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Abstract: It has been proven that certain biomarkers in people’s breath have a relationship with
diseases and blood glucose levels (BGLs). As a result, it is possible to detect diseases and predict BGLs
by analysis of breath samples captured by e-noses. In this paper, a novel optimized medical e-nose
system specified for disease diagnosis and BGL prediction is proposed. A large-scale breath dataset
has been collected using the proposed system. Experiments have been organized on the collected
dataset and the experimental results have shown that the proposed system can well solve the problems
of existing systems. The methods have effectively improved the classification accuracy.
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1. Introduction

Electronic noses, or e-noses, are devices that “smell” or detect odor. An e-nose consists of
a mechanism for chemical detection, such as an array of electronic sensors, and a mechanism
for processing. Different sensors respond differently to odor samples and transmit the signal to
the processing module. By analyzing the signals, the components or characteristics of the samples
can be distinguished. E-noses are now attracting more and more interest from researchers because of
the wide range of applications [1], including drunk-driving testing, hazardous gas monitoring [2] and
air quality monitoring [3–5]. Table 1 lists some of the e-noses manufacturers and the application of their
products. These commercial e-noses always must provide some versatility in applications, such as
coffee, wine, and fragrance identification for the sake of their marketing concerns. The versatility may
in contrast improve the price and limit performance since their sensor selection must match broad
applications. Therefore, it is a better choice to design a specific e-nose system for specific applications.

Table 1. The developed e-nose products.

Manufacturer Product Application

The eNose Company, Rotterdam, The Netherlands AEONOSE [6] Medical

Airsense Analytics GmnH, Schwerin, Germany PEN3 [7] Food, wine, matierial, enviroment, medical

Alpha-Mos, Toulouse, France HERACLES [8] Food, material, process management

Sensigent, Baldwin Park, CA, USA Cyranose 320 [9] medical, materials identification, food

Electronic Sensor Technology Inc., Newbury Park, CA, USA Z-Nose [10] Investigation, food, enviroment, medical

Owlstone Inc., Cambridge, UK LONESTAR [11] Food, materials, industry

Medical applications comprise another important area of e-noses. They have been used in
medicine for the diagnosis of renal disease [12,13], diabetes [14], lung cancer [15,16], arthritis [17],
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and asthma [18]. Although gas chromatography (GC) has been proven to be effective in breath
diagnosis [19], using e-nose instead of GC [20] to analysis human breath is generally cheaper, faster,
more portable, and easier to operate [21].

However, most of the existing trials [22] on breath diagnosis only focus on very limited kinds
of diseases. One possible reason might be the design of commercial e-noses for broad applications
rather than for breath analysis specifically or that the specific designed devices only detect limited
components [23]. Moreover, some of the fluctuations in breath samples were not well taken into
account, such as humidity and the ratio of alveolar air. Furthermore, the numbers of samples in
the experiments of previous studies are small. We thus designed a novel medical e-nose device for
breath analysis with optimized structure and sensor arrays for the specific application in order to
extend the applications in medicine. A breath analysis dataset was then collected by this e-nose.
Experiments were organized on the collected dataset to evaluate the performance of the system
in disease diagnosis and blood glucose level (BGL) classification. By analyzing the e-nose signals
of human breath, it is possible for us to recognize the difference in contribution of the biomarkers
so that certain diseases can be detected [24]. For example, acetone [25–27] as well as many other
volatile organic compounds (VOCs) [28] in breath have already been proven to either have abnormal
concentrations in diabetics or correlate with BGL. Moreover, in order to reduce the influence of device
variety and time drift and make the system more robust, drift compensation methods should be
introduced in the system before classification. Figure 1 gives a global working flow of the system.
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2. Optimal System Design

2.1. Sensor Array Selection

Human breath is largely composed of oxygen, carbon dioxide, water vapor and nitric oxide,
and the rest is less than 100 ppm (parts per million) of mixture with over 500 kinds of components,
including carbon monoxide, methane, hydrogen, acetone and numerous volatile organize compounds
(VOCs) [21,29]. As the metabolic processes and partition from blood change with some diseases,
the types and concentrations of components in human breath will also change.

Nowadays, the concentration of some biomarkers in breath has been proven to be related with
certain diseases. By selecting proper sensors that can respond to the components, it is possible to
analyze a person’s breath odor and thus their health state. A few examples will further prove these
points. The level of nitric oxide can be used as a diagnostic for asthma [30]. Patients with renal disease
have higher concentrations of ammonia [31]. The concentration of VOCs, such as cyclododecatriene,
benzoic acid, and benzene are much higher in lung cancer patients [32]. Table 2 lists the relationship
between biomarkers and some typical diseases.
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Table 2. Breath biomarkers and related diseases.

Diseases Breath Biomarkers

diabetes [24] acetone
renal disease [31] ammonia
heart disease [33] propane

lung cancer [32] benzene,1,1-oxybis-, 1,1-biphenyl,2,
2-diethyl, furan,2,5-dimethyl-, etc.

breast cancer [34] nonane, tridecane, 5-methyl, undecane,
3-methyl, etc.

digestive system disease [35] hydrogen

Among the breath biomarkers related with BGL, acetone is higher in concentration and easier
for analysis. People with diabetes have insufficient insulin secretion or cannot effectively use their
own insulin. As a result, it is difficult for glucose to enter the cells, leading to the rising of the BGL.
On the other hand, because the cells cannot get enough energy, the liver will increase lipolysis
and produce more ketones. Other biomarkers in lower concentrations include ethanol and methyl
nitrite [36].

Taking the relationship between breath biomarkers and diseases into consideration, the sensors in
the device should be sensitive to the VOCs, carbon dioxide, humidity, and temperature. Thus, a sensor
array with 11 sensors is optimized for the purpose of detecting one’s breath. The sensor array includes
six ordinary metal oxide semiconductor (MOS) sensors, three temperature modulated MOS sensors,
a carbon dioxide sensor, and a temperature-humidity sensor. Specifically, the temperature-humidity
sensor has two input channels for temperature and humidity respectively. As a result, there are, in total,
12 input channels. The model, manufacturer and function of the sensors are listed in Table 3. The suffix
“-TM” indicates a temperature-modulated sensor.

Table 3. Summary of the sensor array VOCs: volatile organic compounds; ppm: parts per million;
TM: temperature-modulated.

Channel Model Manufacturer Function Sensitivities (ppm)

1 TGS4161 Figaro Inc., Osaka, Japan CO2 350–10,000
2 TGS826 Figaro Inc., Osaka, Japan VOCs, NH3 30–5000
3 QS01 FIS Inc., Hyogo, Japan VOCs, H2, CO 1–1000
4 TGS2610D Figaro Inc., Osaka, Japan H2, VOCs 500–10,000
5 TGS822 Figaro Inc., Osaka, Japan VOCs, H2, CO 50–5000
6 TGS2602-TM Figaro Inc., Osaka, Japan VOCs, NH3, H2S 1–30
7 TGS2602 Figaro Inc., Osaka, Japan VOCs, NH3, H2S 1–30
8 TGS2600-TM Figaro Inc., Osaka, Japan H2, VOCs, CO 1–100
9 TGS2603 Figaro Inc., Osaka, Japan NH3, H2S 1–10

10 TGS2620-TM Figaro Inc., Osaka, Japan VOCs, H2 50–5000
11

HTG3515CH Humirel Inc., Toulouse, France
Temperature

12 Humidity

2.2. Optimized System Structure

Figure 2 shows the frame of the proposed e-nose system, including mainly five modules: the gas
route, the sensor arrays, the signal processing circuitry, the controlling circuitry and the host computer.

The gas route of the device contains a vacuum pump and a gas chamber. Breath samples or air
from outside was drawn and injected into the gas chamber. With the purpose of finding a balance
between portable and effectiveness, the gas chamber is designed to be a column-shaped metal container
with the capacity of 100ml. Sensors are embedded on the six facets, so that gases can flow smoothly.
The gas concentration in the head space of each sensor is similar, and the size of the chamber can be
kept relatively small, as shown in Figure 3.
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Figure 3. Snapshot of the device (a) and gas chamber (b). Sensors are embedded on its wall. Samples are
injected to the chamber from the inlet hole at one end and pumped out through the outlet end.

The resistances of the sensors change from R0 to RS when they are exposed to sampled gas.
The output voltage is:

VOut =
1
2

VCC

(
1− RS

R0

)
where VCC is the transient voltage crossing the sensor and VOut is the transient output voltages of
the measurement circuits.

The origin sensors’ signals are magnified by a signal processing circuit. The signal processing
circuit also filters high frequency noises. The controlling circuitry is used to control the pump and
the processing circuitry, then it digitizes the processed signals and transmits them to a host computer
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for further processing. In order to take away the heat emitted by the sensors, a fan is set next to the gas
chamber. The fundamental parameters of the system are summarized in Table 4.

Table 4. Fundamental Parameters of the System.

Parameters Specifications

Device size 22 × 15 × 11 cm
Working temperature 25 ± 10 ◦C
Gas chamber volume 600 mL

Injection rate 50 mL/s
Sampling frequency 8 Hz

Sampling time 144 s
Working voltage 5 V

Working voltage for temperature modulated sensors 3–7 V cycle
Resolution of the Analog-to-Digital Converter (ADC) 12 bit

2.3. Sampling Procedure

The temperature of the sensors goes up to a relatively stable level during use, which results in
a change in baseline response of the sensors. Therefore, the device should be switched on for about
20 min until the baseline response shown on the host computer is stable. Besides, the devices should
be calibrated every two weeks with 10 different kinds of standard gas samples to reduce the time drift.
The standard gas samples include VOCs, H2, CO2, NH3 and healthy breath samples, with two different
concentrations respectively.

Tedlar gas bags (600-mL) supplied by Beijing Safelab Technology Ltd. were used to collect breath
samples. Subjects were asked to take a deep breath and exhale into a gas bag through a disposable
mouthpiece and an airtight box filled with disposable hygroscopic material to absorb the water vapor.
The gas bags also allowed those weak patients to exhale enough with more than one expiration.
Then, the gas bag with the breath sample was plugged onto the preheated device connected to
a computer. The measurement procedure was automatically controlled by the software in the computer.
The measurement procedure was divided to four stages:

(1) Baseline stage (0–1 s): The baseline values of the sensors were recorded for future
data preprocessing.

(2) Injection stage (1–8 s): The pump was ON. Breath was drawn from the gas bag to the gas
chamber at a constant speed. The sensors’ signals started to respond to the injected breath.

(3) Reaction stage (9–64 s): The pump was OFF. The sensors continued reacting with
the components in breath. The responses of the MOS sensors without temperature modulation
(TM) reached their maximum values.

(4) Purge stage (64–144 s): The pump was ON again. Clean air was drawn in to clean the gas
chamber for 80 s. The sensors’ responses gradually returned to their baselines. After the responses
remained stable in their baselines, the device was ready for the measurement of the next sample.

Figure 4 shows the responses of the sensors (S1 to S12) in four stages. It can be seen that
the responses keep stable in the baseline stage and start to change from the injection stage.
Since the injection speed is 50 mL/s, 350 mL of the sample gases is pumped in. The first 250 mL directly
go through the chamber to remove air in the chamber and the rest (100 mL) stays in the chamber
for reacting. Each sensor reaches its highest response value at least once within the reaction stage.
Finally, during the purge stage, the sample gas is cleaned by pure air and the responses return to
baseline. The system does not require very high sampling frequency (chosen at 8 Hz). After the whole
process, a digitized breath sample was represented by 12 response curves. Each response curve has
144 s × 8 Hz = 1152 data points. The samples were then used for further analysis.
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3. Signal Analysis

3.1. Preprocessing

Before analyzing data, original signals should be preprocessed so as to be transformed into
standard samples. Four steps were taken: faulty signal removal, de-noising, baseline manipulation
and normalization.

A faulty signal is a common problem in devices with sensors. In our system, causes of faulty
signals are complicated, and include misoperation, bad connection and device damage. In order to
make the system more robust, these signals should be removed before analysis.

De-noising aims to remove the noise from the original signals by utilizing a low-pass filter to
remove the noise since the signal is mainly interfered by high-frequency noise.

The purpose of baseline manipulation is to compensate baseline drift. The baseline value is
the average response in the baseline stage of each sensor. The value is then subtracted from the whole
response curve to eliminate the interference of background noise of the sensors [37]. Assume that for
each sensor transient of each sample, there are k dimensions, where k = 1, . . . , Nk, and b dimensions
in the baseline stage, where b = 1, . . . , Nb. The response at time tk is denoted as R(tk). The baseline
response is B(tb). Then baseline manipulation can be computed as:

RB(tk) = R(tk)−
1

Nb

Nb

∑
tb=1

B(tb)

Normalization is used to compensate for sample-to-sample variations caused by analyte
concentration. RB(tk) is a sample after the baseline manipulation step, and the normalized response
RBN(tk) can be defined as:

RBN(tk) =
RB(tk)

max(RB(tk))

3.2. Feature Extraction

To reduce the dimension of the origin features, principal component analysis (PCA) can be
used. PCA projects high-dimensional data into a low-dimensional subspace while keeping most of
the data variance.
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Some low-dimensional geometric features can also be extracted from the origin response curves.
Traditional features of gas sensors are their steady state responses. When a gas sensor is used to sense
a gas sample, its response will reach a steady state in a few minutes. The steady state response has
a close relationship with the concentration of the measured gas. Therefore, the 9D feature vector
contains most of the information needed for disease screening.

However, additional useful information is carried in the transient responses [38]. Transient responses
are often related to the change of gas flow (injection/purge) or temperature (for TM sensors). The feature
set includes magnitude, difference, derivative, second derivative, integral, slope and phase features, as well
as features in frequency domain such like fast Fourier transformation (FFT) and wavelet. The extracted
features in both space domain and frequency domain are described in Table 5.

Table 5. Summary of the transient features. PCA: principal component analysis.

Feature Characteristics

Spacial

PCA Reduced dimension of the origin features with PCA method.

Magnitude

Down-sampled values of the curve’s magnitude M.
The maximum magnitude.
Down-sampled values of the normalized magnitude M/max (M).
Mean values of the magnitude.

Derivative Down-sampled values of the curve’s derivative D.
The maximum and minimum derivative.

Second derivative The maximum and minimum second derivative in both the injection
and purge stage.

Integral The integral of the five intervals of the curve; the intervals are
the same with the difference feature.

Slope The slope of the five intervals of the curve; the intervals are the same
with the difference feature.

Phase Feature
The phase feature is proposed in [39]. First, the response is
transformed to the phase space, which is spanned by its magnitude

and derivative. Then, the phase features are defined as
∫ M(ti+1)

M(ti)
DdM

Frequency
FFT Fast Fourier tranformation

Wavelet Wavelet transformation

3.3. Drift Compensation

3.3.1. Sensor Drift

Drift is a comment problem and challenging task for chemical sensors, which may influence
the robustness of e-nose systems. The breath samples are collected by different devices in different
time periods. On the one hand, because of the variations in of sensors and devices, the responses to
the same signal source may not be different for different instruments. On the other, for the same device
or same sensor, the stability also changes over time.

Additionally, studies by Phillips M et al. [40] and Klaassen EM [41] also proved that there is
relationship between age and breath biomarkers. Therefore, the influence of age should also be
regarded as a drift factor.

Widely used methods include algorithms based on variable standardization [42,43] and
component correction principal component analysis (CC-PCA) [44] method. Moreover, Yan et al.
proposed a drift correction auto-encoder (DCAE) [45].

Most of these methods require a set of predefined gas samples collected with each device and
in each time period as transfer samples to provide mapping information between the source and
the target domains. Nevertheless, collecting transfer samples may be a difficult job if there are not
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convenient predefined gases or the operators are not professional e-nose users. For this situation,
as an unsupervised domain adaption method is proposed to correct the drifts with unlabeled data,
the optimized maximum independence domain adaptation (MIDA) method will be used in the system
for drift compensation.

3.3.2. Optimized MIDA

Like transfer learning, domain adaption (DA) aims to solve the problem of transferring
knowledge between domains with different distribution. Maximum MIDA proposed finding this latent
subspace in which the samples and their domain features are maximally independent in the sense of
Hilbert–Schmidt independence criterion (HSIC) [46].

HSIC measures the dependence between two sample sets X, Y ∈ Rd×n:

HSIC = (n− 1)−2tr
(
Kx HKy H

)
, H = I − n−11n1T

n ∈ Rn×n

We first define the domain features to describe the background information: the device label,
the acquisition time and the age. Supposing there are ndev devices, the domain feature is then
d ∈ R3ndev , and

dq =


1, q = 3p− 2
t, q = 3p− 1
age, q = 3p
0, otherwise

Suppose X ∈ Rm×n is the matrix of n samples containing both the training and the test samples.
More importantly, we do not have to explicitly differentiate which domain a sample is from. A linear
or nonlinear mapping function Φ can be used to map X to a new space. According to the kernel trick,
the inner product of Φ(X) can be represented by the kernel matrix Kx = Φ(X)TΦ(X). Then, a projection
matrix W̃ is applied to project Φ(X) to a subspace with dimension h, leading to the projected samples
Z = Φ(X)W̃ ∈ Rh×n. To express each projection direction as a linear combination of all samples in
the space, W̃ = Φ(X)TW, W ∈ Rn×h is the projection matrix to be actually learned. Thus, the projected
samples are:

Z = Φ(X)Φ(X)TW = KxW

The kernel matrix Kz = KxWWTKx.
On setting the matrix of the background feature as D ∈ Rn×md , md is the dimension of background

feature. The linear kernel Kd = DDT . On omitting the scaling factor in HSIC, the expression to be
minimized is:

tr(KzHKdH) = tr
(

KxWWTKx HKdH
)

In the domain adaption problem, the other goal is to preserve important properties of data, such as
the variance, by maximizing the trace of the covariance matrix of the project samples.

cov(Z) = cov(KxW) =
1
n

(
KxW − 1

n
1n1T

n KxW
)T

(KxW − 1
n

1n1T
n KxW) = WTKx HKxW

Thus, the learning problem then becomes:

max
W
− tr

(
WTKx HKdHKxW

)
+ µtr

(
WTKx HKxW

)
s.t. WTW = I

Using the Lagrangian multiplier method, we can find that W is the eigenvectors of
Kx(−HKd H + µH)Kx corresponding to the h largest eigenvalues.
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4. Experiments

4.1. Breath Dataset

To evaluate the performance of our device, a large-scale breath dataset was collected.
We cooperated with Guangzhou Hospital of Traditional Chinese Medicine and collected data
from inpatient volunteers. Two devices with same model were used for data collection. Patients
were asked to rinse their mouth with medical mouthwash and not to use fragrance. The devices
were placed in a well-ventilated room without the interruption of medical alcohol or odor of
traditional Chinese medicine. For each sample, we first collected the patient’s breath and recorded
the signals. The diagnosis was then given by an authoritative doctor as the classification labels.
Moreover, some biochemical indicators were also collected, such as blood glucose, blood pressure and
blood lipids. Finally, in this dataset, there were in total over 10,000 samples of 47 classes, including
1491 healthy samples and samples of 46 different kinds of diseases. In this paper, a subset of healthy
samples and samples for six kinds of diseases were selected for experiments, including breast disease,
cardiopathy, diabetes, lung disease, kidney disease and gastritis. Table 6 shows the number of each
class used in selected subset.

All the samples were collected from hospitals in Guangzhou. However, since most of the healthy
samples were provided by medically-examined young people while disease samples were from elder
patients, it is difficult to make age-matched subsets, which is a limitation of this dataset. Operations will
be performed to reduce the impact of age.

Table 6. Number of samples in each class.

Class Number

Healthy 1291
Diabetes 491

Kidney disease 398
Cardiopathy 537
Lung disease 376
Breast disease 527

Gastritis 241

4.2. Disease Diagnosis

To check the performance of the system, six binary-classification tasks were performed to detect
samples with one of the diseases from the healthy ones.

For each class, the first 50 samples collected by the first device were chosen as the labeled training
sets and the rest were test samples. Logistic regression method was adopted as the classifier after drift
compensation-optimized MIDA. Sequential forward selection (SFS) method was used to optimize
the features. SFS method is a greedy strategy. In each iteration, one feature was selected from all
features that could achieve the best classification accuracy together with the features already selected.
Figure 5 shows the results of forward selection in different disease diagnosis tasks.

In Table 7, we conclude the best combination of features and sensors selected for each task. It can
be find that Wavelet, MaxMag, Slope and Phase features contribute most in all the tasks. MeanMag
feature and Integral feature are also discriminating in detecting cardiopathy, lung disease and gastritis.
Derivative features only show its importance in tasks of breast disease and gastritis. Other features
did not improve the performance of the system. On the other hand, the sensors that contribute most in
each task to meet the relationship between diseases and breath biomarkers are listed in Tables 2 and 3.
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Table 7. Selected features and sensors, and the sensitivity (SEN), specificity (SPE) and accuracy (ACC)
for each task.

Task Features and Sensors SEN SPE ACC

Diabetes Wavelet of TGS2602
Phase of TGS2602-TM

Wavelet of TGS2610D
MaxMag of TGS826 0.8815 0.9495 0.9155

Kidney Disease
Wavelet of TGS2602

Slope of TGS2602-TM
Phase of TGS826

Wavelet of TGS2600-TM
Slope of TGS2620-TM
Phase of TGS2610D

0.7002 0.8698 0.7850

Cardiopathy

Wavelet of TGS822
MeanMag of TGS2603

Integral of TGS2602
MaxMag of TGS2603
Phase of TGS2610D

Integral of TGS826
Slope of TGS822
Slope of TGS826
Phase of TGS826

Integral of TGS2610D

0.7433 0.7125 0.7279

Lung Disease

Wavelet of QS01
Slope of TGS2603

Integral of TGS2602
Phase of TGS2620-TM
MaxMag of TGS2602

MeanMag of TGS2610D
MaxMag of TGS2603

Integral of QS01
MaxMag of TGS2602-TM

Phase of TGS826
Phase of TGS2602

MeanMag of QS01
Slope of QS01

Integral of TGS826
Slope of TGS826

Integral of TGS2610D
MeanMag of TGS2603

MeanMag of TGS2602-TM
MeanMag of TGS2602

MaxMag of TGS826
Phase of QS01

0.7117 0.7209 0.7163

Breast Disease

Wavelet of TGS826
MaxMag of TGS2602

Derivative of TGS2620-TM
Phase of TGS2600-TM

MeanMag of TGS2602-TM

MaxMag of TGS822
Derivative of TGS2610D

MaxMag of TGS2603
MeanMag of TGS2600-TM

Phase of TGS2620-TM

0.6321 0.7599 0.6960

Gastritis

Wavelet of TGS822
Integral of TGS2603

Phase of TGS2602-TM
Wavelet of TGS2620-TM
MaxMag of TGS2602-TM

Slope of TGS2600-TM
MaxMag of TGS2620-TM

Integral of QS01
Derivative of TGS2610D

Slope of TGS2603

0.6436 0.8582 0.7509

4.3. BGL Classification

BGL prediction is another application of the system. In the collected dataset, the blood glucose
levels are given by blood glucose meters in hospital. Since the blood glucose meters may already
have a ±10% to ±25% error, the final error rate will be further accumulated if we use these samples
for regression. As a result, instead of regression experiments, we grouped the samples into different
classes based on the BGL ranges and performed the BGL classification experiments on the datasets.

According to Chinese diabetes control criterion [47], the dataset was divided into four parts based
on BGL. The BGL range and sample number of each class are listed in Table 8. Because of the detection
error of the meters, samples within ±0.2 mmol/L of the thresholds were not selected as learning
samples to improve the robust of the classification methods. We used a random forest (RF) method for
the triplet-classification task.

Table 8. Number of samples in each class of blood glucose levels (BGL).

Class BGL (mmol/L) Number

Normal Lower than 6.1 1851
Impaired glucose tolerance 6.1–7.11 168

Hyperglycemia Higher than 7.11 241
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The classification result and optimal features can be seen in Table 9. It can be seen that magnitude
features (MaxMag, MeanMag and DownSampleMag), slope features and integral features are the most
important features for BGL classification, while the most useful sensors include TGS2602-TM, TGS2602,
TGS826, TGS822, QS01 and TGS2610D.

Table 9. Selected sensors and features for BGL classification.

Features and Sensors Accuracy

MaxMag of TGS2602-TM MaxMag of TGS2602

0.7778
MeanMag of TGS2602-TM DownSample of TGS826

DownSample of QS01
DownSample of TGS822

Slope of QS01

DownSample of TGS2610D
Slope of TGS826
Integral of QS01

5. Conclusions

This paper presented a novel medical e-nose system that specified on disease diagnosis and BGL
prediction. The scientific basis, structure, optimizing strategies, sensor arrays, sampling procedure and
signal preprocessing methods were introduced, as well as a large-scale medical dataset collected by
the system. In order to better correct the drifts, an optimized domain adaption method was adopted in
the system. Experiments were taken on the new collected datasets to evaluate the performance of both
the system and the methods.

The experimental results showed that better accuracy can be achieved by an optimal combination
of features and sensors for different tasks. Wavelet, MaxMag, Slope and Phase features are most
significant in most of the disease diagnosis tasks, while different sensors contribute differently
based on the relationship of diseases and biomarkers. The BGL classification tests also produced
a satisfactory output. However, it is still possible to further improve the performance and extend
the applications. Mainly multi-feature and multi-classification methods will be investigated in future
work. Neural networks will also be introduced to the system to discover the deeper relationship
between the signals and human states.
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