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Abstract

GPS has been studied extensively in recent years for monitoring structural
dynamics and deformation. The technology offers a number of advantages in
such applications. It is however well known that GPS observations are often
affected by error sources such as the GPS signal multipath effects especially
on observation sites where there are smooth reflective surfaces such as
structure surfaces on a building roof or the suspension cables on a cable
stayed bridge. The errors often render the GPS observations inaccurate and
unreliable. We investigate in this research into a structure monitoring system
where GPS and a tiltmeter are integrated on a common platform so that the
GPS and the tiltmeter measurements can be integrated. Since the error
sources of GPS and the tiltmeters are different, the combined system makes
good use of the complementary natures of the sensors to derive better
monitoring results. The integrated system, the data processing and analysis
involved and some experimental results are presented.
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1. Introduction

Global Positioning System (GPS) has become a useful tool for monitoring deformation
and dynamics of structures, such as dams, bridges and high-rise
buildingsSHOMDADARNNAD However, GPS positioning accuracy in such applications is
highly sensitive to multipath effects that occur when GPS signals reflected by nearby objects
arrive at a receiver’s antenna”?. In addition, for high-rise structure monitoring, the
tropospheric effects cannot be effectively mitigated by the double-difference operations in
GPS data processing'”. Errors from the multipath and tropospheric effects can often become
significant for structure monitoring applications.

GPS carrier-phase multipath effects can be avoided or reduced, for instance, by using
multipath-rejecting GPS antennas (e.g. advanced pinwheel compact controlled reception

pattern antenna(gl

and chokering antenna) or the so-called multipath “resistant” receivers
employing correlation techniques, such as the narrow correlator spacing!'”, MET"® and
MMW® techniques. Other post-processing techniques, such as weighting GPS observations
based on signal-to-noise ratio (SNR) or carrier-to-noise power-density (C/N0)P®, and
using various filtering approaches!'®!P %D Nevertheless, it is very difficult to
mitigate multipath errors completely using any of these approaches. It is also a very
challenging task to model and mitigate the tropospheric effects when high-rise buildings are
monitored"”.

We will present in this paper an integrated structure monitoring system consisting of a

multi-antenna GPS system and a dual-axial tiltmeter. The system makes use of the
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complementary natures of GPS and tiltmeter measurements to derive accurate structural
deformation information.

2. Integrated Monitoring System

2.1 Hardware Components

We deploy a rigid steel platform (Figure 1) on which a dual-axial tiltmeter and three
GPS antennas (A1, A2 and A3) are firmly attached. The distances between the antennas are
1 m and the tiltmeter is fixed at the centre of the triangular platform. Single frequency GPS
receivers (e.g., Hemisphere SX2) and antennas are used. The accuracy of the tiltmeter is
about +3”.

Fig. 1 Hardware components of integrated system

2.2 Observations equations
As shown in Figure 1, the tilt angles X, and Y, can be expressed as
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where X, and Y, are the tilt angle measurements along the X and the Y axis of the

tiltmeter, respectively; H, (i =0,1,2,3) is the elevation of point Ai, and L_12 and L; are the

known distances between antennas A1 and A2 as well as between Al and A3.
The longitude, latitude and elevation of a point can be computed from the geocentric
Cartesian coordinates X ,Y,.,Z,,
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where ¢ is the semi-major axis and e is the eccentricity of the ellipsoid. Considering
Equations (1) and (2), we can get

134



14" Asia Pacific Vibration Conference, 5-8 December 2011, The Hong Kong Polytechnic University

i
X, = arcsin( SnZ, SB )
LI:!
23 + 22 . Z| _
Yﬂ=arcsin(2smB3_ ZZ&_;]nB3 sin B, ) 3)
(%)*sinmm)
where
Gl (1-€%)~ e (1 - &%)
J1-¢’sin’ B, J1-¢’sin’ B,
F a a a )(l—ez)

..—_( -+ —
2/1-¢*sin’B, 2,i-¢’sin’B, 41-¢’sin’B,

Linearise the equation for the Y axis, we can get
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Y? is the measured tilt angle; and Y. is the tilt angle calculated from the initial coordinates.
The observation equation for the tilt angle along the X axis can be derived similarly,
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X! is the measured tilt angle; and X. is the tilt angle calculated from the initial

coordinates.

135



14" Asia Pacific Vibration Conference, 5-8 December 2011, The Hong Kong Polytechnic University

When assuming that the distances between the antennas do not change during the
observations, constraints can be applied by considering the distances as highly accurate
distance observations. The observation equation of the distance between point Al and A2
can be derived,

L, =J(X1 _Xz)2 +(X _Yz)z +(Z, _Zz}z
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L, is the distance calculated from the initial coordinates; and L, is the observed distance.
Similarly we can get,
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3. Experiments

A full week of observations with the integrated system were carried out at the site
shown in Figure 1. The data sampling rate is | Hz for both the GPS system and the tiltmeter.
The platform was kept still during the experiments and it is also assumed that the movement
of the building (a 8-storey concrete building) was insignificant. When comparing the angles
measured by the tiltmeter and those calculated from GPS observations, it is seen that the
tiltmeter measurements are in general much more accurate. Figure 2 shows one hour of such
results.

The RMS values of the results from the GPS measurements are 0.467 and 0.674 degrees
respectively in the X and Y axes while those from the tiltmeter are 0.005 and 0.004 degrees.

The variations of the distances calculated from the GPS observations are illustrated in
Figure 3 where one hour data was also used. It is seen that the distances vary in general
within about +10 mm.

When the elevations of the points measured from GPS system alone and from the
integrated system are compared (Figures 4 and 5), it can be seen that the results can be
improved in general when the integrated system is used. Figure 4 shows the results from two
hours of observations while Figure 5 shows an enlarged section of the results.
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Table I gives the statistics of the results from the whole week of observations. It is seen
from the results that the accuracy of the observations were improved in all the three
coordinate components while the accuracy of the elevations was improved most.
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Fig. 3 Variations of distances calculated from GPS observations
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Fig. 4 Elevations from GPS observations only (left panels) and from the integrated system (right panels)
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Fig. 5 Enlarged section of Fig. 4.

Table 1. RMS of coordinate variations from GPS alone and from the integrated system

North East Elevation

(mm) (mm) (mm)
Al GPS 3.33 2.74 7.88
Integration 2.72 1.90 5.14
A2 GPS 3.08 2.82 8.50
Integration 2.22 2.24 5.38
A3 GPS 2.94 2.80 6.63
Integration 2.22 1.88 5.23
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4. Conclusions

An integrated structure monitoring system that consists of a multi-antenna GPS system
and a dual-axial tiltmeter has been studied. The data processing model along with
experimental results from the system have been presented. It is seen from the results that the
integrated system can in general improve the observational accuracy over the GPS alone
system in all the three coordinate components while the improvement in the elevation is
most obvious. The integrated system should be useful in mitigating GPS observational
errors such as the errors due to the GPS signal multipath and tropospheric effects.
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