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Effects of Cyber Coupling on Cascading Failures in

Power Systems
Xi Zhang, Dong Liu, Choujun Zhan, and Chi K. Tse, Fellow, IEEE

Abstract—In this paper, we propose a model to investigate the
cascading failures in the coupled system (smart grid) that com-
prises a power grid and a coupling cyber network. In this model,
we take into consideration the effects of power overloading,
contagion and interdependence between power grids and cyber
networks on failure propagations in the coupled system, and then
use a stochastic method to generate the time intervals between
failures, thus producing the dynamic profile of the cascading
failures caused by the attack of cyber malwares. We study several
coupled systems generated by coupling the UIUC 150 Bus System
with cyber networks of different structures and coupling patterns.
Simulation results show that the dynamic profile of the cascading
failures in a coupled system displays a “staircase-like” pattern
which can be interpreted as a combined feature of the typical
step propagation profile triggered repeatedly by cyber attacks
due to network coupling. Results also show that cyber coupling
can intensify both the extent and rapidity of power blackouts.
Moreover, the cyber network structure and the coupling patterns
affect the propagation of the cascading failures in smart grids.
Scale-free cyber networks promote failure spreading, and the
higher average cyber node degree also intensifies the spreading.
Coupling power nodes with high-degree cyber nodes accelerates
the failure propagation compared to random or low-degree
couplings.

Index Terms—Interdependent infrastructures, cascading fail-
ure, power system, cyber attack.

I. Introduction

SMART grids are defined as electrical networks with in-

tegration of information and communication technologies

(ICT) to deliver electric power to the final consumers more

efficiently and securely [1]. A smart grid is a typical cyber-

physical system (CPS) [2], where the physical part is the

power apparatus in the power grid and the cyber part is for

state monitoring, communications, and control of the physical

network. Coupling with cyber networks can make smart grids

more efficient and intelligent, at the same time it may bring

new challenges by making power systems more vulnerable to

attacks from cyber networks [3]–[5].

As computers are in control of critical devices in today’s

power systems at every level [6], attacking power systems

via spreading malware in computer networks may cause
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severe damages or even catastrophic consequences. The Au-

rora Generator Test conducted by Idaho National Laboratory

demonstrated how a generator can be physically destroyed

by a piece of codes [7]. Cyber malware can attack multiple

points of the physical network and may jeopardize the CPS

[6]. The latest demonstration of a severe blackout caused by

cyber attacks took place on December 23, 2015 in Ukraine [8],

which was planted by a computer malware (called BlackEn-

ergy) that penetrated the computer network connected to the

Ukrainian power system through an infected file downloaded

by the operator. BlackEnergy silently infected workstations

in the cyber network for several months, and then attacked

the system by disconnecting breakers of several substations,

making monitoring stations go blind and blocking the call

centers. Finally, 80,000 customers were deprived of power for

more than six hours.

In the past two decades, numerous studies were devoted

to the cascading failure analysis in power systems, focusing

mainly on the physical network. Having witnessed the threats

from cyber coupled attacks, power engineers and researchers

are becoming more aware of the importance of understanding

the behavior of cyber coupled power systems. Future smart

grids will certainly be heavily dependent on safe and efficient

operation of coupled power apparatus and communication

networks. With this new motivation, researchers have recently

diverted attention to the smart grids’ vulnerability assessment

and mitigation methods to cyber attacks [9]–[12].

Abstracting the substations as nodes and the transmission

lines as edges, the power physical layer can be modeled

as a network. Correspondingly, the cyber layer can also be

represented as a complex network, in which computers are

nodes and the cyber connections are edges. Considering the

interdependence of these two networks (i.e., power nodes

provide power to the nodes in cyber layer, and the cyber

nodes control the operation of power nodes), the behavior of

smart grids can be studied from a perspective of interdependent

complex networks [13]–[15].

Buldyrev et al. in 2010 [16] studied failures in inter-

dependent networks with percolation theory and concluded

that networks with a broader degree distribution were more

vulnerable. In percolation theory, all nodes in the network are

deleted with a probability, which can fragment the network.

The nodes that belong to a giant cluster are assumed to be

able to function well, while the nodes in the remaining small

clusters become malfunctioned. Cai et al. in 2016 [17] ana-

lyzed the cascading failures in power systems considering the

interaction between power grids and communication networks.

Failure of a power element is determined by the time when
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it is overloaded and the duration of data dispatching in the

communication network. Rahnamay-Naeini et al. in 2016 [18]

modeled the number of failures in a power grid and the number

of failures in a communication network as two interdependent

time series. Stochastic methods are adopted to analyze the

dynamical profiles of these time series. It has been concluded

in Rahnamay-Naeini et al.’s study that interdependence can

make the individually reliable systems behave unreliably as a

whole. Although these prior studies focused on interdependent

networks composed by the power network and the cyber net-

work, they fall short of taking into consideration the influence

of computer malware on the operation of power systems. In

the Ukrainian case, for instance, the malware infection in the

cyber network plays an important role in the cascading failure

propagation in smart grids. Our previous work [19] showed

that the mechanism of failure propagation in a power grid is

very different from that of malware spreading in an individual

cyber network [20]. However, for the smart grid where the

physical layer and the cyber layer are highly mutual dependent,

the cascading failures can be highly affected by the dynamics

of computer malware spreading. Thus, the dynamic property of

malware spreading should be considered in cascading failures

in the case of smart grids.

In this paper, we investigate the effects of cyber coupling on

cascading failures in smart power grids. First, the mechanism

of failure spreading in the power system (due to power

overloading) and that in the cyber network (due to malware

contagion) are considered in the model, with emphasis on

the interdependence of these two networks. Then, based on

the corresponding mechanisms, we combine the deterministic

circuit-based model and a stochastic method to describe the

failure processes of the two kinds of nodes in the coupled

system in Section II. Then, we introduce an algorithm to sim-

ulate the cascading failures in the coupled system in Section

III. We simulate several coupled systems and summarize key

findings in Section IV. The coupled systems are generated

by coupling the UIUC 150 Bus System with cyber networks

of various structures and coupling patterns. Simulation results

show that the failure propagation pattern in a coupled system

displays characteristics of both the power network and the

cyber network, and that cyber coupling can cause more severe

damages to the power system. The cyber network structure

as well as the coupling pattern play crucial roles in the

propagation of the cascading failures in smart grids. Scale-free

cyber networks promote the failure spreading in the coupled

system, and a higher average node degree of the cyber network

intensifies the spreading. Moreover, coupling of power nodes

with high-degree cyber nodes makes failure propagate faster

compared to coupling randomly or with low-degree nodes.

II. Model Description

In this paper, we consider a smart grid composed of a set of

power apparatus and its controlling network. The controlling

network refers to the specific computer network for controlling

power systems, which is normally isolated from the wide area

network we use in other applications. In practice, firewalls

and other security measures should be designed and applied
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Fig. 1. Coupled network consisting of a power network A and a cyber
network B. Solid rectangles represent electrical buses and solid arcs represent
transmission lines in A. White circles represent computers in the cyber network
and dashed arcs represent connections among the cyber nodes in B. Horizontal
lines represent interdependence between nodes in A and nodes in B.

in these important networks. For simplicity, we consider a

coupled system A–B which is composed of two interdependent

networks A and B, as shown in Fig. 1. Network A is the

power grid, where solid rectangular nodes in Fig. 1 represent

electrical buses in A and solid arcs represent transmission

lines. Network B is the cyber network, where white circular

nodes represent computers in the cyber network and dashed

joining arcs represent the connections among the cyber nodes.

Clearly, nodes in A and nodes in B are interdependent.

Precisely, the cyber nodes control the operation of power

nodes, while the power nodes provide power to the cyber

nodes. The interdependent relationships are depicted by the

horizontal lines in Fig. 1. In this paper, we consider one-to-

one coupling relation between the nodes in A and the nodes

in B, i.e., Ai ↔ Bi. Each pair of coupled nodes (Ai and Bi)

are called a node pair in the coupled system A–B. For the

sake of maintaining generality, we also consider nodes without

corresponding coupling nodes in the other network. For these

nodes, there are no coupling effects. In Fig. 1, there are p

power nodes, q cyber nodes and m node pairs, where p ≥ m

and q ≥ m. Usually the number of nodes in the cyber network

is far bigger than that of the power network, i.e., q≫ p.

In this paper, we study the cascading failures in the cou-

pled system A–B, which is initiated by attacks of computer

malwares. The cascading failure propagation in A–B can be

viewed as a sequence of state transitions of the nodes in the

coupled system. In the following subsections, we will define

the states of nodes and describe their corresponding state

transitions.

A. Failure Mechanism of Power Elements

In this section, we introduce the mechanism of the electrical

elements’ failures. Previous works have analyzed cascading
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Fig. 2. State transition diagram of a node in power network A. Transitions
between state 0 and 2 are deterministic transitions, and those between 0 and
1 are stochastic transitions.

failures in individual power systems. Data fitting methods have

been applied to study the failure propagation profiles in power

systems in refs. [21], [22], regardless of the physical failure

cascade mechanism in the network. Considering the effects

of power flow distribution in the failure propagation, several

models have been proposed to simulate the cascading failure

propagations in power systems, which can be classified under

two categories: deterministic models and stochastic models. In

deterministic models [19], [23], in each round of the cascading

failure process, the power flow distribution in the network

is computed, and overloaded electrical elements are removed

at the same time. To show the dynamic profile, Eppstein et

al. [24] made the simple deterministic assumption that the

duration for an overloaded element to be tripped is equal to

∆t which is given by
∫ t+∆t

t
( f j(τ) − f̄ j)dτ = ∆o j, where f j is

the power flow of overloaded element j, f̄ j is the flow limit

and ∆o j is a specific threshold of that element. Considering

the high uncertainties and complexities in power systems,

stochastic models are used to investigate cascading failures

in power systems [26]–[28], but a mathematical formula that

can describe the collective behavior of the power network has

not been derived.

In modeling the failure cascading in a power grid in this pa-

per, we first apply deterministic power flow analysis to derive

the power flow information and the overloading conditions of

the electrical elements. Then, we adopt a stochastic method

to obtain the time durations between failures to simulate the

failure propagations in the network.

Let sAi
denote the state of a power node Ai. In our model,

we consider three possible states for a power node, i.e.,

sAi
∈ {0, 1, 2}. Specifically, sAi

= 0 is the normal state,

which corresponds to node Ai being connected and operating

normally in the power network; sAi
= 1 is the removed state,

which corresponds to Ai being tripped by a circuit breaker and

removed from the power network; and sAi
= 2 is the unserved

or “islanded” state, which corresponds to Ai being inaccessible

to power sources due to the removals of other failed elements

in A. When Ai is in state 1 or 2, it is deprived of power.

Possible state transitions of Ai are shown in Fig. 2.

Depending on the nature of the transitions, they are either

deterministic transitions or stochastic transitions, as shown in

Fig. 2. The tripping (removal) of some elements in A can

fragment the power network into several disconnected sub-

networks. When a sub-network containing no power source is

created, a condition “con” is said to be reached for all nodes

in the sub-network. Under this condition, nodes in the sub-

network change their states from 0 to 2. This state transition,

namely sAi = 0
con
−−→ sAi = 2, is deterministic. Moreover, this

state transition is caused by and always accompanying the

state transition (0 → 1) of another element in A, and thus

the transition time for this type of state transitions is not

considered.

On the other hand, the time at which a stochastic state

transition takes place is an important consideration that would

affect the dynamic profile of the cascading failure propagation.

Node Ai (in state 0) is tripped by its protective equipment with

a certain probability value when Ai is overloaded or when its

coupled node Bi is infected by a computer malware that can

attack the power network by switching off circuit breakers of

Ai. The stochastic state transition of node Ai from state 0 to

state 1 is represented by a state transition channel T1, and is

represented as:

T1 : sAi = 0→ sAi = 1. (1)

When node Ai has a coupled node Bi which works normally

or does not have a coupled node in network B, the state

transition sAi = 0→ sAi = 1 is only caused by overloading. In

much of the prior work on modeling the switching actions

of the relays using Markov models [26] [27], transitions

are determined by power loading conditions and elements’

capacities. In real-time operation, as pointed out by Sun et

al. [29], an electrical component’s failure rate is not constant

but varies with loading conditions, and that a component will

experience more failures under heavy loading conditions. In

order to incorporate these characteristics in our model, we

describe the state transition sAi = 0
λi(t)
−−−→ sAi = 1 as a stochastic

process and define the tripping rate λi as

λi(t) =



















ai

(

Li(t) −Ci

Ci

)

, if Li(t) > Ci

0, if Li(t) ≤ Ci

(2)

where Li(t) is the power loading of component i , Ci is the

capacity of that component, and ai is the basic unit rate

(trippings per second). Using (2), the power flow analysis

can be applied to derive λi(t). In this paper, we adopt the

method introduced in [19] to compute the power flows in the

power system, assuming that the power system will reach a

new steady state after an element fails. In this paper, we do

not consider stability issues that have been studied in [30],

[31]. Thus, when Ai is in state 0, and on the condition that its

coupling node Bi is working normally or it has no coupling

nodes in network B, the probability that Ai transits from state

0 to 1 in an infinitesimal time interval dt can be written as

T1 : P[sAi(t + dt) = 1 | sAi(t) = 0] = λi(t)dt. (3)

When Ai has a coupling node Bi in network B and Bi is

infected by a computer malware, Ai (in state 0) will have an

extra chance to be removed from system due to the action

of malware. Thus, we assume that the malware will add an

additional rate ci(t) to the state transition rate λi. Thus, the

probability that Ai transits from state 0 to 1 in an infinitesimal
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Fig. 3. State transition diagram of a node in the cyber network B.

time interval dt when Bi is infected by computer malware can

be written as

T1 : P[sAi(t + dt) = 1 | sAi(t) = 0] = (λi(t) + ci(t))dt, (4)

where ci(t) represents the dependency of power node Ai on

cyber node Bi.

State 1 and state 2 are fundamentally different states even

though both correspond to an unserved node. For state 1, the

power node is removed due to it being tripped by the protective

relay upon power overloading. We use a stochastic method to

describe this process. However, for state 2, the power node has

no access (finds no path) to power sources due to the tripping

of other elements in the network. Though unserved, it is not

tripped and is still well connected. We use a deterministic

method to describe this process, and it depends on the tripping

of other elements in the network. From the network’s point of

view, an element in state 1 is an open-circuit, changing the

topology of the network, whereas an element in state 2 has no

impact on the network topology.

In a fast cascading failure process, we do not consider repair

and anti-malware actions. Thus, the corresponding transition

rates are set as 0, i.e., dashed arrows in Fig. 2 are neglected.

B. Failure Mechanism of Cyber Nodes

Let sBi
denote the state of node Bi. We consider three

different states for a cyber node Bi, namely states 0, 1 and

2. Specifically, sBi
= 0 is the normal state, in which Bi is

working normally in the cyber network; sBi
= 1 is the state

of being infected by a computer malware; and sBi
= 2 is the

shutdown state corresponding to node Bi being shut down due

to power outage. The difference between state 1 and state 2 is

that when a computer is infected (in state 1), it is able to infect

its neighboring nodes, whereas a shutdown computer (in state

2) is completely removed from the cyber network and does not

infect others. Fig. 3 shows the state transition diagram of cyber

node Bi. All state transitions of Bi are stochastic transitions.

Details of the transition process are as follows.

When node Bi is in state 0, it can be infected by a computer

malware through connection with an infected neighbor. The

malware diffusion can be modeled by a stochastic process [20].

Here, we use describe Bi’s state transition as sBi
= 0

µi

−→ sBi
=

1, and refer to it as state transition channel T2:

T2 : sBi
= 0

µi

−→ sBi
= 1. (5)

where µi is the rate of infection of node Bi and is defined as

µi(t) =
∑

j∈ΩBi

βi j, (6)

where ΩBi
is the set of all infected neighbors of node Bi and

βi j is the rate at which infected node B j (sB j
= 1) infects

its neighbor Bi which is in state 0. For an infinitesimal time

interval dt, the probability that a state transition occurs through

T2 can be written as

T2 : P[sBi
(t + dt) = 1 | sBi(t) = 0] = µi(t)dt. (7)

When node Bi has a corresponding coupled power node Ai

and sAi
∈ {1, 2}, it can no longer provide power to its cyber

node Bi, causing Bi to transit to state 2 (shutdown) due to

power outage. In practice, usually there exists backup power

for computers that perform crucial functions in controlling the

power grid. Considering the limited supporting time of the

backup power units, in our model, we use stochastic transitions

to describe the state transitions for node Ai when sAi
∈ {1, 2}.

Specific details are as follows.

When sBi
= 0 and sAi

∈ {1, 2}, apart from state transition

channel T2, another state transition channel T3 exists:

T3 : sBi
= 0

di

−→ sBi
= 2, (8)

where di(t) is the state transition rate which is determined by

the dependence of node Bi on its coupled power node Ai. In

an infinitesimal time interval dt, the probability that a state

transition occurs through T3 can be written as

T3 : P[sBi
(t + dt) = 2 | sBi

(t) = 0] = di(t)dt, (9)

When sBi
= 1 and sAi

∈ {1, 2}, there is another state

transition channel T4:

T4 : sBi
= 1

di

−→ sBi
= 2. (10)

In time interval dt, the probability that a state transition occurs

through T4 can be written as

T4 : P[sBi
(t + dt) = 2 | sBi

(t) = 1] = di(t)dt. (11)

Finally, as repair or anti-malware actions are not considered in

a fast cascading failure process, the corresponding transition

rates can be set to 0, i.e., dashed arrows in Fig. 3 are neglected.

III. Cascading Failures in Coupled Systems

The coupled system A–B contains p power nodes, q cyber

nodes, and m node pairs in total. Let S (t) denote the state of

A–B, and S (t) = [sA1
, sA2
, · · · , sAp

, sB1
, sB2
, · · · , sBq

]. There can

be 3p+q possible states for A–B. The cascading failure process

is the dynamic propagation profile of S (t) as the system state

transits in time among those 3p+q different states.

A. State Transition of the Coupled Network

Suppose, at time t, the coupled network is in state S (t) = NS

(NS is one specific system state of the 3p+q possible states),

and there are u nodes that may undergo a state transition.

Each node of these u nodes can undergo a deterministic or

stochastic transition, depending on the current node state and
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TABLE I
State transition channel list of the coupled system at time t given that

S (t) = NS . All the l nodes which may transit and their corresponding
transition rates are listed.

Possible transition channel T (1) T (2) T (3) ... T (n)

Transition rate r1 r2 r3 ... rn

the transition rule. For a deterministic transition, the transition

rule is triggered when condition “con” is met, while for

a stochastic transition, the transition rule is described by a

transition rate, as shown in Figs. 2 and 3. At time t, there are

l (l ≤ u) nodes that will undergo a stochastic transition, and

each one will transit through a transition channel selected from

T1, T2, T3, T4. For instance, if cyber node Bi is in state 0 (i.e.,

sBi
= 0) at time t and is connected to an infected neighbor,

and at the same time its coupled power node is removed or

unserved, then node Bi will have two state transition channels,

namely, T2 and T3. Thus, the total number of transition

channels (say n) can be larger than l. In our algorithm, we first

identify condition “con”, and transit all power nodes meeting

“con” to state 2 instantly. Then, all possible stochastic state

transition channels of the coupled system is listed in a state

transition channel list, as shown in Table I, where channel

T (i) ∈ {T1, T2, T3, T4}. Any node’s state transition through any

one of the n transition channels will lead to a state transition

of the coupled network, i.e., change in S (t).

The cascading failure process can be viewed as a sequence

of state transitions. We only allow one element state transition

at a time. That is, at most one state transition channel is chosen

at a time. See Appendix for a rigorous argument. In order to

simulate the dynamic propagation of S (t), we need to

1) find the time at which a state transition occurs; and

2) identify the corresponding transition channel through

which the transition occurs.

The following subsection explains the detailed process of

finding transition time and identifying the transition channel.

B. Stochastic Transition Processes

Let Q(τ) denote the probability that no state transition

occurs in time interval (t, t + τ), i.e., Q(τ) = P[S (t + τ) =

NS |S (t) = NS ]. Then, Q(τ + dt) can be written as

Q(τ + dt) = P[S (t + τ + dt) = NS |S (t + τ) = NS ]Q(τ). (12)

Thus, we have

P[S (t + τ + dt) = NS |S (t + τ) = NS ] = (1 − r∗dt), (13)

where r∗ =
∑n

i=1 ri. Note that equation (13) is only valid when

dt is infinitesimally small (see Appendix). Substituting (13)

into (12), we get

Q(τ + dt) = Q(τ)(1 − r∗dt). (14)

Re-arranging (14), as dt → 0 (i.e. dt is infinitesimal), we get

lim
dt→0

Q(τ + dt) − Q(τ)

dt
= Q

′

(τ) = −r∗Q(τ). (15)

Thus, we can express Q(τ) as

Q
′

(τ) = −r∗Q(τ).

Note that in equations (13) through (15), the above differential

equation is derived by taking the limit dt→ 0 and is valid for

any τ. Solving the above differential equation, we get

Q(τ) = Q(0)e−r∗τ. (16)

Since Q(0) = P[S (t) = NS |S (t) = NS ] = 1, we can derive the

expression of Q(τ) as

Q(τ) = Q(0)e−r∗τ = e−r∗τ, (17)

which is the general solution for Q(τ) and remains valid for all

τ. Let F(τ) denote the probability that the next state transition

occurs before time t + τ. Then, we get

F(τ) = 1 − Q(τ) = 1 − e−r∗τ. (18)

The probability density of τ can be found using equation (18)

as

f (τ) = r∗e−r∗τ. (19)

From (18) and (19), we see that τ follows an exponential

distribution. The state transition rate r∗ of coupled system

A–B is the sum of the transition rates of all the transition

channels. As discussed in Section II, r∗ includes the effects

of overloading in the power network, malware spreading in

the cyber network, and the interdependence between of two

networks.

Suppose the next state transition occurs at time τ through

transition channel Tk. To include the property of exponential

distribution of τ and the characteristic that the transition chan-

nel with a higher rate will be more likely chosen, the following

procedure is used to determine the next state transition.

Two random numbers z1 and z2 are uniformly and inde-

pendently generated in (0, 1). Then, τ is generated from the

following equation :

τ = F−1(z1) =
1

r∗
ln(

1

1 − z1

). (20)

And k is selected based on the following equation:

k−1
∑

j=0

r j

r∗
6 z2 6

k
∑

j=0

r j

r∗
. (21)

The dynamics of S (t) is a series of the state transitions

introduced above beginning with an initial failure (malware

injection) until all state transition channels are exhausted.

Fig. 4 shows the flow chart used in simulating the cascading

failures in the coupled system.

C. Simulation Flow Chart

• Initialization: The information of the coupled system A–B

is set, including the network structure of A and B, and the

coupling between the nodes in A and the nodes in B. In

simulating the power failure propagation, the power flow

calculation is necessary. Thus, for the power network,

the admittance of the transmission lines, voltages of the
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Fig. 4. Simulation flow chart for cascading failures in the coupled system.

generates, load demands of the consumers and winding

ratios of transformers should be given.

• Malware injection: In this study, we assume the cascading

failures are caused by cyber malware attacks. Thus, the

initial trigger is the injection of a malware in the cyber

network. The time of malware injection is set as 0.

• Malware diffusion: In the case of cyber attacks, the mal-

ware can be designed to spread silently and harmlessly

in the cyber network for a period of time in order to get

enough nodes infected. Here, we set td as the time period

for the malware diffusion before attack is launched to the

power network, and in this time period, only transition

channels applied to the cyber network are relevant.

• Attack execution: After td, the malware will launch attack

to the power system. All possible transition channels may

be selected. Iteration then proceeds as follows.

(a) The condition “con” will be checked against S (t),

and the power nodes meeting “con” are marked as

state 2, i.e., the deterministic state transition occurs.

This kind of state transitions occurs instantly.

(b) Based on S (t) and equations (3)-(11), we update

the list of possible state transition channels. The

list contains the rates contributed by all the failure

spreading mechanisms in the coupled system, includ-

ing power elements’ failure due to power overloading

based on equation (2) where the deterministic power

flow analysis should be applied [19], cyber nodes’

infection due to contagion based on equation (6),

and the interdependencies between the two different

networks.

(c) If there is a state transition channel in the list, we

use equations (20) and (21) to select the next state

of S (t) and return to step (a). If there is no more

transition channel in the list, cascading failure ceases

to propagate and the system is said to enter an

absorbing state. We end the iteration and record the

time as tfinal.

IV. Simulation Results and Discussions

In this section, we perform simulation experiments with the

proposed model to study the cascading failures in the coupled

system and investigate the effects of cyber coupling on the

failure propagation process. We specifically aim to identify

the key factors and parameters that determine the extent and

rapidity of power blackouts caused by cyber attacks. Test

networks are generated by coupling the UIUC-150 Bus System

[32] with cyber networks of different structures. The capacities

of the generators, transformers and the transmission lines in

the power network are set as 1.2 times of their respective

current flows in normal operation. We also assume that the

computer malware will execute attack once it infects a new

cyber node, namely, td = 0. We introduce two essential metrics

for characterizing the extent of the failure, namely, percentage

of failed power nodes (PFPN) and percentage of failed cyber

nodes (PFCN), which are defined as follows:

PFPN(t) =
nunserved(t) + nremoved(t)

p
, (22)

PFCN(t) =
ninfected(t) + nshutdown(t)

q
, (23)

where nunserved(t) and nremoved(t) represent the number of power

nodes in state 1 and 2 at time t, respectively. Similarly,

ninfected(t) and nshutdown(t) are the number of cyber nodes in

state 1 and 2 at time t, respectively. Note that a large PFPN(t)

(PFCN(t)) means that a large total area of disconnected frag-

ments of the power grid (cyber network) are out of operation.

A. Failure Propagation Patterns in the Coupled System

First, we examine the failure propagation patterns in the

power network, cyber network and the coupled system. We

first study the case where the coupled cyber network has

the same structure as the power grid. This allows a close

examination of the failure spreading patterns on the power

network and the cyber network due to the different spreading

mechanisms. The parameters of the coupled network are set

as follows:

• The cyber network and the power grid have the same size,

i.e., p = q = 150;

• The failure rate in power system ai is 0.21 min−1, and

the infection rate in the cyber network βi j is 0.5 min−1;

• Interaction relationship between the two networks are ci(t)

= 0.05 min−1 and di(t) = 0.01 min−1.

We obtain the values of ai and βi j through data fitting in this

paper. For ai, we get the value through setting the averaged

tfinal of 100 simulations in the UIUC 150 Bus system as 5

hours, based on the practical observation that the durations of

several historical cascading failures were around 1 to 5 hours

[33], [34]. For setting βi j in the cyber network, we need to

clarify that different malwares (viruses) can have very distinct

infection rates. In this paper we adopt the values used in a



ZHANG et al.: EFFECTS OF CYBER COUPLING ON CASCADING FAILURES IN POWER SYSTEMS 7

0 5 10 15 20
Time (min)

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e 

of
 F

ai
le

d 
C

yb
er

 N
od

es

(a)

0 100 200 300 400
Time (min)

0

0.1

0.2

0.3

0.4

0.5

0.6

P
er

ce
nt

ag
e 

of
 F

ai
le

d 
P

ow
er

 N
od

es

(397.5, 0.55)

(b)

0 5 10 15 20 25 30
Time (min)

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e 

of
 F

ai
le

d 
N

od
es (33.01, 0.91)

PFPN
PFCN

(c)

Fig. 5. Failure propagation in (a) cyber network showing smooth growth pattern; (b) uncoupled power grid showing “step jump” pattern; (c) coupled system.
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Fig. 6. Failure propagation patterns. (a), (d), (g): malware spreading in cyber network with scale-free, random and regular structure, respectively; (b), (e),
(h): power node failure propagation in (uncoupled) power grid; (c), (f), (i): failure cascading in the coupled system, with scale-free, random, regular cyber
network, all showing “multiple-step staircase” pattern.
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TABLE II
Comparison on severity of cascading failures between the isolated power
grid and the coupled system in terms of cascading failure extent denoted by

PFPN(tfinal) and average rate denoted by △t.

Test case PFPN(tfinal) △t (min)

Individual power system 0.47 7.25

Coupled system 1 0.37

previous study [35], which models the combating virus spread

in wireless sensor networks.

Figs. 5 (a) and (b) show the dynamical profiles of cascading

failures in the cyber network (a computer malware infected

B1 at t = 0) and the uncoupled power system (node A1

removed at t = 0), respectively. From Fig. 5(b), we see that

the failure propagates very slowly in the uncoupled power

network before t = 330 min and that an abrupt increase of

PFPN(t) occurs around t = 330 min, indicating that numerous

power nodes failed in a short time during the failure cascading

process. Compared with the historical data recorded in the

2003 power blackout in the United States and Canada [34]

and two blackouts in July and August 1996 of Western North

America [33], the results in Fig. 5(b) show similar typical

profiles of cascading failures. According to equation (19), the

growth rate of PFPN(t) is related to the sum of the tripping

rates, i.e., r∗ =
∑

λi in this case. This abrupt change around

t = 330 min is caused by the failure of some critical element

in the power system leading to drastic power flow changes.

We view the process where one element’s state change causes

redistribution of the overall power flows in the whole network

as a global process, and this global process can cause a drastic

increase of failure propagation rate in the system. Fig. 5(a)

shows that PFCN(t) grows smoothly. According to equation

(19), the growth rate of PFCN(t) is related to the sum of the

infection rates, i.e., r∗ =
∑

µi in this case. We view the process

where the infected node only influences its neighbouring nodes

as a local process, which cannot cause any drastic change in r∗.

Thus, PFCN(t) rises gradually. Clearly, the failure propagation

patterns for the power network and the cyber network are

dependent on the spreading mechanisms.

Fig. 5(c) shows the failure propagation in the coupled

system initiated by a computer malware injected at cyber

node B1 at t = 0. The failure propagation in the coupled

system is the combined effect of the above two mechanisms as

well as the interactions between these two different networks.

The propagation profile displays another interesting feature:

PFPN(t) has a multiple-step staircase like growing pattern,

clearly showing the typical step propagation pattern of cascad-

ing failures in the power network being repeatedly triggered

by cyber attacks. Table II lists the averaged results of 100

repeated simulations of cascading failures in the individual

power system and the coupled system, respectively. Here,

PFPN(tfinal) refers to the percentage of failed power nodes

in the final state, and △t is the average time interval when

PFPN(t) is increased by one per cent. It can be seen that the

coupled system can have a larger area of blackouts as well as

a much faster failure spreading rate than the standalone power
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Fig. 7. Comparison of the extents of cascading failures in power grid coupled
with cyber network of different topological structures.
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Fig. 8. Comparison of the extents of cascading failures in power grid coupled
with cyber network of different average node degrees.

network.

B. Effects of Cyber Network Structures

In this section, we investigate the influence of cyber network

structure on the cascading failure propagation in the coupled

system. We generate cyber networks of three classic typolo-

gies: scale-free (SF) network [36], random network [37] and

regular network. The average node degree of all these cyber

networks are fixed at 6. The size of the network is 1500. We

use a random coupling pattern between the cyber network and

the power grid in this section, i.e., 150 cyber nodes are chosen

randomly from the cyber network to connect the power nodes.

The infection rate βi j is set as 0.1 min−1.

Fig. 6 shows the propagation profiles of cascading failures

for three different cyber network structures, organized in three

sets of charts, namely Figs. 6(a), (b), (c); Figs. 6(d), (e), (f);

and Figs. 6(g), (h), (i). Specifically, Figs. 6(a), (d) and (g)

show the malware spreading in the different types of cyber

networks. We see that the regular cyber network has the

slowest spreading rate with an almost linear growth profile. In

terms of the spreading rate, the scalefree network is the fastest
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Fig. 9. Spreading patterns in the coupled system under (a) strong attack with c(t) = 0.3 min−1; and (b) weak attack with c(t) = 0.01 min−1.
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Fig. 10. Extents of cascading failure in the coupled system under (a) strong attack with c(t) = 0.3 min−1; and (b) weak attack with c(t) = 0.01 min−1.

and the regular network is the slowest. Figs. 6(b), (e) and (f)

show the growing profiles of PFPN(t) in the uncoupled power

system, which are similar to the typical profile shown earlier

in Section IV-A. Figs. 6(c), (f) and (i) show the multiple-

step staircase pattern in the failure propagation profile of the

power network coupled with the cyber network. This again

clearly shows the typical step propagation pattern of cascading

failures in the power network being repeatedly triggered by

cyber attacks.

Table III shows the averaged PFPN(tfinal) and △t of 100

repeated simulations in the above three different coupled

systems, respectively. Furthermore, Fig. 7 shows the averaged

PFPN(t) and the deviations of a number of repeated simu-

lations in the three coupled systems: UIUC-150 Bus System

coupled with cyber network of different topological structures.

Results show that when attacked by cyber malwares, the power

system coupled with scale-free cyber network displays the

most severe cascading failure.

It has been shown that most of the cyber networks in the

real world have a scale-free structure. We evaluate the effect

of the average node degree of the scale-free cyber network

TABLE III
Comparison on severity of cascading failures between the isolated power
grid and the coupled system in terms of cascading failure extent denoted by

PFPN(tfinal) and average rate denoted by △t.

Topology of synthesized cyber network PFPN(tfinal) △t (min)

Scale-free 1 0.32

Random 1 0.44

Regular 1 6.76

on the vulnerability of the power system coupled with it. We

generate four scale-free networks of average node degree 2,

4, 6, and 8. Fig. 8 reveals that if the average node degree

of a scale-free cyber network is higher, the system is more

vulnerable to attack with more failure transitions.

C. Effects of Coupling Patterns

Finally, we analyze how the coupling patterns between the

two interdependent networks influence the dynamic propaga-

tion of cascading failures in power networks. Since the cyber
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network is normally much larger than the power network in

terms of the number of nodes (q ≫ p), we consider the

coupling of all power nodes with 10% of cyber nodes in

a one-to-one fashion. Three different coupling patterns are

considered:

1) High-degree cyber coupling: Nodes in the cyber network

are sorted in descending order of node degree, and the

power nodes are sorted in ascending order (which is

immaterial as all power nodes are coupled), namely,

deg(A1) ≤ deg(A2) ≤ · · · ≤ deg(Ap) and deg(B1) ≥

deg(B2) ≥ · · · ≥ deg(Bq), where deg(.) denotes degree of

the node. Then, coupling is established by connecting

Ai and Bi (i = 1, 2, · · · p).

2) Random-degree-node coupling: Randomly choose p

nodes out of the q cyber nodes to connect the power

nodes.

3) Low-degree cyber coupling: Similar to the first case, but

with nodes in the cyber network sorted in ascending

order of node degree such that the power nodes are

coupled with low-degree cyber nodes.

Furthermore, in order to analyze how the coupling strength

ci(t) influences the cascading failures, we study two cases: (1)

strong attack with ci(t) set as 0.3 min−1; (2) weak attack with

ci(t) set as 0.01 min−1.

Figs. 9(a) and (b) show the failure propagation patterns un-

der strong and weak attacks, respectively, for random-degree-

node coupling. Under the strong attack condition, PFCN(t)

is close to PFPN(t), meaning that an infected cyber node

can lead to breakdown of power nodes very quickly (Fig.

9(a)). However, under weak attack condition, as shown in

Fig. 9(b), PFCN(t) and PFPN(t) are farther apart. In terms

of failure spreading rates, we see that applying strong attack,

the cascading failure incurs more severe damage and occurs

more rapidly.

Fig. 10 shows the averaged PFPN(t) profiles and their

deviations of a number of repeated simulation runs at several

specific time points for the three coupling patterns. From Fig.

10(a), under a strong attack condition (high coupling strength),

high-degree dis-assortative coupling leads to a more vulnerable

coupled system, while low-degree assortative coupling gives a

more robust coupled system. However, under a weak attack

condition, as shown in Fig. 10(b), the effect of coupling

patterns is less significant.

V. Conclusions

The development of future smart grids is inevitably involv-

ing more computer control and communication technologies.

The coupling of power networks with other networks of

computers and even future IoT (Internet of Things) will

have a significant impact on the safe and reliable operation

of this important infrastructure. This paper presents a novel

stochastic model to investigate the characteristics of cascading

failures in smart grids triggered by cyber malware attacks. Our

study shows that cyber attacks could incur much more severe

damages to power networks and power blackouts could occur

much more rapidly when power networks are coupled with

cyber networks. Our findings also demonstrate the importance

of understanding how coupling weakens robustness and the

various factors that affect the extent and rapidity of cascading

failure propagation in coupled power networks.

Appendix: Transition Process

We consider network state transitions in an infinitesimal

time interval dt. Suppose S (t) = NS . Thus, S (t + dt) is the

network state after a duration of dt.

(i) Omitting the higher order (with order 2 and higher)

items of dt, the probability that no element undergoes a state

transition after dt can be written as

P[S (t + dt) = NS |S (t) = NS ] =

n
∏

i=1

(1 − ri(t)dt)

≈ 1 −

n
∑

i=1

ri(t)dt

(ii) The probability that only one state transition channel

(channel k) exists in the state transition list after dt, i.e., only

element k can transit, can be written as

P[S (t + dt) = MS |S (t) = NS ] =
∏

i=k

ri(t)dt
∏

i,k

(1 − ri(t)dt)

≈ rk(t)dt

where MS denotes the network state that NS transits to through

one channel.

(iii) The probability that two or more state transition chan-

nels occur after dt is given by

P[S (t + dt) = RS |S (t) = NS ] ≈ 0

where RS denotes the network state that NS transits to through

two or more channels in the state transition list. Thus, there

is at most one element state transition at a time.
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