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Abstract

This paper presents a new design of nonlinear dynamic absorber (NDA) using the
phenomenon of autoparametric interaction between the first symmetric mode and
the first anti-symmetric mode of a curved beam to reduce the resonance vibration
of a primary structure with a controllable operational frequency range. For a typical
autoparametric theory of a curved beam, the lowest excitation force required to
initiate an energy transfer from the first symmetric mode (g;) to the first
anti-symmetric mode (g-) involves tuning the ratio of the resonance frequencies of
the first symmetric mode (w;) and first anti-symmetric mode (;) to close to 2.

The resonance frequency of the first anti-symmetric mode (®,) can be altered to
control the operational frequency range. The autoparametric vibration response can
be used to create an energy-dissipative region to achieve a controllable bandwidth.
It is also possible to create a non-dissipative frequency region in between two
dissipative frequency regions. This is useful for providing damping with a
conventional mass damper. Numerical calculations indicate that the resonance
vibration of a primary structure can be successfully reduced using this approach.
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1. Introduction

The autoparametric vibration absorber and the nonlinear energy sink are two recently
developed passive nonlinear vibration absorbers. The former absorber dissipates the
vibration from the primary system by energy transfer between two modes. The two
quadratically coupled systems are subjected to primary excitation, and possess a 2:1 internal
resonance [1]. Vyas and Bajai [2] developed an array of pendulums with slightly different
natural frequencies to widen the effective bandwidth of the damper.

Vakakis and Gendelman [3-5] investigated the passive reduction of the vibration in a
linear system (discrete or continuous) by the one-way irreversible transfer of energy from
the linear system to an attached nonlinear damper, which is known as the energy pumping
phenomenon. Viguié and Kerschen [6] studied the vibration mitigation of nonlinear
mechanical systems using nonlinear dynamical absorbers and validated the approach using
numerical simulations. Cochelin et al. [7] conducted experimental tests of the energy
transfer between the first acoustic mode in a tube and a thin visco-elastic membrane to
examine the energy pumping phenomenon in an acoustic medium coupled with an
essentially nonlinear oscillator. They found that the use of a thin membrane to dissipate
energy required a larger amplitude of vibration.

This paper introduces the application of a curved beam as a nonlinear vibration
absorber to reduce the vibration of a linear primary structure by internal energy transfer
from the first symmetric mode to the first anti-symmetric mode. The resonance frequency of
the first anti-symmetric mode (;) can be altered to control the operational frequency range.
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2. Formulation for the vibration of a curved beam

2.1 Governing differential equation

The system under investigation is shown in Fig. 1. The initially curved beam is clamped
on opposite sides and subjected to uniform excitation. The flexural bending along its width
is assumed to be negligible.

Consider a beam of width B and length L in the x-direction with a thickness / that is

Fig. 1: Illustration of a clamped-clamped beam model.

subjected to transverse motion. The end moves only during the initial compression process
and is fixed for dynamic loading. According to Hamilton’s principle, the governing
differential equation of the clamped beam subjected to a uniaxial static load P and a
transverse harmonic support motion y is
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where m is the mass per unit length, w(x,t) is the transverse displacement of the beam,
w, is the initial static deflection of the beam, E is the Young’s modulus, 4 is the cross
sectional area of the beam, / is the moment of inertia of bending, ¢ is the damping
coefficient, F = pAz is the base excitation amplitude, z is the base excitation acceleration, p

is the beam density, o is the circular excitation frequency, and ¢ is the time.
The transverse displacement is expressed in terms of the beam mode shapes as

wix, 1) = q,(0)¢,(x)

= i (3)

where g; is the modal amplitude of the ith mode, ¢; is the ith mode shape function,

which is normalized so that the maximum value of each mode shape is equal to 1, i is the
mode number, and » is the number of modes considered.

2.2 Analytical prediction of the autoparametric interaction of a curved beam

The motion of the first symmetric mode ¢; and first anti-symmetric mode g, of a
clamped curved beam in a two-degrees-of-freedom equation can be formulated from Eq. (1)
as follows.

G, +2m,&g, + w12‘31 +K, (009’22) =Q, sin(at) i (42)
G, +20,8,q, + @22‘?2 + K, ,W0919, = 0, (4b)

where Kz and X2 are nonlinear coefficients, & and & are the modal damping
coefficients, Q, is the modal force, and w, and ®, are the circular resonant frequencies of the
first symmetric mode and first anti-symmetric mode, respectively. Rearranging equation
(4b) gives
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Gy +20,6,4; + @,°q, = K, 1,a09,4 ) (4c)

The excitation of the first anti-symmetric mode g, should be due to the time-dependent
coefficient g, ¢> This system is said to be parametrically excited because the solution to

a1 in Eq. 4a acts as a parametric excitation in the 7! (1)g, (1) term in Eq. 4b.

2.2.1 Transition curve for the symmetric mode
Letting ©=" Eq. 4a can be simplified as

4, +614,+q, +kg, =d5in’77’ (5a)
=2 ky = _Cl—:: d= Lz
where 61 51; (£ is the nonlinearity coefficient, M) is the amplitude of
n_i_ w '
. . - . ny=— . . .
the external excitation, 7 @ where ' @ ,  is the linear circular frequency of
C =KW,

the flat beam, and
Eq. 4b can be re-written as

G, +¢59, +ny)°q, +kyq,9, = 0, (5b)
"y =n_l=&5‘;3 =28,ny @, k, =—<21 5
where nl a)l s nE = Q s CII = 2“[(III.I"“'('I'I , and - [HIQ}" .

2.2.2 Nonlinear response curve for the anti-symmetric mode

1
. = g, = A,cos(ont+y,)
Letting 9 =4 cos(7+y1) an4 2 , where A4, and A4, are the

maximum amplitudes of the dynamic responses of ¢, and g,, these terms can be substituted
into equations 5a and 5b.

A 47/1 periodic solution can then be found by using the Poincaré-Lindstedt method .
This method leads to the following system of conditions.

1 >
oA+ Ek,Az“ cos(y, —2y,)—dcosy, =0

. (6a)
1 2
&4, — =k Ay sin(y, — 2w, ) —dsiny, =0
143 2 1452 1 2 1 , (6b}
o,4, + lsz1A3 cos(y, —2y,)=0
2 . (6¢)
1 .
=, A, —~—k, A A, sin(y, —2y,)=0
2 : (6d)

The amplitude of the g, coordinate follows from Egs 6a to 6d, and the result is
expressed in Eq. 7. A, isrelated to the stability boundary, and is called the transition curve.
4 =£(0f +&H
£ : )
According to the response-oriented approach, the response of the first symmetric mode
of a curved beam without autoparametric vibration can be expressed in the following exact
solution.

d
A4, =

(@ +¢)? . ®)
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An investigation of the curves of the linear first symmetric mode response equation (8)
and the transition curve equation (7) allows the estimation of the characteristic
autoparametric vibration between the resonances of the first symmetric mode ¢; and the
first anti-symmetric mode g,. The quadratic equation for the magnitude of vibration of the
g» coordinate is obtained from Eqs 6a and 6b as follows.

1 2
22+ Mz+T=0 z=gkkaA, . (9a)
Where 42 L[ arsy®] 7y d[[% )‘_1}, (9, 9¢)
™2 0

M=4(¢¢,-0,0,). Let y_pr_ar- 16[%&5& (0,83 +0.L, ]3] -(9d, 9¢)

The graphs for the first symmetric mode without autoparametric interaction 4, and the
transition curve 4; derived from the Mathieu equation under a certain level of excitation are
plotted in Fig. 2a.

The nonlinear (softening and hardening) vibration response curves for the first
anti-symmetric mode with autoparametric vibration under free vibration A4,, forced
vibration without damping 4, and forced vibration with damping A4,, are shown in Fig.
2b.
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Fig. 2. (a) Vibration response of first symmetric mode of a curved beam without autoparametric vibration -
W, (Eq.6) and transition curve for autoparametric response of first symmetric mode- A, (Eq.7). (b)
Nonlinear (hardening and softening) vibration response curve for first anti-symmetric mode with
autoparaemtric vibration under free vibration - A, ; forced vibration without damping - Ajg and forced
vibration with damping - A,g.

2.2.2.1 Free vibration

This part is focused on the explanations and mechanisms behind the phenomenon
mentioned in the previous part. Under the condition of free vibration, the amplitude of the
external excitation d and the damping coefficients ¢, and £, equal 0, and thus N
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becomes 0. From Egs 7 and 9, , :_499, and 4 =im can be obtained. Thus, 4,

Kk, k,

represents the free vibration behavior of a hardening and softening spring.

2.2.2.2 Forced vibration without damping
Under the condition of forced vibration without damping, the damping coefficients
¢, and &, equal 0. The nonlinear (softening and hardening) vibration response curves

for the first anti-symmetric mode can be expressed as 4 - |4 2.2d,and the difference
=¥ ¥ =
: J 3

between the vibration response 4, with and without an excitation force is only 2d  From

Eq.8 , _d.,andthus fg{%i”. In the section T<0 (4, > 4,), there is a unique

(F -
o, AR

solution to A, f+ . As presented in Fig. 2, in the two regions T>0, there are two solutions

A, ; and A,, for the magnitude of the first anti-symmetric mode. However, the

negative solution A:f_ = ’E(i_l)is unstable whenﬁ_l <o Thus, the condition for
k, A, 4,

the activation of the autoparametric interaction of the symmetric and anti-symmetric modes
1s A4}>A] .

The locations of Py, and P, which is marked with a circle in Fig. 2a and Fig. 2b,
respectively, corresponds to two the intersection point of A, and 4, As the damping
coefficients £, and £, equal 0, the normalized excitation frequency and magnitude of

vibration points can be derived as follows.

Normalized excitation frequency at P,, =P,,= 1+ [ ‘{ dk, H . (10a)
8

Normalized excitation frequency at P;;’=Py’= | - [ { dk, ﬂ .
8

Modal vibration magnitude/beam thickness at P;p=P3p’=201og(£]. (10b)
kh

2.2.2.3 Forced vibration with damping
For forced vibration with damping, there are three conditions for the solutions, as
presented in Figs. 2a and 2b. There is a unique solution for the first condition of 7<0 and

N>0, which corresponds to A4, < (Eq. 9¢) and N > M? (Eq. 9e), that is,
1 q

1
Am+=[—ﬂj‘{;~/ﬁ]z (see Fig. 2b).
12

There are two solutions for the second condition of T>0 and N>0, which
corresponds to N<M?, that is, Azf;:[_ M+JF]15 and A.‘!fd_ =[— M—WT (Fig. 2b).
T kk, Kk,

Damping limits the region of autoparametric interaction. N=0 is the boundary of the
autoparametric interaction between the vibration of the first symmetric mode and the first
anti-symmetric mode.

This boundary is marked by P,, in Fig. 2b. The location of P,, corresponds to the
intersection of the positive and negative values of N, which means that N=0. In this situation,
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___2k,d  The normalized excitation frequency and magnitude of vibration points Py,

(4g,+¢)
and P,,’ can then be derived as follows.
Normalized excitation frequency at P,,=P;, = 1 { okd ] (11a)
. X

Normalized excitation frequency at P,,’ =P;,” =

Modal vibration magnitude/beam thickness at P, =P’ =20log{ -4(o,) | (11b)
(kk, )z b

There is no solution for the third condition of 7 >Qand N<0.

The peak magnitude of vibration for the first symmetric mode, which is marked with
Pi.and corresponds to N=0, can be obtained by substituting _ __ 2k.d into Eq. 7. The

R (4¢.+¢)
peak magnitude of vibration P, can be further simplified as

Al as given by g . (12)

Z.

[§:+ 4)

Thus, o+ ¢, is the effective damping ¢ ", As shown in Eq. 7, in the absence of
4

autoparametric vibration, the first symmetric mode depends on the damping of the first

symmetric mode 4,= d . Note that in the presence of autoparametric interaction, the
S

effective damping of the first symmetric mode is dominated by the damping of the first

anti-symmetric mode g,

3. Application of a curved beam as a nonlinear dynamic absorber

A linear dynamic absorber is a well-known passive vibration reduction device. The
phenomenon of autoparametric interaction due to the first symmetric mode and the first
anti-symmetric mode of a curved beam, as studied in section 2, is applied to reduce the
symmetric mode vibration. In the conventional tuned mass damper system, the vibration of
the primary structure is transferred to the symmetric mode of the attached absorber, and
most of the energy must then be dissipated by additional damping material. For the
proposed nonlinear vibration absorber, the energy can be effectively dissipated by the
inherent material and joint damping through the motion of the anti-symmetric mode of the
beam.

Fig. 3 presents the theoretical response of a primary structure fitted with a conventional
linear vibration absorber with different damping coefficients. When &,=0.001, the highest
peak occurs in region 1, a lower peak occurs in region 3, and a large drop occurs in region
2. When the damping coefficient increases, the peaks in regions 1 and 3 become lower, but
the vibration response in region 2 increases. This indicates that damping reduces the
vibration reduction performance in region 2, but increases the vibration reduction
performance in regions 1 and 3. Note that the peak in region 1 is always higher than that in
region 3, which means that greater damping is required to dissipate the energy in region 1. A
dynamic absorber must thus exert different damping effects in regions 1, 2, and 3.

The damping effect of the proposed nonlinear vibration absorber can be controlled with
the resonance frequency of the anti-symmetric mode, as shown in Fig. 4. The frequency of
the dip point of the transition curve (2w,) is designed to correspond to the peak in region 1.
The peaks in both regions 1 and 3 are intersected by the transition curve, and can thus be
reduced by autoparametric interaction (i.e., the transfer of vibration of the first symmetric
mode to the first anti-symmetric mode of the curved beam). The vibration in the region
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between | and 2 is not affected.

The theoretical curved beam vibrations of the symmetric and anti-symmetric modes are
presented in Fig. 5a. The vibration peaks are dissipated by energy transfer to the
anti-symmetric mode. The vibration of the primary structure is also successfully reduced, as
shown in Fig. 5b.

The resonant peak of the primary structure at around w/m, = 2.36 is significantly
decreased. The peak at around w/m,=2.76 is insignificant because of its low amplitude. It
should be noted that no additional damping material is required to achieve a sufficient
reduction in vibration. Furthermore, there is no increase in vibration in region 2. The
nonlinear dynamic absorber thus provides a controllable bandwidth for the damping effects
through autoparametric interaction.
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Fig. 3. Vibration of primary structure with the Fig. 4. The design resonant frequencies of
effect of conventional tuned mass damper. symmetric and anti-symmetric mode for a
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Fig 5. (a) Theoretical vibration results of the nonlinear curved beam absorber (b) Theoretical
vibration results of primary structure

4. Conclusion

Based on the phenomenon of autoparametric interaction, a curved beam can serve as a
nonlinear dynamic absorber, and can be used to control the operational frequency range.
This is achieved through the appropriate design of the resonance frequency of the
anti-symmetric mode. The two vibration peaks of the primary system are dissipated by
energy transfer from the symmetric mode to the anti-symmetric mode of the secondary
system. The vibration at the frequencies between the two peaks is not affected, and there is
no increase in vibration compared with the scenario without a mass damper. Importantly,
the use of the autoparametric effect with a nonlinear dynamic absorber means that no
additional damping material is required to achieve a sufficient reduction in vibration. The
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autoparametric vibration response can be used to create an energy-dissipative region for a
controllable bandwidth. It is also possible to create a non-dissipative frequency region
between two dissipative frequency regions. Unlike the nonlinear energy sink, this approach
does not require a higher amplitude of vibration. Furthermore, it can maintain a reliable
performance in hot and corrosive environments in which damping material does not usually
perform well.
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