. Robust real-time face detection.
International Journal of Computer Vision, 57(2):137–154, 2004.

[41] R. Weber, H. Schek, and S. Blott. A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces. In VLDB, pages 194–205, 1998.

[42] B. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary
lp norms. In VLDB, pages 385–394, 2000.

Tsz Nam Chan received the bachelor’s de-
gree in 2014 from Hong Kong Polytechnic
University. He is currently a PhD student
in Hong Kong Polytechnic University, under
the supervision of Dr. Man Lung Yiu. His
research interests include multidimensional
similarity search and pattern matching.

Man Lung Yiu received the bachelor’s de-
gree in computer engineering and the PhD
degree in computer science from the Univer-
sity of Hong Kong in 2002 and 2006, respec-
tively. Prior to his current post, he worked
at Aalborg University for three years starting
in the Fall of 2006. He is now an associate
professor in the Department of Computing,
The Hong Kong Polytechnic University. His
research focuses on the management of
complex data, in particular query processing

topics on spatiotemporal data and multidimensional data.

Kien A. Hua is a Professor of Computer
Science, and Director of the Data Systems
Lab at the University of Central Florida. He
served as the Associate Dean for Research
of the College of Engineering and Computer
Science at UCF. Prior to joining the university,
he was a lead architect at IBM Mid-Hudson
Lab, where he helped develop a highly par-
allel computer system, the precursor to the
highly successful commercial parallel com-
puter known as SP2. Dr.Hua received his

B.S. in Computer Science, and M.S. and Ph.D. in Electrical En-
gineering, all from the University of Illinois at Urbana-Champaign.
His diverse expertise includes network and wireless communica-
tions, image/video computing, sensor networks, medical imaging,
databases, mobile computing, and intelligent transportation systems.
He has published widely, with over 10 papers recognized as best/top
papers at conferences and a journal. Many of his research have
had significant impact on society. His Chaining technique started
the peer-to-peer video streaming paradigm. His Skyscraper Broad-
casting, Patching, and Zigzag techniques have been heavily cited in
the literature, and have inspired many commercial systems in use
today. Dr. Hua has served as a Conference Chair, an Associate
Chair, and a Technical Program Committee Member of numerous
international conferences, as well as on the editorial boards of a
number of professional journals. Dr. Hua is a Fellow of IEEE.




