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Abstract—Assuming ideal synchronization at the receivers, an
approach to calculating the approximate theoretical bit-error rate
(BER) of a coherent chaos-shift-keying (CSK) digital communica-
tion system under an additive white Gaussian noise environment
is presented. The operation of a single-user coherent CSK system
is reviewed and the BER is derived. Using a simple cubic map as
the chaos generator, it is demonstrated that the calculated BERs
are consistent with those found from simulations. A multiuser co-
herent CSK system is then defined and the BER is derived in terms
of the noise intensity and the number of users. Finally, the com-
puted BERs under a multiuser environment are compared with the
simulation results.

Index Terms—Bit-error rate, chaos communication, chaos-shift-
keying, multiple access.

I. INTRODUCTION

SEVERAL chaotic digital modulation schemes [1]–[9] have
been proposed over the past few years. The basic approach

is to map binary symbols to nonperiodic chaotic basis functions.
For example, chaos-shift-keying (CSK) maps different symbols
to different chaotic attractors, which are produced either from a
dynamical system with different values of a bifurcation param-
eter or from a set of different dynamical systems [4], [6]. A co-
herent correlation CSK receiver is then required at the receiving
end to decode the signals. Noncoherent detection is also possible
provided the signals generated by the different attractors have
different attributes, such as mean of the absolute value, vari-
ance and standard deviation. The optimal decision level of the
threshold detector, however, will depend on the signal-to-noise
ratio of the received signal.

To overcome the threshold-level shift problem, differential
CSK (DCSK) has been proposed [4], [6], [8]. In DCSK, every
transmitted symbol is represented by two chaotic signal sam-
ples. The first one serves as the reference (reference sample)
while the second one carries the data (data sample). If a “1”
is to be transmitted, the data sample will be identical to the ref-
erence sample and if a “1” is to be transmitted, an inverted
version of the reference sample will be used as the data sample.
The advantage of DCSK over CSK is that the threshold level is
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always set at zero and is independent of the noise effect. It has
shown that by increasing the length of the chaotic sample or the
bandwidth of the carrier, the variance of the estimation can be
reduced, resulting in a lower bit-error rate (BER) [10]. No ana-
lytical solution for the BER has been derived, however, in terms
of the chaotic sample length or the signal-to-noise power ratio.

Because of the nonperiodic nature of chaos, the bit energy
of the transmitted symbol using CSK and DCSK varies from
one bit to another. To produce a wideband chaotic signal with
constant power, a chaotic signal generated by an appropriately
designed analog phase-locked-loop is fed to a frequency modu-
lator. The output, having a bandlimited spectrum with uniform
power spectral density, can then be further combined with other
modulation techniques such as DCSK to give frequency-modu-
lated DCSK (FM-DCSK) [2], [4].

In almost all communication systems, the allocated fre-
quency spectrum is shared by a number of users. Conventional
multiple-access techniques such as frequency-division mul-
tiple access, time-division multiple access and code-division
multiple access (CDMA) are commonly used. Some basic
work has been reported on multiple access in chaos-based
communication such as multiplexing chaotic signals [11] and
exploiting chaotic functions for generating spreading codes
under the conventional CDMA scheme [12]. The effect of the
number of users on the system BER, however, has not been
studied thoroughly.

Our purpose in this paper, is to present a simple and system-
atic way of deriving the approximate theoretical BER of a co-
herent CSK digital modulation system under the influence of
additive white Gaussian noise (AWGN), assuming ideal syn-
chronization at the receivers. A simple one-dimensional cubic
map is used to generate the chaotic signals with different ini-
tial conditions assigned to different users. The calculation of
the BER for a single-user system and a multiuser system will
be presented. Simulations are also performed to verify the ac-
curacy of the calculated values.

II. SINGLE-USERCSK COMMUNICATION SYSTEM

In this section, the performance of a single-user coherent CSK
communication system under a noisy condition is examined.
The baseband equivalent model of a CSK digital communica-
tion system is depicted in Fig. 1 [7], [13]. Assume that a chaotic
signal is generated by the map . With two dif-
ferent initial conditions, we can generate two sets of chaotic se-
quences which can be used to represent two binary symbols. Let
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Fig. 1. Baseband equivalent model of a chaos-shift-keying digital communication system.

Fig. 2. Coherent CSK demodulator.

and be the two chaotic sequences representing “1”
and “ 1”, respectively. The outputs of the chaotic signal gener-
ators, denoted by and , are given by

(1)

and

where is a rectangular pulse of unit amplitude and width
, i.e.,

elsewhere.
(3)

Assume that the system starts at and the binary data to
be transmitted has a period. Denote the transmitted data by

, where . In CSK, if a binary
“ 1” is to be transmitted during the interval ,

will be sent. Likewise, if “ 1” is to be transmitted, will
be sent. Let be the spreading factor, defined as , which is

an integer. Thus, denoted by , the transmitted waveform
for the th bit is given in (4) shown at the bottom of the page
where

if
if (5)

The overall transmitted waveform, , is

(6)

Assume that the only channel distortion is due to the noise
source , which is an additive white Gaussian noise (AWGN)
with a two-sided power spectral density given by

for all (7)

In the following analysis, is replaced by an equivalent noise
source given by

(8)

if

if

(4)
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where the coefficients are independent Gaussian random
variables with zero mean and variance

(9)

A proof of the equivalence of and is given in Ap-
pendix A. As a consequence, the input signal at the receiver can
be re-written as . Fig. 2 shows a coherent
CSK demodulator where it is assumed that the synchronization
circuits can reproduce the chaotic signals perfectly and the syn-
chronization time is assumed to be negligibly small compared
with the bit period. The BERs are now derived.

A. Derivation of Bit Error Rate

Referring to Fig. 2, the input to the demodulator is given by

(10)

For the th received symbol, the output of correlatorat the
end of the bit duration equals

Corr

(11)

Similarly, the output of correlator can be shown equal to

Corr (12)

The output of the adder, i.e., the input to the threshold detector,
at this time instant is as shown in (13) at the botttom of the
page. If a “ 1” has been transmitted for theth symbol, i.e.,

and for , the
input of the detector will be given by

(14)

where denotes the partial discrete correlation
between the chaotic sequences and

. Formal definitions of the various
functions are given in Appendix B. Using the central limit the-
orem [13], each of the four terms in (14) can be approximated
by a normal random variable. Assume further that the random
variables are independent of each other. Then, will
be normally distributed [14] with mean equal to (15) shown at
the bottom of the page where overlining denotes the mean value
over all . Also, the variance of is given by (16)
shown at the bottom of the next page where varrepresents
the variance of .

If is larger than zero, a “1” is decoded for the th
symbol. Otherwise, a “1” is detected. The conditional error
probability given a “ 1” has been transmitted is given by[13]

Prob is transmitted

var
(17)

where is defined as

(18)

Corr Corr

(13)

(15)
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TABLE I
MEANS AND VARIANCES OF THEPARTIAL DISCRETECORRELATION FUNCTIONS OFCHAOTIC SERIES

Likewise, it can be shown that when a “1” has been trans-
mitted, the conditional error probability is given by

Prob is transmitted

var
(19)

In the sequel, we assume that the map

(20)

is used to generate the chaotic signals. It can be readily shown
that with this choice of , the partial discrete correlation func-
tions are normally distributed [15]. The means and variances of
the functions for spreading factors 100 and 1000 are tabulated
in Table I.

Using the values in Table I, (15) and (16), we easily get (21)
shown at the botttom of the page. Therefore, the overall BER of
a single-user coherent CSK system under AWGN is as shown in

(22) at the botttom of the next page where is the probability
of a “ 1” being transmitted is the probability of a “ 1”
being transmitted. Note that . The average bit
energy of the system is given by

(23)
where and denote the mean-squared values of
chaotic sequence samples of lengthtaken from the chaotic se-
ries and respectively (see Appendix C). Note that

and equal the mean of
and the mean of respec-

tively over all positive integers . Since both series and
are generated from the same map with different initial con-

ditions, we have and (23) can be simplified
to

(24)

var var var

var var (16)

Prob is transmitted Prob is transmitted

if

if
(21)
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TABLE II
CALCULATED BIT ERROR RATES OF A SINGLE-USER COHERENT CSK

SYSTEM FORVARIOUSE =N

for or 1000. Using and (24), (22) can also
be expressed as

BER
if

if

(25)
Assume that s. For a range of values, the

BERs can be computed using (25), as tabulated in Table II. As
expected, the BER decreases with increasing . Moreover,
for the same , the BER for is worse than that
for . This is because when is increased from 100
to 1000, the variances of the discrete partial correlation func-
tions decrease (central limit theorem [13]), resulting in a lower
variance of the signal at the input of the threshold detector (16).
Hence, the chance of an incorrect detection is reduced.

B. Simulations

Computer simulations have been performed based on the
equivalent system model shown in Fig. 1 (with the noise source
replaced by the equivalent noise source) and the demodulator
shown in Fig. 2. The bit period is assumed to be s and

and 1000. For each of the different values
simulated, 10 000 bits have been transmitted and the BERs are
tabulated in Table III.

C. Comparisons

The calculated and simulated BERs are plotted against
in Fig. 3. It can be observed that the results are in good

agreement. The theoretical BER for a coherent antipodal CSK
system [16] is also plotted in the same figure for comparison.
It can be seen that for the same BER, coherent antipodal CSK
modulation shows an advantage of about 3 dB, which agrees
with the theoretical gain of an antipodal modulation system. In
the next section, we extend our analysis to a multiuser system.

TABLE III
SIMULATED BIT ERROR RATES OF A SINGLE-USER COHERENT CSK

SYSTEM FORVARIOUSE =N

Fig. 3. Computed (comp) and simulated (sim) bit error rates againstE =N
in a single-user coherent CSK system.

Fig. 4. Transmitter of theith user in a multiuser coherent CSK digital
communication system.

III. M ULTIUSER CSK COMMUNICATION SYSTEM

Assume that there are users within the system. The trans-
mitter for the th user is shown in Fig. 4. The pair of chaotic

BER Prob is transmitted Prob is transmitted

if

if
(22)
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Fig. 5. Coherent demodulator for userj in a multiuser coherent CSK communication system.

series for user are denoted by and . It is also as-
sumed that all series are generated by the same map

but with different initial conditions, where is defined
as in (20). Using similar notations as in the previous section, the
outputs of the chaotic signal generators for userare given by

(26)

and

(27)

Denote the transmitted data for userby ,
where . The transmitted waveform for theth
bit of user , , is given by (28) shown at the bottom of
the page where

if

if

(29)

The transmitted waveform for user, , is therefore

(30)

The overall signal component arriving at the receiver, , is
derived by summing the signals of all individual users, i.e.,

(31)

A. Derivation of Bit Error Rate

Corrupted by AWGN, the received signal arrives at the re-
ceiver. The demodulator for useris depicted in Fig. 5. The
input to the demodulator is given by

(32)

if

if

(28)

Corr

(33)
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Assume perfect synchronization at the receiver. For theth
received symbol, the output of correlatorat the end of the
symbol period is given by (33) shown at the bottom of the pre-
vious page. Similarly, the output of correlatorcan be shown
equal to

Corr

(34)

The input to the threshold detector at this instant is

Corr Corr

(35)

Suppose for user, a “ 1” has been transmitted for theth
symbol, i.e., and for

, the input of the detector will be given by (36) shown

at the bottom of the page. Applying the central limit theorem
again, all the functions in (36) can be approximated by normal
random variables (see Appendix D). Assume that the random
variables are independent of each other. will also
be normally distributed with mean

or (37)

and variance. [See (38) at the bottom of the page.] See Ap-
pendix E for a detailed derivation. The conditional error proba-
bility given a “ 1” has been transmitted is given by (39) shown
at the bottom of the next page. Likewise, it can be shown that if a
“ 1” is transmitted, the conditional error probability is the same
as in (39). Thus, it can be shown easily that the overall BER of
a multiuser coherent CSK system under AWGN is as shown in
(40) at the bottom of the next page. Similar to the single-user
case, the average bit energy for useris defined as

(41)

Using the same procedure as in Section II-A, it can be readily
shown that

or (42)

for all users . Denoting by and putting
(42) into (40), we have (43) shown at the bottom of the next
page. For s, the BERs are computed using (43) for
a range of users and values. The results are tabulated
in Table IV. With an increasing number of users transmitting
their chaotic signals at the same time, more interference will

(36)

var
if

if
(38)
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be introduced into the system and more errors occur. Hence,
as shown in the table, the BER increases with an increasing
number of users. Moreover, as in the single-user case, the BER
decreases with increasing whereas for the same ,
the BER for is worse than that for . Note
that in a multiuser system, the performance of the system may
be limited by the interference between the users and not by the
noise power. For example, when there are 20 users in the system
and the spreading factor equals 100, a BER of 0.1986 is obtained
for dB. When the powers of the signals increase, or
equivalently the noise power diminishes, the effect of noise is
reduced and the BER improves. For tending to , i.e., a
noiseless environment, the BER still remains at a nonzero value
of 0.0558. Under such circumstances, the errors are caused by
the mutual interference between users. If further reduction of
such interference-limited BER is required, a larger spreading
factor can be used. In this particular example, if the spreading
factor is changed to 1000, the BER goes to zero as .
Notice that when the spreading factor is increased by 10 times,
the data rate will drop by the same factor if the chip duration
is kept constant, or the bandwidth of the transmitted signal will
be increased by 10 times if the bit durationis fixed.

B. Simulations

Computer simulations have been performed based on the de-
modulator shown in Fig. 5. The bit period is assumed to be

s with and 1000. For each of the different

values simulated, 10 000 bits have been transmitted for each user
and the average BERs are tabulated in Table V.

C. Comparisons

The computed and simulated BERs are plotted against
in Figs. 6 and 7 for and 1000, respectively. In both
cases, the numerical BERs agree well with the simulated results.
Hence, we can conclude that the calculation described above
provides an accurate means to estimate the BERs for a multiuser
coherent CSK communication system.

IV. CONCLUSIONS

In this paper, we have reviewed the operation of a single-user
coherent CSK communication system. Using a cubic map as
the chaos generating function, we present an approach to calcu-
lating the approximate bit error rates for various average-bit-en-
ergy-to-noise-power-spectral-density ratios ( ). Simula-
tions are performed to verify the calculated BERs.

Assuming that perfect synchronization is achieved at all re-
ceivers, we then extend our analysis on the coherent CSK system
to a multiuser environment. BERs are again derived and com-
pared with the simulation results. It is found that the computed
BERs provide a very good estimation of the actual performance.
As expected, the BER decreases with increasing . More-
over, the BERs can be reduced for the same by using a
higher spreading factor. In a multiuser environment, more inter-
ference will be introduced into the system when more users are

Prob is transmitted

var

if

if
(39)

BER
if

if
(40)

BER
if

if
(43)
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TABLE IV
CALCULATED BERS OF A MULTI-USERCOHERENTCSK SYSTEM FORVARIOUSE =N : (a)� = 100 AND (b) � = 1000

TABLE V
SIMULATED BERS OF A MULTI-USERCOHERENTCSK SYSTEM FORVARIOUSE =N : (a)� = 100 AND (b) � = 1000

transmitting at the same time. Hence, the interference between
users can sometimes pose a lower limit on the BER.

In our analysis, the distributions of the partial discrete corre-
lation functions are obtained by simple computer simulations.
An alternate approach to determine the distributions is based on
the empirical probability density function (pdf) of the chaotic
signal. The technique is under investigation and it is expected
that the empirical pdf, found by simpler simulations, will pro-
vide us with all the data needed to calculate the BERs. In addi-
tion, in our derivations of the BERs, it is observed that the cor-
relation properties of the chaotic sequences have a determining
factor on the system performance. Chaotic sequences with high
auto-correlation and low cross-correlation values would give

better error performance. The search of such chaotic sequences
would therefore be of great interest to researchers.

APPENDIX A
JUSTIFICATION OF USING AN EQUIVALENT NOISE SOURCE

FOR ANALYSIS

In a coherent CSK system corrupted by additive white
Gaussian noise (AWGN), the input to the demodulator is given
by

(44)
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Fig. 6. Computed (comp) and simulated (sim) bit error rates againstE =N
in a multiuser coherent CSK system (� = 100): (a) 1–25 users and (b) 30–50
users.

where is an AWGN with a two-sided power spectral density
given by

for all (45)

For the th received symbol, the output of correlatorshown
in Fig. 2 at the end of the bit period is given by

Corr

(46)

Fig. 7. Computed (comp) and simulated (sim) bit error rates againstE =N
in a multiuser coherent CSK system (� = 1000): (a) 1–25 users and (b) 30–50
users.

Consider the output component due to noise

(47)

It can be divided into several subcomponents shown below.

(48)
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where

(49)

Given and , the distribution of the noise sub-components
is Gaussian [13]. Their mean values are

(50)

for all . Their covariances [14] are

cov

(51)

where

otherwise.
(52)

Hence, the noise sub-components are zero mean uncor-
related Gaussian variables with variances .
Since these noise sub-components are uncorrelated Gaussian
random variables, they are also statistically independent.

Consider another noise source given by

(53)

where the coefficients are independent Gaussian random
variables with mean and variance . Replacing the AWGN
noise source in (44) by and using the aforementioned pro-
cedures, the correlator output component due to the new noise
source can be shown to be

(54)

where . Given and , the distribution of the
new noise sub-components is also Gaussian. Their mean
values are

(55)

and their covariances are

cov

(56)

where the last equality is due to the independence of’s. There-
fore, if the noise source is to generate the same effect as
the AWGN source at the coherent CSK receiver

(57)

and

cov cov

(58)

Since the mean and variance of are independent of the
chaotic signals, it can be concluded that in the analyzes of a
coherent CSK system with AWGN, the original AWGN noise
source can be replaced by an equivalent noise given by

(59)

where the coefficients are independent Gaussian random
variables with mean

(60)

and variance

(61)

APPENDIX B
DEFINITIONS OFPARTIAL DISCRETECORRELATION FUNCTIONS

In the following, denotes the length of the sequence sample
and , . The partial discrete auto-correlation function of
the chaotic series is defined as

(62)

The partial discrete cross-correlation function between the
chaotic series and is defined as

(63)

Given a normal random sequence , the ele-
ments of which are normal random variables with zero mean and
variance . The partial discrete cross-correlation function be-
tween the chaotic series and the normal random sequence

is defined as

(64)

It has been studied in [15] that using the iterative map
to generate the chaotic series, the partial

discrete correlation functions defined above are normally dis-
tributed with fixed means and spreading-factor-dependent vari-
ances. The means and variances for 100 and 1000 are tab-
ulated in Table I.
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APPENDIX C
DERIVATION OF AVERAGE BIT ENERGY

Applying (4)–(6) to the first part of (23), the average bit en-
ergy can be derived to obtain (65) shown at the bottom of the
page where and denote the mean-squared values
of chaotic sequence samples of lengthtaken from the chaotic
series and respectively; and represent the
probability of a “ 1” and “ 1” being transmitted respectively.
Note that and equal the mean of

and the mean of
, respectively, over all positive integers.

APPENDIX D
ANALYSES OF THEDISCRETECORRELATION FUNCTIONS AT

THE INPUT TO THEDETECTOR

Given the input to the detector is

(66)

Inside the bracket, the first term
represents the partial discrete auto-cor-

relation function of the chaotic series . The third
and sixth terms, and

, correspond to the partial
discrete cross-correlation functions between the normal random

sequence and the chaotic series and respec-
tively. The fourth term
is the partial discrete cross-correlation function between the
chaotic series and .

In the first summation, the terms
( and ) refer to the

partial discrete cross-correlation functions between the chaotic
series pairs and , or and , depending
on the th transmitted symbol of theth user is “ 1” or “ 1”.
Since , the two series undergoing correlation will not be
derived from the same initial condition. Similarly, the terms in
the second summation,
( and ), refer to the partial discrete
cross-correlation functions between the chaotic series pairs

and , or and . Also, the two series
undergoing correlation will not be generated from the same
initial condition.

Applying the central limit theorem, all thefunctions (partial
discrete correlation functions) in (66) can be approximated by
normal random variables.

APPENDIX E
DERIVATION OF MEAN AND VARIANCE OF THE INPUT TO THE

DETECTOR

Given that the input to the detector is

(67)

(65)
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All the functions in (67) can be approximated by normal
random variables (see Appendix D). Assume that the random
variables are independent of each other. The mean value of

is

(68)

and the variance equals (69) shown at the bottom of the page.
Using the results in Table I, the values of and

var can now be found. For ,

(70)

and

var

(71)

For

(72)

var var var

var var

var var

var var

var var

var var (69)
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and

var

(73)
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