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Abstract

A consistent regularization technique is proposed for the inverse identification of
local damages in a structure under ambient vibration. One new technique involved
in the regularization method is the introduction of a new side condition and the
other technique restricts the range of variation of the regularization parameter and
consistently choosing the optimal point on the L-curve. Both techniques fully make
use of the information from results obtained in previous iteration steps. The
covariance of covariance matrix which are formed from the auto/cross-correlation
function of acceleration responses of a structure under white noise ambient
excitation are used for damage detection in this paper. The components of the
covariance matrix are proved to be function of the modal parameters (modal
frequency, mode shape and damping parameter) of the structure. The number of
vibration modes of the structure associated with the components is only limited by
the sampling frequency. A simply supported thirty-one bar plane truss structure is
studied where a multiple damage scenario with different noise levels is identified.
Numerical results show that the proposed consistent regularization method is very
effective in improving the results in the inverse problem with ill-condition
phenomenon compared with the Tikhonov regularization.
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1. Introduction

A number of methods have been developed for damage detection in the last two
decades. The sensitivity approach via model updating technique is commonly accepted and
applied extensively in the engineering industry. However this type of method is weak in
accommodating the influence of measurement errors leading to ill-conditioned problems as
demonstrated in Friswell et al. (2001) and Humar et al. (2006). Investigations have since
been conducted to deal with the ill-conditioning problems in model updating. Hansen
(1992; 1998) and Vogel (2002) have proposed regularization methods for obtaining a
solution of the inverse problem. It is recognized in the regularization theory that the
conventional output error can be made unrealistically small if the process of damage
identification is allowed to behave “badly”, such that the variable has arbitrarily large
deviations from the true set of parameter change. Recently Titurus and Friswell (2008)
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presented the sensitivity-based model updating method with an additional regularization
criterion and computed the solutions based on the generalized singular value decomposition
(GSVD). Specific features of the parameter and response paths when the regularization
parameter varies are explored. Weber et al., (2008) applied the Tikhonov regularization and
truncated singular value decomposition consistently to a nonlinear updating problem. Line
search and stopping criteria known from numerical optimization are adapted to the
regularized problem.

In this paper, a new covariance matrix is formed from the auto/cross-correlation
function of the acceleration responses of a structure under ambient white noise excitation.
The components of the covariance matrix are adopted to identify damage by model
updating, during which, a consistent regularization is applied to improve the identified
results due to the measurement error. One technique, which proposed a new side condition
which classified the elements as possible damaged elements and undamaged elements
which will be treated differently later on, is involved in the consistent regularization. A
simply supported thirty-one bar plane truss structure is numerically studied. Numerical
results show that the proposed consistent regularization method is very effective in
improving the results in the inverse problem with ill-conditioning compared with the
conventional Tikhonov regularization.

2. Covariance of covariance matrix of acceleration response

The equation of motion of a N degrees-of-freedom (DOFs) viscous damped structural
system under support excitation is given as,

Mx(#)+Cx(r)+ Kx(r) =—Mx L - x() (1)
where M , C , K are the NxN mass, damping and stiffness matrices
respectively. Matrix L with a size of N x1is the mapping vector relating the support

DOFs with the corresponding DOFs of the system. X,X, X are the N X1 displacement,
velocity, acceleration vectors respectively.

For ambient vibration, X,is assumed to be of ideal white noise distribution, the

autocorrelation function of X;is

E(x:(0,)xs(0,))=S6(0, —0,) - )
S0t where S is a constant defining the magnitude of excitation of *s when o1=02, and
® is the Dirac delta function.

Then the covariance R p,(r) can be written as, the detail can be seen in Ref. (Li and
Law, 2010)

R, (7)= SZ % e o Z—[A cos(w,7)+ B, sin(w,7)]
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The covariance of covariance matrix is defined as (see Ref. [Li and Law, 20107),
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T, =R, R} = ®u(p)-(u(p))’
=®u(p)-(u(p))’ @’ (4)
=®(u(p)-(u(p)) ®"

The matrix u(p)-(u(p))” in Equation (4) can be computed as,
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Equation (5) shows that matrix u(p)-(u(p ))T is only related to the mode shape, modal
frequency and damping ratio of a structure. Then matrix Tp in Equation (4) is noted to be a
function of the modal parameters of the structure. The change in the structural parameters is
therefore related to the modal parameters and subsequently to the covariance of covariance

matrix 7.

3. Consistent regularization

When the components in Equation (4) is used for damage identification via sensitivity
analysis and model updating, the solution is often ill-conditioned. Regularization techniques
are needed to provide bounds to the solution. The Tikhonov regularization expressions
usually used for model updating are based on engineering assumptions on the parameter
variations during iterations. The most frequently used conditions, (Friswell and

Mottershead, 1995), are: (a) a— O, i.e. that the parameter values will be small; (b)

0
0 =@ e, that the total parameter changes with respect to the reference model will be

A k+1 0 i . ) . )
small and (¢) A% >V e that the parameter increment between iterations will be
k+1 k

=0 and (b)

a* while condition (c) is already in such form. Condition (a), and to some
extent condition (b), represent physical assumptions, while condition (c) acts mainly as a
stabilizing condition in highly non-linear problems.

In the above side conditions, the parameter variations or the updated parameters are

small. The incremental forms of these conditions are: (a) Aa
&ak-rl - a() _

bounded with respect to a fixed reference vector (for example a null or @’) for all
iterations. In fact, a parameter increment can be obtained from every iteration step and the
structural parameter vector is updated. Some characteristics can be found among the
updated parameter vectors between iterations. For example, some elements have large
values, some have small values and some elements have fluctuating values around zero in
all the iterations. These characteristics can imply some elements are possibly damaged and
some elements undamaged. In order to improve the solutions in the ill-conditioned
problems, these characteristics are included into the side conditions in the present study.

A new side condition is proposed similar to the side condition (b) above as follows

Ad" > a -af (6)
which implies that the total parameter change with respect to a set of reference values
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determined from Equation (13) below is small. Here the reference vector & is varying

according to the results from the previous iteration steps. According to the physical
k -

definition, (Ik = IID + 2 Ad’ ,then @ can be similarly be written as
i=l

* *
o =a’+a" (7)
Since vector @’ is the constant set of initial analytical values, it will disappear when

k
substituting @ and @ into Equation (10). a* and @ are written as @' =ZA¢1',

a’ =a"" in the followings for simplicity and Equation (10) is rewritten as,

k
At = af” —ZAu" (8)

i=l
and @ is defined according to the following criteria:

The conditions may be unified into the cost functions which contain the residual
function and a penalty function with the updated parameter vector as,
D

.. HT
J(Aa*', A) =[S, -Aa*" —(Ah: ),

+ A7 |Aa* —(a*” —a")Nj 9)

where @ is a quantity determined from results from previous X iterations shown in

Equation (13). A2>0is the regularization parameter. The parameter A controls the

extent to which regularization is applied to the problem.
The regularization solution from minimizing the function in Equation (14) can be

written in the following form as,
DWT

Ad“! = (S:Sk +/?,ZI)"(S:(AI!: ), -2 (@ —a*")) (10)
where the superscripts (-1) and 7 denote the inversion and the transpose of the matrix
and I is the identity matrix.

4. Numerical Simulation

A simply supported plane truss structure as shown in Figure | serves for the simulation
study. It is modeled using thirty-one planar truss finite elements without internal nodes
giving 28 degrees-of-freedom. The cross-sectional area of the bar is 0.0025 m”> . Damage in
the structure is introduced as a reduction in the axial stiffness of individual bars, but with
the inertial properties unchanged.

Both the vertical and horizontal translational restraints at the supports are represented by
large stiffness of 1.0x 10'° kN/m. Rayleigh damping is adopted for the system
withc, =0.0l1 andc, =0.005. The damping ratio for each vibration mode can be
O'Co
2m
where @ is the modal frequency vector. The first 12 natural frequencies of the structure are
36.415, 75.839, 133.608, 222.904, 249.323, 358.011, 372.509, 441.722, 477.834, 507.943,
538.125 and 547.393 Hz . White noise excitation with an amplitude of 1m*/s* is

computed by uncoupling the damping matrix with the mode shape matrix as

2
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assumed acting at the supports of the structure in the vertical direction. The vertical
acceleration measurements at the selected nodes are recorded for a duration of 1800s for the
damage identification. The sampling frequency is 2000 Hz which is high enough to
capture much information from the vibration modes of the structure which are below 1000
Hz and the response data collected is considered sufficient to obtain the accurate
experimental CoC matrix.

E=70GPa p=2770kg/m’

Fig. 1 - Thirty-one bar plane truss structure

The damage scenario with the modulus of elasticity of material of elements 18, and 19

reduced by 10% and that in element 20 reduced by 15% including different levels of
random noise in the structure is studied.
If simulated acceleration responses from the undamaged and the damaged state are used
instead of measurement, the damage index vectors D" and D’ are computed by Equation
(4). If the time duration is long enough, the damage index vectors will be accurate even
with a high noise level in the acceleration responses. To simulate the noise effect in this
study, D" and D are computed analytically using Equations (4,5) with normally
distributed random noise added to the damage index as,

D e =D x(1+EpxN_ ), D! =D'x(1+EpxN_ ) (11)

d

where D)~ and D7 .

aise
are the polluted damage index vectors; Ep is the noise
level ;N is a standard normal distribution vector with zero mean and unit standard

deviation.

4.1 Damage Detection

Damage detection making use of the CoC matrix is studied. The damage scenario with
different noise level using different measurement sensor sets is considered. Four
accelerometers are assumed installed at Nodes 2, 3, 4 and 5 in the vertical direction. When
the reference DOF p is 4 at Node 2, the CoC matrix T, has a size of 4x4. When the

reference DOF p is at Node 3, 4 and 5, the CoC matrices are T, T, and T, with a size of
4 x 4 respectively. All the components from the four matrices T, T, T, and T, are used
for the damage detection, and the damage index vector D has a size of 40
(=4x (1 + 4) x4/2) which is larger than 31 (the number of the stiffness parameters in all
the finite elements). 1%, 2.5% and 5% white noise is added separately into the damage
index vectors D* and D? from the undamaged and damaged structure as Equation (11)
to get D* and D’

measured measured "

The initial analytical model is assumed accurate for the

damage detection. The identified results are shown in Figure 2(a) using Tihonov
regularization and (b) using consistent regularization. The damage locations are identified
accurately and the damage extents are also identified satisfactory without false positive in

580



14" Asia Pacific Vibration Conference, 5-8 December 2011, The Hong Kong Polytechnic University

other elements using consistent regularization. However, when the noise is increased to
2.5% and 5%, there are false positive in undamaged elements and the damage extent are not
accurate using Tikhonov regularization method. It shows that the consistent regularization
has better ability for tolerating noise than Tikhonov regularization.

{a) identified damage vector using Tikhonov reguiarziation
T T

sliness raduction factor

e || || | | S

sliffness reduction factor

Fig. 2 — the identified damage vectors using Tikhonov regularization and consistent regularization with

different level noise.

The evolution of the identified damage vectors using consistent regularization are
shown in Figure 3 and Figure 4. It can be seen that when no noise and 1% noise, the values
for three damaged elements converge to the accurate damage value and those for
undamaged elements converge to zero quickly. When noise is increase to 2.5% and 5%, the
values for damage elements converge to accurate value after 80 iterations. In spite of slow
convergence, the damage location and extent are identified satisfactorily. However, the
evolution using Tikhonov regularization will diverge if the computation does not stop
because the ratio of signal to noise will become smaller with the iteration procedure (The
figure does not shown here). It again shows that consistent regularization can improve the
identified results from the model updating procedure.

5. Conclusions

In this paper, a new side condition is proposed which classified the identified elements
as possible damaged elements and undamaged elements from results obtained from
previous iterations. The possible damage elements are improved with small steps between
iterations and the parameters for the undamaged elements are required to approach to zeros.
These measures can make the updating procedure converge to the real values more quickly
and accurately. It can be seen from the numerical studies that the proposed method using the
proposed technique can give very accurate results in an ill-conditioned inverse problem
with different level of noise. Whereas with the conventional Tikhonov regularization
method, the identified parameters in the undamaged elements fluctuates greatly around the
zero and incorrect optimal point on the L-curve may be chosen in some iterations. Results
can be obtained only in the first several iterations and they can not be improved gradually in
the following steps. The accuracy of the results is also affected by noise and the
computation stops when the results fall outside their physical limits.
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(&) the evoluticon of the damage vecior with no noise
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Fig.3- the evolution of the identified damage vectors with no noise and 1% noise

{a) the evolution of the damage vecior with 2.5% noise
T T T

Sliffress reduction factor

Siiffness reduction factor

Fig.4- the evolution of the identified damage vectors with 2.5% and 5% noise
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