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Abstract

Recently, there has been increased interest in using non-linear vibration techniques
to detect damage in concrete bridge structures. It is necessary to understand the
nonlinear behavior of concrete structures under vibration loading for damage
detection. In this paper, a damage beam element is developed to analyze the
non-linear dynamic behavior of damaged concrete bridge structures subject to
moving vehicular loads. The damage is modeled as a combination of a rotational
spring and shear effect due to the concrete cracking and local bond deterioration of
the concrete-steel interface. Numerical simulations are presented to study the
damage effects on the dynamic behavior of concrete bridge structures under
moving vehicular loads. The results show that the model is reliable and effective to
describe the damage in the concrete bridge structures.
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1. Introduction

In view of long-term health monitoring requirements of structures, such as bridges, it is
desirable to have the damage detection techniques including the operating loads, such as
vehicular loads, as excitation source. The occurrence of damage in a structure produces
changes in its dynamic behaviour. An understanding of these changes can lead to the
detection, location and the characterization of the extent of the damage. Mazurek and
Dewolf conducted laboratory studies on a simple two-span girder under moving loads in
their structural deterioration study using vibration signature analysis'”. Structural damage
was artificially introduced by release of supports and insertion of cracks. Lee and Ng used
the assumed mode method to analyze the dynamic response of a beam with a single-sided

crack subject to a moving load on the top"?

. The beam is modelled as two segments
separated by the crack. Two different sets of admissible functions satisfying the respective
geometric boundary conditions are then assumed for these two fictitious sub-beams. The
rotational discontinuity at the crack is modelled by a torsional spring with an equivalent
spring constant for the crack. The equality of transverse deflection at the crack is enforced
by a linear spring of very large stiffness. Parhi and Behera utilized an analytical method
along with the experimental verification to investigate the behaviour of a cracked beam with

a moving mass"”. A local stiffness matrix was used to model the crack section. Mahmoud
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and Abou Zaid analyzed the effect of crack size on the dynamic behaviour of
simply-supported undamped Bernoulli-Euler beams subjected to a moving mass. The
presence of crack results in higher deflections and alters the beam response pattern. Bilello
and Bergman presented a theoretical and experimental study of the response of a damaged
Euler-Bernoulli beam traversed by a moving mass"”’. Damage is modeled through rotational
springs whose compliance is evaluated using linear elastic fracture mechanics. Lee et al
presented an experimental study on bridge health-monitoring using ambient vibration by
ordinary traffic loadings'®. The assessment of damage locations and severities was carried
out based on the estimated modal parameters using the neural networks technique. A
time-domain approach was also developed to detect the damage in beam structures using
vibration data with a moving oscillator as an excitation source by Majumder and Manohar
(™. All above studies use the open crack model with the linear assumption.

Since reinforced concrete structures are nonlinear in behavior, important information is
lost when the linear assumption is made. Kato and Shimada presented the vibration
measurement on an existing prestressed concrete bridge deck during its failure test®. The
decrement of natural frequency was small even if cracks occurred while the prestressed
steel wires were in the elastic state. The cracks of concrete were closed together by the
effective prestressing after the load was removed. Eccles et al presented the phase-plane
plot generated by exciting the beam at a natural frequency with constant excitation
energy'”. The degree to which the plot deviates from a circle is a measure of the
nonlinearity of the system, and the absolute change in the natural frequencies is used as a
damage indicator. Van Den Abeele and De Visscher performed both linear and nonlinear
acoustical experiments on a reinforced concrete beam in which damage is gradually induced
by means of static loading"'”. The tests demonstrated that although the beam did not behave
linearly when undamaged, once the beam was damaged using four-point loading the
non-linearities became far more pronounced. Owen et al applied auto-regressive time series
modelling for the time-frequency analysis of civil engineering structures'”. The data
includes non-stationary data obtained from the large amplitude response of a cable stayed
bridge to wind excitation and non-linear data obtained from the modal testing of a cracked
reinforced concrete beam. Neild et al measured and analyzed the stiffness across a cracked
region of a reinforced concrete beam over a cycle of static loads with four possible
non-linear mechanisms which resulted in amplitude-dependent natural frequencies'?. Neild
et al also studied the nonlinear vibration characteristics by conducting impact excitation
vibration tests on reinforced concrete beams at increasing levels of crack damage'”. Law
and Zhu presented an experimental study on a Tee-section reinforced concrete beam subject
to the action of a moving model vehicle in laboratory'®. Nonlinearities are detected by
examining the changes in the natural frequency when the vehicular loads are at different
locations along the beam.

In this paper, a damage beam element is developed to analyze the non-linear dynamic
behavior of damaged concrete bridge structures subject to moving vehicular loads. The
damage is modeled as a combination of a rotational spring and shear effect due to the
concrete cracking and local bond deterioration of the concrete-steel interface. Numerical
simulations are presented to study the damage effects on the dynamic behavior of concrete
bridge structures under moving vehicular loads. The results show that the model is reliable
and effective to describe the damage in the concrete bridge structures.

2. Damage Beam Elements

2.1 Rotational Spring Model

The rotational spring model is widely used to study cracked beams, in which the effect
of structural damage is modeled through a local compliance®. Since reinforced concrete
structures are nonlinear in behavior, important information is lost when the linear
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assumption is made. There are many existing hysteretic models to describe the deterioration
in the structures, especially for inelastic structures'’”. According to Richard and Abbott’s
hysteretic model'?, the moment-rotation relation at the damage point can be written as
follow.

M=|1-a,+ a ko] ()
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and the corresponding tangent stiffness by
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where Kk, is the initial rotational stiffness, |9| is the slip angle (i.e. the rotation of the

connection) equal to the difference between the angles at the two ends of a connection,
|6’|=|9;" —9:|, a, is the damage indicator which is defined as the ratio between the

stiffness reduction due to concrete cracking and local bond deterioration of the
concrete-steel interface to the initial stiffness and there is no damage when o, =0, M, is

a reference moment related to the yield moment and » is a parameter defining the sharpness
of the curve and controlling the smoothness of the transition from elastic to inelastic range.
When n — o0, the model reduces to a bilinear system.

2.2 Bond-slip Model

Concrete is a brittle materials in which micro and potential cracks are pervasive. The
observations using scanning electron microscope showed that the interface between the
concrete and steel was always surrounded by micro-cracks. When the micro-crack is formed,
debonding takes place, or a large slip occurs, the load-transferring capacity of the interface
between concrete and steel will drop dramatically. Energy dissipated by the friction
resulting from the interfacial relative displacement due to crack opening and closing. Here
an equivalent model at damage point is used to describe the concrete-steel interface
behavior. The model consists of three parameters basing on the load-deflection relation‘'” as

0=(-a,)0, — ®
(Qsm + (K ow)m)‘

where Q is the ultimate friction capacity of connection which is equivalent to the
characteristic frictional bond-stress value of the undamaged beam. @ is a scalar damage
indicator and there is no damage when o =0. K, is the initial connection stiffness of
undamaged beam and m is the shape parameter of Q-w curve. When m — o0, the model
is also a bilinear system. The corresponding instantaneous stiffness by

m (m+1)m
K,d=d_Q=(l__as)Kn l_ﬂ)__.__
dw (Kuw)m +Q:'

4)

244



14" Asia Pacific Vibration Conference, 5-8 December 2011, The Hong Kong Polytechnic University

2.3 Damage Beam Element
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Fig. 1 Cracked beam element

Figure 1 shows a prismatic isotropic beam element of length / with a damage zone
which is located at I, (/.#0) from left end. The damaged beam element is modeled as two
segment beam connected by a virtual spring. Assuming the rigidity of undamaged beam is
El, the stiffness matrices link up the force and deformation at the ends of two segment
beams are as follow

0, 12 6, -12 6l |[w
M| Er|6l & -6l 2 6, (5)
oLl Pl-12 -6, 12 -6l ||wh
M} 6, 2 -6l 4L ||6;
oy 12 6(/-1,) -12 6(-1,) |{w]
Mi|_ E1[6(~L) 4U-1L) -6(-L) 20-5L) |6 (
Q| (-ny| -12  -6(-1) 12 —-6(1-1)|lw,
M, 6(1-1,) 20-1,)" -6(-1,) 4U-1,) |6,

where W;,w;,6,,6; are the displacements and rotations of two nodes, Q,.Q,,M,, M,
are the corresponding lateral shear forces and moments at two nodes of the element,
wj,gj ,wf,ﬂf are the two end displacements and rotations of the spring,
QL M5, 0F , M¥ are the corresponding shear forces and moments at two ends of the
spring. d is the length of the damage zone. [, =1 —d/2,l,=1-1 —-d/2.
According to the three basic governing conditions, i.e. the compatibility, the

equilibrium and the constitutive relations for the spring, the connection matrix of the spring
is given as follow

o K, 0 -K, 0 wh

M| 0O K, O -K,|lé @
fo - st 0 Km’ 0 Wﬁ
M* 0 -k, 0 K,|l&

where K ,,K,, are the shear and rotational stiffness of the spring.

Substitute Eq. (7) into Egs. (5) and (6), the stiffness matrix of the damaged beam
element can be given as

F=K,q (8)

where F={0, M, 0, M,f, q={w, 6, w, 6],

J
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K, =K, +K,K, 'K, )
where
12/} 6/1} 0 0
W _pg| /8 4 0 0
V= 0 0 12/(1-1) -6/(i-1)
0 0 -6/(I-L) 4/(I-1)
12/ 6/} 0 0
K —g| 8E 2/ 0 0
2= 0 0 -12/(1-1,)y -6/(1-1)
0 0 6/(I-L)  2/(1-1)
K, 0 -K, 0 12/ —6/1I} 0 0
0 K, 0 -K, -6/} 471, 0 0
K, = ~EI ; .
K, 0 K, 0 0 0 12/(1-1) 6/(I-1)
0 -k, 0 K, 0 0 6/(I-L) 4/(I-1)
-2/ -6I/1I 0 0
6//1F  2I°/1, 0 0
«=EL 0 -12/(1-1) 6/(1-1) (10)
0 0 -6/(I-L) 2/(I-h)

2.4 Element Damage Index

In the inverse problem of damage identification, it is assumed that the stiffness matrix
of the whole element decreases uniformly with damage, and the flexural rigidity, £,
becomes (1—a)EI when there is a damage, and @ is the damage index. The fractional
change in stiffness of an element can be expressed as

AK,=(K,-K,)=aKk, (11
12 6/ -12 6l

_EI| 6 4P -6 2r 12)

P =12 -6l 12 -6l

6/ 21 -6 4
where K, and Ke are the element stiffness matrices of undamaged and damage beam
element,/is length of the beam element. AK _ is the stiffness reduction of the element. A
positive value of a € [0,1] will indicate a loss in the element stiffness. The element is

undamaged when @ = 0 and the stiffness of element is completely lost whena =1 .

S

Fig.2 The third element of bridge

246



14" Asia Pacific Vibration Conference, 5-8 December 2011, The Hong Kong Polytechnic University

0f]  [w
L 9!.
M: =kd{ “ b=
o Wy
M} or
£+Lj £+L _Q_Lj £+__6__ (13)
Fo(-n)y b (I-h) ro(-ny o o(-1)
6, _ 6 4,4 6 _ 6 2,2 W,
N I A N A N N VN A
12 12 6 6 12 12 6 6 wh
ST o 17 e pt T T 7| ag
!1 ("‘12) 1' (l_':z) !1 U—f;) 11 (}—12) 6{,
6, 6 2, 2 6 _6 4,4
_zf (1-1,) L (1-1,) (-5 4 (1-h) |

As previously deduced, the same relationship can be obtained as follows

F=K_q (14)

q={w3 6, w, 94}T’F={Q3 M; O, M4},KQ=K]+K2K;"'K4,

12/ -6/1; 0 0
-6/17  4/1 0 0
K’ =kd - EI 2 15)
’ 0 12/(1-L) 6/(I-1L)
0 0 6/(1-1) 4/(I-1)
3. Dynamic Response Analysis
3.1 Bridge-vehicle System
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Fig.3 Bridge-vehicle system

Figure 3 shows a vehicle moving at a speed v over a bridge modelled as a half vehicle
model""®. The bridge is modelled with different number of finite elements. The equation of
motion of the vehicle is derived using the Lagrange formulation as follow

Mv] 0 (7 Cvl 1 Cv]Z 3 KVI 1 Kv12 0 0
Y+ Y+ Y=—-{ ‘4 (16)
0 le Cle Cv22 KvZI Kv22 })inl Ms
where Y ={y.,6.,¥,,7,] is the response vector of the vehicle; M, is the static load

of the vehicle; M, M ,,C,,,,C,,,C.5.C 2. K, 1,K, ;5. K,,,K,,,, M are the mass,

damping and stiffness sub-matrices of the vehicle respectively and they are given in
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Appendix I; P, = {E(!),......,PNI,(I)}T is the vehicle-bridge interaction force vector
with N,=2, and

{ﬁ(t) = K;|(y| - W(fl(f),t) - r(j'l(t))) + Cti())l - W(il(r)at))
B (1) = K, (y, = w(£,(1),0) = r(%,(0))) + C,, (3, — W(%,(0), 7))

where r(x) is the road surface roughness at the location of the tires; Xx,(¢),X,(#) are
the positions of the front axle and rear axle respectively at time f, and g is the

(17

acceleration of gravity. W(X,(f),t), W(X,(f),?) are the vertical dynamic deflection of the

beam and its time derivative at the jth load at time . K” K, C” ,C,, are the stiffness

and damping of the two tires respectively.

The elemental mass and stiffness matrices are obtained using the Hermitian cubic
interpolation shape functions. The supporting beam structure is discretized into m-1 beam
element where m is the number of nodal points. The shape functions of the jth element in its
local coordinate can be obtained as follows:

I P N N SN N A R e 18
H, {f 3T H2ADT 2D I -2ADT X)) 1} (18)

where [ is the length of the beam element. With the assumption of Rayleigh damping, the
equation of motion for the bridge can be written as

M,R+C,R+K,R=H_P,, (19)
H P, ={0~H,PH B0} (20)
R={R1---Rhw}r={W|’6|s---wnw’9w}r (21)

where M, ,C, K, are the mass, damping and stiffness matrices of the bridge respectively.

R, R,R are the nodal acceleration, velocity and displacement vectors of the bridge

respectively, NN is the number of degrees-of-freedom of the bridge and ; is the number of
finite element in the beam, here NN=2 X (j+1), and H,.P;,, is the equivalent nodal load vector
from the bridge-vehicle interaction force with

0 -« 0 - H, - 0]
H, =
0 - H, -+ 0 - 0

H, is a NN XN, matrix with zero entries except at the degrees-of-freedom corresponding to
the nodal displacements of the beam elements on which the load is acting.

Combining Eqgs. (16) and (19), we have

Mb 0 HcMr.' R + Cb HchZI HcCVZZ R + Kb H{'Kv_’.' H.\:Kti‘i’ R _ HcMs (22)
o M, o [|¥f Lo c, C, Jl¥] o Kk, K. JI¥J71 o

To find the time response of the beam from Eq. (16), a step-by-step solution can be

obtained using the Newmark direct integration method. The deflection of the bridge at
position x and time 7 can then be expressed as

w(x,1) = H(x) R(?) (23)

where  H(x)={0 -~ Hx)! 0 - 0 | with (j-I)I<x(t)<jl.H)isa

Ix NN vector with zero entries except at the degrees-of-freedom corresponding to the
nodal displacements of the jth beam element on which the point x is located. The

components of the vector H(x); are calculated similar to Eq. (15) with x(7) replacing X (1).

The displacements W;(X,(f),f) at measurement locations X,(7),X,(?) can also be
obtained from the shape functions and nodal displacements of the beam as:
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[“" ] =H'R (4)

w;

where H, as mentioned before.
Substituting Egs. (16) for (24), we have

m 0] + -Cs, CyaS ||y, N C, 0O » + -Kg,  KgaS ||y,
0 m ||y, —C5, —Ca,8 || g 0 Col»n -Ks, —Kga,S || vy
N Ko 0 1j»|_ (K, 0 }in N K, 0 |]w (25)
0 Ky ly Lo K, || 0 K,jlw
G 01w Ci 0 |jw m, +a,m,
- .t . tg

0 C,||y 0 C,ilw m, +am,

Therefore, we obtain the governing equation of the front axle and near axle : {y; y_a}T

Mv2 {{;l } + C\'Z] {%,v } + Cv22 {J-)] } + Kv2'| {yv } + KVZZ {yl }
V2 Yo Y2 Yo Y2

=-K, {y‘}+K,Hj"R —c,{Jf' }+C,H{R+ M
Y, Ys

(26)

For Y, = {)z’v,}/'ﬁ}r,}’2 ={y,,»,}" ,and combining Egs. (22) and (26), the equation of

the whole system is:

M, 0 HM,|[R| [ ¢ HC, HC, |[R
0 M, 0 Y] + 0 Co Corz Y]
0 0 M v2 Yz _CrH : Cv21 Cv22 + C: )}z (27)

K.‘) HrKvZI H.-:Kv:Z R HCMS
+H 0 K K, [rt={ 0

vli 1

_K:H: szl szz + K: Yz M

s

4. Numerical Examples

A simply supported beam subject to two moving load. The parameters of the beam are:
EI=2.5%10'"Nm’, pA=5000kg/m and L=30m.The distant between the two moving loads is
5.27m; the moving speed of the vehicle is 30m/s. And six elements are used in the
calculation. The time interval is 0.01s, and t from 0 to 2. Suppose the third element is
damage element. The characteristics of the vehicle model are: m,=17.735kg, m,=1500kg,
m,=1000kg, S=5.27m, a,=0.519, a,=0.481,H=1.8m, k,,=2.47x10°N/m, k,=4.23x10°N/m,
kq=3.74x10°N/m, k,=4.60x 10°N/m, c;;=3.00x10°N-s/m, c;,=4.00x10* N-s/m, ¢,=3.90x10’
N-s/m, ¢o=4.30x10 N-s/m, and 1,=1.47x10°kg-m’.
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Fig.4 Dynamic response of the damage element

Figure 4 shows the dynamic response of the damage element with different damage
indicators and the vehicle-bridge interaction forces are shown in Figure 5. From the resuits,
the dynamic response and the interaction force increases with the damage.
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Fig.5 Vehicle-bridge interaction force
5. Conclusions

In this paper, we use a new damage beam element, modeled as a combination of a
rotational spring and shear effect due to the concrete cracking and local bond deterioration
of the concrete-steel interface, to analyze the non-linear dynamic behavior of damaged
concrete bridge structures subject to two moving vehicular loads. With the damage index
a increased, the amplitude of the vehicle-bridge interaction force and the bridge vibration
response increase. Compared with the non-damage element, the amplitude of damage
element changed greatly in different indicators. Further investigation is needed to fully
understand the nonlinear effect of the damaged concrete beam under moving loads.
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