
IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XX 2015 1

Bifurcation Analysis and Experimental Study of a
Multi-Operating-Mode Photovoltaic-Battery Hybrid

Power System
Xiaoling Xiong, Chi K. Tse,Fellow, IEEE,and Xinbo Ruan,Senior Member, IEEE

Abstract—The stand-alone hybrid renewable power generation
systems for local applications have gained popularity in recent
years. However, due to the intermittent nature of the renewable
resources, the hybrid renewable power generation systems are
often designed to operate with multiple structures and multi-
ple operating modes. The design for stable operation of such
systems requires consideration of the stability conditions for
all possible structures and operating modes. As a system of
practical importance, the stand-alone photovoltaic-battery hybrid
power system is studied for illustrating the possible complex
behavior in this paper. We reveal smooth bifurcation in this sys-
tem, including slow-scale Neimark-Sacker bifurcation, fast-scale
period-doubling bifurcation as well as coexisting bifurcation.
Under certain conditions, when the system switches its operating
mode, a non-smooth bifurcation, manifested as a jump between
stable and unstable behavior, can also be observed. Moreover,
a detailed analysis based on a discrete-time mapping model is
performed to identify these bifurcation phenomena and evaluate
the stability boundaries of the system. Extensive experiments
verify the theoretical analysis and simulated results.

Index Terms—Bifurcation, fast-scale instability, low-scale in-
stability, photovoltaic-battery hybrid system.

I. I NTRODUCTION

GLOBAL environmental concerns and increased demand
for energy consumption, coupled with a steady devel-

opment of renewable energy technologies, are opening up
new opportunities for developing renewable power generation
systems [1]. For localized applications in some remote non-
electrified regions, constructing stand-alone power generation
systems is often more cost-effective than the conventional de-
ployment of the grid-connected power generation system [2]–
[9]. However, as climate, solar radiation, wind speed, etc. vary
from time to time, the availability of energy from renewable
sources is not always predictable. Thus, a power system that
depends entirely upon multiple renewable energy sources can
be unreliable. In order to provide continuous electrical power
to the load, the use of energy storages in stand-alone renewable
power generation systems is usually adopted. The renewable
energy sources and energy storages can be connected to a
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common dc bus via a number of power converters [4]–[10].
In some applications, the power sources are close to the load,
and multiple-input converters [11] or multiple-port bidirec-
tional converters [2], [12] can be used as interface conversion
systems. Regardless of the exact topologies used, the switching
circuits and control systems are required to regulate the dc bus
voltage and maximize the use of renewable energy, as well
as balance the power from all sources. Then, the renewable
power conversion unit may operate in a maximum power point
tracking (MPPT) mode or off-MPPT mode, and at the same
time, the energy storage unit may provide power to the load
or store energy from the renewable power sources. The whole
system is thus designed to operate with multiple structures
and multiple operating modes [3], [5]–[12]. As a result, the
dynamics of such a system is rather complex. The closed-loop
design has to take into consideration the different modes of
operation. It can thus be appreciated that the stability issue
is non-trivial as the system assumes different structures in
different operating modes under different ranges of parameters.

For most power electronics systems, normal stable operation
refers to stable period-1 operation, which is often the expected
operating regime for practical applications. Operation states
that are not the normal operation are practically regarded
as unstable states, and the bifurcation refers to the change
from one type of operation to another. As of now, a rich
set of nonlinear phenomena have been investigated in power
electronic circuits, such as period-doubling bifurcation [13]–
[18], Neimark-Sacker bifurcation [19], saddle-node bifurca-
tion [20], border collision [20]–[22] and chaos [14]–[21].
Due to the change of switching structure, border collision as
a type of non-smooth bifurcation has been found in many
switching systems, which is characterized by a discontinuous
‘jump’ in the eigenvalues of the Jacobian as some parameters
are varied continuously [21]. In such a case, the duty cycle
becomes saturated as it is bounded between 0 or 1. In recent
years, the nonlinear stability analysis has been extended to
more complex conversion systems, such as the high order
Ćuk converter [23], [24], single-inductor dual-switching dc-
dc converters [25], multichannel converters [26], [27], and
grid-connected power converters [28]–[30]. However, the dy-
namics of a multi-structure multi-operating-mode system has
rarely been formally discussed in the literature [31], [32].
To illustrate the possible complex behavior in this kind of
system, a commonly used multi-operating-mode stand-alone
photovoltaic-battery hybrid power system (PBHPS) is studied
in this paper, which is based on a solar power system and a
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battery connected to an output dc bus via a boost converter
and a bidirectional buck-boost converter, respectively.

II. PHOTOVOLTAIC-BATTERY HYBRID POWER SYSTEM

A. PBHPS Description

In PBHPS, a solar power system and a battery are connected
to an output dc bus via a boost converter and a bidirectional
buck-boost converter, respectively. Shown in Fig. 1 is a com-
monly used practical PBHPS,wherevof = voHof andvbatf =
vbatHbf . Here,Hof andHbf are the sampling coefficients for
the output voltage and the battery voltage, respectively. They
are proportionality constants implemented by resistor dividers.
Also, Ks is the sampling coefficient for inductor currentiLb1

and is also a proportionality constant.The basic control law
in the input power distribution aims to provide power to the
load primarily by photovoltaic (PV) panels, and when solar
power becomes excessive or insufficient, the battery servesas
a power storage or backup power source. In practice, MPPT
for the PV power system is implemented with the Perturb-and-
Observe algorithm [33], which regulates the referenceImppt

while the light intensity varies, and forcesiLb1 to follow the
reference current under the action of the peak current control
loop. When the system enters the steady state,Imppt is tracked
to the current reference at the maximum power point. The
compensation ramp is applied to increase the stability range
of peak current controlled converters.

Depending on the amount of available solar powerppv and
the state of the battery, the PBHPS has three normal operating
modes, as shown in Table I, wherePo is the output power,
Vbmin and Vbmax are the permitted minimum and maximum
battery voltages, andIbmax is the charging current limit.

Operating ModeM1 — If ppv < Po, the solar power is
controlled by the peak current control loop in Fig. 1(b), with
the MPPT algorithm enabled, i.e., the peak current reference
Iref = Imppt. The battery provides complementary power
through the bidirectional buck-boost converter operatingin
boost mode to regulatevo. Thus, in this operating mode, diodes
Dc, D2 andD3 are off, andD1 is on.

If ppv is larger thanPo by a small margin, the excessive
solar power is used to charge the battery. In this case, the
battery charge current is controlled by the energy flow balance,
i.e.,ppv = Po+pbat. Assuming converters are lossless,pbat =
vbatibat is the power absorbed by the battery.

Operating ModeM2 — If more excessive power is available
from the PV panels, causing the charge currentibat to reach
the limit Ibmax, then the bidirectional buck-boost converter
operates in buck mode to control charge current, i.e.,D2 is on
andD1 is off . Meanwhile, as excessive power is delivered to
the load,vo increases, causing the error signalve to decrease.
When it falls below zero, diodeDc is turned on, andvo is
regulated through the voltage loop with an inner peak current
control loop, i.e.Iref = Imppt + ve. Under this condition, the
MPPT algorithm is disabled asve is smaller than zero and
Iref is regulated byve.

Operating ModeM3 — If ppv ≥ Po and the battery is fully
charged, the constant voltage charging (float charging) loop is
enabled to prevent self-discharge of the battery, causingD3 to
turn on andD2 to turn off.
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Fig. 1. Photovoltaic-battery hybrid power system. (a) Maintopology; (b)
control system; (c) typical waveforms for peak current control loop; (d) PI
compensator.

TABLE I
OPERATING MODES AND CONDITIONS

ppv < Po ppv ≥ Po ppv ≥ Po

ibat < Ibmax ibat ≥ Ibmax

vbat ≤ Vbmin shut down M1 M2

Vbmin < vbat < Vbmax M1 M1 M2

vbat ≥ Vbmax M1 M3 M3



XIONG, TSE AND RUAN: BIFURCATION ANALYSIS AND EXPERIMENTAL STUDY OF A PHOTOVOLTAIC-BATTERY HYBRID POWER SYSTEM 3

TABLE II
PARAMETERS FOR COMPONENT AND CONTROL SYSTEM USED IN SIMULATION.

Ts Vocpv rpv Io Lb1 Lb2 Cpv Cf Cbat Vocbat rbat Vo Vbmin Vbmax

10µs 20–34V 50mΩ 0–5A 48µH 48µH 200µF 1880µF 400µF 34–40V 24mΩ 48V 34V 40V

kp1 τf1 kp2 τf2 kp3 τf3 Voref Vbref Ibmax Imppt Hof Hbf Ks Vp

1 0.001–0.6ms 1 0.01ms 10 0.012ms 2.5V 2.5V 3A 0–3A 1/19.2 1/16 0.1 0–0.2V
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Fig. 2. Typical simulated waveforms in operating modeM1 for different values ofVocpv, with Vocbat = 38 V, Imppt = 0.3 A, τf1 = 0.475 ms,Vp = 0 V
andIo = 3.3 A are kept constant. Upper trace: actual simulated waveforms, lower trace: sampled-data waveform at the beginning of each switching period. (a)
Stable period-1 operation withVocpv = 32 V; (b) NS bifurcation withVocpv = 26 V; (c) coexisting fast-scale and slow-scale bifurcation with Vocpv = 24 V.

B. Bifurcation Behavior from Simulations

Circuit simulations are performed to examine the stability
of PBHPS. In our study, the converter parameters are chosen
so that CCM is the default operating mode. The switching
frequency of the two converters are the same and trailing
edge modulation is used for “PWM Comparator2”. First-
order proportional-integral (PI) regulators are employed, as
shown in Fig. 1(d),and the transfer function isGPI(s) =
kp
(

1+ 1/(sτf )
)

, wherekp = R2/R1 andτf = R2C1 are the
proportional gain and the integral time constant. The parame-
ters used in the simulations are shown in Table II, whereVo

is the direct component ofvo; kpj and τfj (j = 1, 2, 3) are
parameters for thejth regulator in Fig. 1(b).

For practical purposes, we examine the dynamic response
with Imppt, Vocpv, RL, Vocbat and closed-loop parameters
serving as the bifurcation parameters, as shown in Figs. 2 and
3. From Fig. 2, the system becomes unstable with slow-scale
oscillation whenVocpv is decreased to 26 V. Here the system
operates inM1, and the instability can be recognized as a
Neimark-Saker (NS) bifurcation. AsVocpv is further reduced
to 24 V, a coexisting fast-scale and slow-scale oscillationwill
occur [13]. From Fig. 3, we see that the system is stable in the
initial operating mode, but it becomes unstable as it switches
to another operating mode when the load steps up. Thus, this
bifurcation is a non-smooth one. For brevity, we will reportthe
representative smooth and non-smooth bifurcations and will
omit the various repetitive details of such bifurcations asthey
bear no practical consequence to the present study.

III. A NALYSIS BASED ON DISCRETE-TIME MAP

From the foregoing simulation results, we have observed
that the system may become unstable through slow-scale
bifurcation or fast-scale bifurcation in some particular regions
of the parameter space. In this section, we will use a discrete-
time model to analyze these bifurcation phenomena. For the
purpose of illustration, we consider operating modeM2, and
the same analysis procedure can be applied to other operating
modes.

From Fig. 1, the state variable vector of the system can
be got asx = [vo iLb1 iLb2 vpv vbat ve vc]

T . As CCM
operation is assumed, diodeDpv and switchQ3 are always
in complementary states to switchesQ1 and Q2. Then, the
state equations for the main circuit are

dx1

dt
=

−1

RLCf

x1 +
1− q1
Cf

x2 +
1− q2
Cf

x3

dx2

dt
=

q1 − 1

Lb1
x1 +

1

Lb1
x4

dx3

dt
=

q2 − 1

Lb2
x1 +

1

Lb2
x5 (1)

dx4

dt
=

−1

Cpv
x2 −

1

rpvCpv
x4 +

1

rpvCpv
vocpv

dx5

dt
=

−1

Cbat
x3 −

1

rbatCbat
x5 +

1

rbatCbat
vocbat

whereq1 andq2 are the switching functions, given asqi = 1
for Qi is on andqi = 0 for Qi is off.
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Fig. 3. Simulated transient waveforms withVocpv = 26 V and Imppt = 0.8 A. (a) Load current stepped up from 20% load to full load withVocbat = 38
V and τf1 = 0.39 ms. The system switches from operating modeM2 to M1, and slow-scale bifurcation occurs inM1. (b) Load current stepped down from
full load to 20% load withVocbat = 39.99 V and τf1 = 0.6 ms. The system switches from operating modeM1 to M3, and it becomes unstable inM3.

From the transfer function of PI control and Fig. 1(d), we
can write

v2 = kp

(

1 +
1

sτf

)

(Vref − v1) (2)

Upon differentiating both sides of equation in (2), we get

dv2
dt

= −kp
dv1
dt

−
kp
τf

v1 +
kp
τf

Vref (3)

In M2, the boost converter operates with a dual loop to
regulate the bus voltage, whereas the buck-boost converter
operates in buck mode to control the charging current, as
shown in Fig. 1(b).For the “Output Voltage Regulator1”, we
substitutev1 = vof = Hofvo andv2 = ve = x6 into (3), and
get

dx6

dt
= −kp1Hof

(

dx1

dt
+

x1

τf1

)

+
kp1
τf1

Voref (4)

For the “Charge Current Regulator2”, due to the negative
logic, we havex7 = vc = −v2, v1 = −iLb2, andVref = Ibmax.
Then, using (3), we have

dx7

dt
= −kp2

dx3

dt
−

kp2
τf2

x3 −
kp2
τf2

Ibmax (5)

In one switching period, the system toggles among three
switch states and the sequence takes the following order: (i):
Q1 andQ2 are on; (ii):Q1 is on andQ2 is off; (iii): Q1 and
Q2 are both off. Here,as switchQ2 of the bidirectional buck-
boost converter is controlled so that its output voltage is equal
to the boost converter’s. From Table II andVocpv ≤ Vocbat,
we see that the duty cycle ofQ1 is larger than that ofQ2.
Accordingly, the switch state “Q1 is off andQ2 is on” will not
occur. The corresponding state equations for the three switch
states can be expressed as

ẋ = A2kx+B2kE2 (6)

where k = 1, 2, 3 is corresponding to the switch state (i),
(ii) and (iii), respectively;E2 is the vector of input voltage
and reference signals in operating modeM2, i.e., E2 =

[Vocpv Vocbat Voref Ibmax]
T . System matricesA2k and B2k

are given in (7) which is shown on the top of next page, and
(8) below.

B2k =























0 0 0 0
0 0 0 0
0 0 0 0
1

rpvCpv
0 0 0

0 1
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0 0

0 0
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τf1
0

0 0 0 −
kp1

τf2























(8)

Denotexn andxn+1 as the state variable at the start and
the end of thenth switching period, respectively. Using (6),
we can derive the solution directly as

x21 =Φ21(d2Ts)xn +Ψ21(d2Ts)E2 (9)

x22 =Φ22

(

(d1 − d2)Ts

)

x21 +Ψ22

(

(d1 − d2)Ts

)

E2

xn+1 =Φ23

(

(1− d1)Ts

)

x22 +Ψ23

(

(1− d1)Ts

)

E2

whered1 and d2 are the duty cycles ofQ1 and Q2 in the
nth switching period, respectively, which is usually a function
of the system’s state variables, as will be discussed later;x21

and x22 are the solution at the end of switch state (i) and
(ii); Φ2k(ξ) andΨ2k(ξ) (k = 1, 2, 3) are the corresponding
transition matrix and system matrix forM2, given as

Φ2k(ξ) = eA2kξ = I +

∞
∑

n=1

1

n!
An

2kξ
n

Ψ2k(ξ) =

∫ ξ

0

Φ2k(ξ − τ)B2kdτ (10)

By stacking the state variables at the end of each switch
state in (9), the discrete-time model can be obtained as

xn+1 = Φ23

(
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)

Φ22
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Φ21(d2Ts)xn
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(
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(

(d1 − d2)Ts

)
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(
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(
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)
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+Ψ23

(

(1− d1)Ts

)

E2

def
= f(xn, d1, d2, E2) (11)



XIONG, TSE AND RUAN: BIFURCATION ANALYSIS AND EXPERIMENTAL STUDY OF A PHOTOVOLTAIC-BATTERY HYBRID POWER SYSTEM 5
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To complete the discrete-time map, the relationship between
the duty cycles and the state variables should be derived.
During switch states (i) and (ii),Q1 is always on. Thus,
inductor currentiLb1 rises, and when the sampled current
KsiLb1 reaches the reference levelIref , switch Q1 is turned
off. Thus, the switching function forQ1 can be derived as

s21 = Imppt + ve(d1Ts)−mcd1Ts −KsiLb1(d1Ts)

= Imppt −mcd1Ts +C1x22 (12)

whereC1 = [0 −Ks 0 0 0 1 0], andmc is the compensation
slope given bymc = Vp/Ts.

In the charging current control loop, the “PWM compara-
tor2” compares the error signalsvc with the ramp signal:

vramp = VL +mramp(t mod Ts) (13)

whereVL andmramp are the lower threshold and rising slope
of the ramp signal, respectively. Basically,Q2 is turned on if
vc > vramp, and is off otherwise. Then, we can also get a
switching function forQ2, as

s22 = vc(d2Ts)− vramp

= C2x21 −mrampd2Ts − VL

(14)

whereC2 is expressed asC2 = [0 0 0 0 0 0 1].
Combining (11), (12) and (14), an exact discrete-time

model is derived. Here, we will investigate the dynamical
behavior of the system by examining the movement of the
eigenvalues when some chosen parameters are varied. Suppose
the equilibrium point is given asx = xe2. By setting
xn+1 = xn = xe2, s21 = 0 ands22 = 0, the equilibrium point
xe2 and steady-state duty cyclesD1 andD2 can be obtained.
Then, the Jacobian,J2(xe2) = ∂xn+1/∂xn, evaluated at the
equilibrium point can be derived as

J2(xe2) =
∂f

∂xn

+
∂f

∂d2

∂d2
∂xn

+
∂f

∂d1

∂d1
∂xn

∣

∣

∣

∣

xn=xe2

(15)

In (15), the relationship betweendi(i = 1, 2) and xn is
implicit in s21 = 0 and s22 = 0. Thus, the Jacobian can be
derived with implicit function theorem, giving

J2(xe2) =
∂f

∂xn

−
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∂d2

[
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]
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xn=xe2

For brevity, we omit the derivation of the Jacobians for
operating modesM1 andM3.
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Fig. 4. Loci of eigenvalues for (a)Vocpv is decreased from 34V to 20V
with Imppt = 0.3A in M1; (c) load current increases from 10% load to full
load with Imppt = 0.8A andVocbat = 38V; (e) load current decreases from
full load to 10% load withImppt = 0.8A and Vocbat = 39.99V; (b), (d)
and (f) are enlarged views of (a), (c) and (e)showing movement of the pair
complex eigenvalues crossing the unit circle. The blue locus corresponds to
eigenvalues inM1, black refers toM2 and the purple corresponds toM3.
Arrows indicate movement directions of eigenvalues.

Now, we solve the characteristic equation forJ2(xe2):

det[λI − J2(xe2)] = 0 (17)

where I is unit matrix. From (17), we can compute all the
eigenvalues. If all the eigenvalues are inside the unit circle,
the equilibrium state is stable. Any eigenvalue crossing the
unit circle from interior to exterior indicates a bifurcation.
In particular, if a negative real eigenvalue crosses the unit
circle at (–1, 0) point, a fast-scale period-doubling bifurcation
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Fig. 5. Stability boundaries in different parameter space.(a)–(d) for different PI parameter space and the bifurcation is slow-scale Neimark-Sacker bifurcation.
(a) System operates inM1, with Vocpv = 28 V, Vocbat = 36 V, kp3 = 10, τf3 = 0.02 ms; (b) system operates inM2, with Vocbat = 36 V, kp3 = 10,
τf3 = 0.02 ms, Imppt = 2 A; (c)–(d) system operates inM3 with Vocpv = 28 V, Imppt = 2 A; (c) kp3 = 10, τf3 = 0.02 ms; (d) kp1 = 1,
τf1 = 0.01 ms. (e)–(f) for varying sunlight intensity,τf1 andVp, with kp1 = 1, kp3 = 10, τf3 = 0.02 ms andVocbat = 36 V being held constant. (e)
τf1 = 0.39 ms,Vp = 0 V; (f) τf1 = 0.47 ms,Vp = 0.08 V. Points are stability boundaries obtained from circuit simulations. Stable and unstable regions
of operation are located above and below the boundary line, respectively.

occurs; and if a pair of complex eigenvalues move out of
the unit circle smoothly, the system undergoes a slow-scale
NS bifurcation. Here, when both conditions are satisfied,
coexistence of the two types of bifurcation is observed [13].
Moreover, if any eigenvalue “jumps” across the unit circle,a
non-smooth bifurcation occurs.

Numerical calculations of the eigenvalues are performed.
Tables III to V show typical scenarios of the variation of the
eigenvalues under the same condition in Figs. 2 and 3. From
Table III, we observe the system loses stability via a smooth
NS bifurcation asVocpv is decreased to 26V inM1. As Vocpv

is further decreased, a negative real eigenvalue crosses the (–
1, 0) point, and slow-scale and fast-scale oscillations emerge.
From Table IV, it can be seen that the number of eigenvalues
becomes 6 and the modulus of one complex conjugate pair is
larger than unity when the system switches fromM2 to M1,
indicating the occurrence of a non-smooth bifurcation. From
Table V, it can be found that the system loses stability as long
as the system switches fromM1 to M3 as the load decreases,
then this bifurcation is also a non-smooth one.

The corresponding loci for eigenvalues are plotted in Fig. 4.
From Figs. 4(a) and (b), we observe a negative real eigenvalue
and a pair of complex eigenvalues which moves through
the unit circle smoothly. In Figs. 4(c) and (d), one complex
conjugate pair “jumps” off the unit circle whenRL decreases
to 39.1 Ω, indicating the occurrence of a non-smooth bifur-
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fast−scale bifur.

M
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V
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V
p(V

) Stable
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Fig. 6. Stability boundary withVocpv and Vp serving as bifurcation
parameters. Points are stability boundaries obtained fromcircuit simulations.

cation. From Figs. 4(e) and (f), it can be observed that one
complex conjugate pair “jumps” off the unit circle as the
system switches fromM1 to M3. These numerical results
agree well with the bifurcation phenomena observed in the
circuit simulations shown earlier in Figs. 2 and 3.

IV. STABILITY BOUNDARIES IN PARAMETER SPACE

For most practical purposes, only period-1 operation is
acceptable, and bifurcation is not permitted. Hence, stability
boundaries are very useful design information for engineers
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TABLE III
EIGENVALUES FOR DECREASINGVocpv WITH Imppt = 0.3A IN OPERATING MODEM1

Vocpv(V) Mode eigenvalues Modulus Remarks

32 M1 -0.49288 0.36751 0.61298 0.989260.99921 ± j0.03803 0.99993 Stable

27 M1 -0.77664 0.36793 0.61298 0.989260.99927 ± j0.03801 0.99999 Stable

26 M1 -0.84601 0.36800 0.61298 0.989260.99928 ± j0.03800 1.00000 NS bifurcation

24 M1 -1.00169 0.36813 0.61298 0.989260.99930 ± j0.03800 1.00000 Coexisting

TABLE IV
EIGENVALUES FOR INCREASING LOAD CURRENT(REDUCING LOAD RESISTOR) WITH Imppt = 0.8A AND Vocbat = 38V.

RL(Ω) Mode eigenvalues Modulus Remarks

48 M2 -0.86349 0.14803 ± j0.35684 0.99912 ± j0.00607 0.36801 0.60789 0.38633 0.99914 Stable

40 M2 -0.86489 0.14803 ± j0.35684 0.99910 ± j0.00606 0.36801 0.60789 0.38632 0.99912 Stable

39 M1 -0.86427 0.99998 ± j0.03874 0.36801 0.61298 0.98721 1.00073 slow-scale

TABLE V
EIGENVALUES FOR DECREASING LOAD CURRENT(INCREASING LOAD RESISTOR) WITH Imppt = 0.8A AND Vocbat = 39.99V.

RL(Ω) Mode eigenvalues Modulus Remarks

10 M1 -0.86413 0.99776 ± j0.03916 0.36799 0.51886 0.99161 0.99853 Stable

13 M1 -0.86413 0.99776 ± j0.03924 0.36799 0.51886 0.99161 0.99853 Stable

14 M3 -0.86436 0.96344 ± j0.29113 0.99886 ± j0.00478 0.36798 0.50681 0.99887 1.00647 slow-scale

to identify how far or close the system is from the instability
region and in which way the system would loss its stability.
In this section, we will generate such stability boundary in-
formation. In general, the PI control parameters are important
deciding parameters, askp need to be set sufficiently large
to reduce the steady-state error whileτf should be small to
improve the dynamic response. However, ifkp is too large or
τf is too small, the system will lose stability. Moreover, in
the foregoing sections, we have mentioned that the external
parameters, such asVocpv, Imppt, Vocbat andRL are varying
from time to time . It is therefore appropriate to take these
parameters as the bifurcation parameters. Corresponding to the
choice of component values given in Tables II, Fig. 5 shows
the specific stability boundaries obtained through analysis and
circuit simulations at full load. From Figs. 5 (a)–(d), the
following observations are made:

• The variation of PI parameters will cause slow-scale NS
bifurcation. Askp becomes larger orτf becomes smaller,
the system loses stability more readily.

• Smooth NS bifurcation can possibly occur in all operating
modes under variation of PI parameters, solar intensity,
and input voltages.

• Parameterskp1 and τf1 affect the system’s stability in
all operating modes, and they have narrower operating
ranges inM1. Hence, they should be carefully designed
in M1. When the system operates inM1, the variation of
Imppt may alter the stability region, and specifically as
Imppt decreases, the stable area shrinks.

• When the system operates inM2 andM3, as parameters
Vocpv andVocbat increase, the system will be farther from
the instability boundary.

Furthermore, from Figs. 5 (e)–(f), we may draw the follow-
ing conclusions:

• Smooth slow-scale and fast-scale bifurcations can possi-

Lb1 Lb2Cf
Q3 Q2

Q1 Dpv

Dc D2 D3 D1

Fig. 7. Experimental prototype of multi-operating-mode PBHPS.

bly occur in M1 and M2 under variation ofImppt, or
Vocpv or even compensation voltageVp.

• Some parts of the stability boundaries coincide with
operating mode boundaries, and they are non-smooth
bifurcation boundaries where the system hops from stable
to unstable operation asImppt or Vocpv decreases. For
example,referring to (e), whenVocpv is set at 30 V and
Imppt at 2 A, the system operates stably in operating
modeM2. If Imppt decreases to 1.3 A, the system will
switch fromM2 to M1 and become unstable, which is a
non-smooth bifurcation.

• The input voltageVocpv not only affects the slow-scale
stability boundaries and non-smooth bifurcation, but also
has significant effect on fast-scale stability boundaries,
and the fast-scale instability area can be effectively re-
duced with increasing compensation voltageVp.

It should be noted that the above procedure generally
permits stability boundaries to be generated with any given
set of internal and external parameters serving as bifurcation
parameters.
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C4:  iLb2 [5A/div]
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C2: vo [0.5V/div]

(d)

Fig. 8. Typical experimental waveforms in operating modeM1 for different values ofVocpv, with Vocbat = 38 V, Imppt = 0.3 A and Io = 3.3 A
kept constant. Alternating component of output voltagevo is shown. (a) Stable period-1 operation withVocpv = 32 V; (b) Neimark-Sacker bifurcation with
slow-scale oscillation withVocpv = 26 V; (c) coexisting fast-scale and slow-scale bifurcation with Vocpv = 24.3 V; (d) enlarged view of (c).

To avoid bifurcation and ensure the system operates within
the desired region, we first find the worst-case operating con-
dition for each control loop from the stability boundaries given
in Fig. 5. Then, under the worst-case operating condition, we
derive the stability boundaries with control parameters serving
as the bifurcation parameters and select appropriate values to
ensure stability of the control loop. Thus, the system will be
stable under all operating conditions. We take the fast-scale
bifurcation as an example here. From Figs. 5 (e)–(f), it can
be observed that regardless of the operating mode, fast-scale
instability is affected only byVocpv and Vp, i.e., the peak
current control loop loses its stability whenVocpv and Vp

are inappropriate. Therefore, to avoid this type of bifurcation,
the stability boundary in the(Vocpv, Vp) parameter space can
be derived, as shown in Fig. 6. Here we see that the worst-
case operating condition for the peak current control loop is
whenVocpv assumes the smallest value. Then, the peak current
control loop will remain stable under the worst-case operating
condition if Vp > 0.1. Thus, as long asVp > 0.1, the system
exhibits no fast-scale bifurcation under variation ofVocpv.

V. EXPERIMENTAL VERIFICATION

A 240 W prototype, as shown in Fig. 7, was built to
study the bifurcation phenomena identified and analyzed in
the previous sections. The parameters of the prototype used

are the same as those used for circuit simulation given in
Table II. Fig. 8 shows the experimentally observed slow-scale
oscillation and coexisting slow-scale and fast-scale instability
in M1. It can be found that the slow-scale oscillation mainly
occurs in the buck-boost converter. This verifies the loss of
stability of the output voltage control-loop through a smooth
NS bifurcation. A fast-scale oscillation is found iniLb1, as
a result of the peak current control-loop becoming unstable
as Vocpv is decreased. These phenomena agree with the
simulation results given in Fig. 2 and verify the analysis results
in Section III.

A step load change is applied to the PBHPS prototype.
Under this test condition, the experimental waveforms are
shown in Fig. 9. We can see that the system can properly
respond to the step change and switches its operating mode
correctly. However, the system becomes unstable while its op-
erating mode is changed, verifying the non-smooth bifurcation
as shown earlier in Fig. 3.

The excellent agreement among analysis, circuit simulations
and experimental results verifies the ability of the discrete-
time mapping model in explaining the smooth bifurcation
and non-smooth bifurcation, leading to slow-scale or fast-
scale oscillations, as well as coexisting oscillation. Theresults
presented above reveal the salient phenomena. Others are
omitted for brevity of presentation.
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Time: [10ms/div]

C3: iLb1 [5A/div]

C4:  iLb2 [5A/div]

C1: io [5A/div]

C2: vo [0.5V/div]

(a)

C1

C2

C3

C4

C3: iLb1 [5A/div]

C4:  iLb2 [5A/div]

C1: io [5A/div]

C2: vbat [0.5V/div]

Time: [5ms/div]

(b)

Fig. 9. Transient waveforms withVocpv = 26 V and Imppt = 0.8 A. Alternating component of output voltagevo and battery voltagevbat are shown. (a)
Load current steps up from 10% load to full load withVocbat = 38 V and τf1 = 0.39 ms kept constant. The system switches from operating modeM2

to M1, and slow-scale bifurcation occurs inM1. (b) Load current steps down from full load to 20% load withVocbat = 39.99 V and τf1 = 0.6 ms kept
constant. The system switches from operating modeM1 to M3, and slow-scale bifurcation occurs inM3.

VI. CONCLUSIONS

Due to the intermittent nature of the availability of re-
newable energy, hybrid renewable power generation systems
are usually designed to operate with multiple structures and
multiple operating modes. The dynamical behavior of such
systems is thus rather complex and the design for stable
period-1 operation is non-trivial. A commonly used multi-
operating-mode stand-alone is studied in detail in this paper
to illustrate the complex behavior of this kind system. The
photovoltaic-battery hybrid power system is found tolose
stability via a smooth Neimark-Sacker bifurcation, period-
doubling bifurcation, or a non-smooth bifurcation. These phe-
nomena have been thoroughly analyzed with a discrete-time
model. Moreover, stability boundaries are derived in a design-
oriented form, allowing critical operation conditions be readily
extracted for identification of stable operating regions. Salient
bifurcation phenomena were demonstrated in an experimental
prototype.The smooth and non-smooth bifurcation observed
in this paper are generic to the multi-structure and multi-
operating mode power system, and this line of research is
highly relevant to the design of renewable energy systems that
have inherent multiple structures and mandatorily operatewith
multiple modes.

REFERENCES

[1] M. H. Nehrir, C. Wang, K. Strunz, H. Aki, R. Ramakumar, J. Bing,
Z. Miao, and Z. Salameh, “A review of hybrid renewable/alternative
energy systems for electric power generation: configurations, control,
and applications,”IEEE Trans. Sustain. Energy,vol. 2, no. 4, pp. 392–
403, Oct. 2011.

[2] Z. Qian, O. Abdel-Rahmam, and I. Batarseh, “An integrated four-port
dc/dc converter for renewable energy applications,”IEEE Trans. Power
Electron.,vol. 25, no. 7, pp. 1877–1887, July 2010.

[3] J. Imhoff, J. R. Pinheiro, J. L. Russi, D. Brum, R. Gules, and H. L.
Hey, “DC-DC converters in a multi-string configuration for stand-alone
photovoltaic system,” inIEEE Power Electron. Specialists Conf. Record,
2008, pp. 2806–2812.

[4] D. Xu, L. Kang, L. Chang, and B. Cao, “Optimal sizing of standalone
hybrid wind/PV power systems using genetic algorithms,” inProc. IEEE
Canadian Conf. Elect. Comp. Eng.,2005, pp. 1722–1725.

[5] K. Agbossou, M. Kolhe, J. Hamelin, and T. K. Bose, “Performance
of a stand-alone renewable energy system based on energy storage as
hydrogen,”IEEE Trans. Energy Conv.,vol. 19, no. 3, pp. 633–640, Sept.
2004.

[6] J. Schönberger, R. Duck, and S. D. Round, “DC-Bus signaling: a
distributed control strategy for a hybrid renewable nanogrid,” IEEE
Trans. Ind. Electron.,vol. 53, no. 5, pp. 1453–1460, Oct. 2006.

[7] Z. Jiang, “Power management of hybrid photovoltaic-fuel cell power
systems,” inProc. IEEE Power Eng. Society General Meeting,2006,
1-4244-0493-2.

[8] J. Zhang and L. Ji, “An effective hybrid energy storage system based on
battery-EDLC for distributed generation systems,” inProc. IEEE Conf.
Ind. Electron. Appl.,2010, pp. 819–824.

[9] J. Xiao and P. Wang,“Multiple modes control of householdDC microgrid
with integration of various renewable energy sources,” inIEEE Ind.
Electron. Conf. Record,2013, pp. 1773–1778.

[10] Y. Gu, X. Xiang, W. Li, and X. He, “Mode-adaptive decentralized control
for renewable DC microgrid with enhanced reliability and flexibility,”
IEEE Trans. Power Electron.,vol. 29, no. 9, pp. 5072–5080, Sept. 2014.

[11] H. Matsuo, W. Lin F. Kurokawa, T. Shigemizu, and N. Watanabe,
“Characteristics of the multiple-input dc-dc converter,”IEEE Trans. Ind.
Electron.,vol. 51, no. 3, pp. 625–631, June 2004.

[12] C. Zhao, S. D. Round, and J. W. Kolar, “An isolated three-port bidirec-
tional DC-DC converter with decoupled power flow management,” IEEE
Trans. Power Electron.,vol. 23, no. 5, pp. 2443–2453, Sept. 2008.

[13] Y. Chen, C. K. Tse, S. Qiu, L. Lindenmüller, and W. Schwarz, “Co-
existing fast-scale and slow-scale instability in current-mode controlled
dc/dc converters: analysis, simulation and experimental results,” IEEE
Trans. Circ. Syst. I—Reg. Papers,vol. 55, no. 10, pp. 3335–3348, Nov.
2008. 1992.

[14] C. K. Tse, “Flip bifurcation and chaos in three-state switching boost
regulators,”IEEE Trans. Circ. Syst. I: Fundam. Theory Appl.,vol. 41,
no. 1, pp. 16-23, Jan. 1994.

[15] C. K. Tse, “Chaos from a buck switching regulator operating in
discontinuous mode,”Int. J. Circ. Theory Appl.,vol. 22, no. 4, pp. 263–
278, Jul-Aug. 1994.

[16] W. C. Y. Chan and C. K. Tse, “Study of bifurcations in current-
programmed dc/dc boost converters: from quasi-periodicity to period-
doubling,” IEEE Trans. Circ. Syst. I—Fundam. Theory Appl.,vol. 44,
no. 12, pp. 1129–1142, Oct. 1997.

[17] C. K. Tse, Complex Behavior of Switching Power Converters,Boca
Raton: CRC Press, 2003.

[18] D. C. Hamill, J. H. B. Deane, and D. J. Jefferies, “Modeling of chaotic
dc-dc converters by iterated nonlinear mappings,”IEEE Trans. Power
Electron.,vol. 7, no. 1, pp. 25–36, Jan. 1992.

[19] A. El Aroudi, L. Benadero, E. Toribio, and G. Olivar, “Hopf bifurcation
and chaos from torus breakdown in a pwm voltage-controlled dc-dc
boost converter,”IEEE Trans. Circ. Syst. I: Fundam. Theory Appl.,vol.
46, no. 11, pp. 1374–1382, Nov. 1999.

[20] Y. Ma, C. K. Tse, T. Kousaka, and H. Kawakami, “Connecting border
collision with saddle-node bifurcation in switched dynamical systems,”



10 IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN CIRCUITS ANDSYSTEMS, VOL. XX, NO. XX, XX 2015

IEEE Trans. Circ. Syst. II: Express Briefs,vol. 52, no. 9, pp. 581–585,
2005.

[21] C. K. Tse and M. di Bernardo, “Complex behavior in switching power
converters,”IEEE Proceedings,vol. 90, no. 5, pp. 768–781, 2002.

[22] S. Banerjee, P. Ranjan, and C. Grebogi,“Bifurcations in two-dimensional
piecewise smooth maps-theory and applications in switching circuits,”
IEEE Trans. Circ. Syst. I: Fundam. Theory Appl.,vol. 47, no. 5, pp.
633–643, May 2000.

[23] C. K. Tse, Y. M. Lai, and H. H. C. Iu, “Hopf bifurcation andchaos in
a free-running current-controlled́Cuk switching regulator,”IEEE Trans.
Circ. Syst. I: Fundam. Theory Appl., vol. 47, no. 4, pp. 448–457, Apr.
2000.

[24] S. C. Wong, X. Wu, and C. K. Tse, “Sustained slow-scale oscillation
in higher order current-mode controlled converter,”IEEE Trans. Circ.
Syst. II: Express Briefs, vol. 55, no. 5, pp. 489–493, May 2008.

[25] V. Moreno-Font, A. El Aroudi, J. Calvente, R. Giral, andL. Benadero,
“Dynamics and stability issues of a single-inductor dual-swithing dc-dc
converter,” IEEE Trans. Circ. Syst. I: Reg. Papers,vol. 57, no. 2, pp.
415–426, Feb. 2010.

[26] H. H. C. Iu and C. K. Tse, “Bifurcation behavior of parallel-connected
buck converters,”IEEE Trans. Circ. Syst. I: Fundam. Theory Appl., vol.
48, no. 2, pp. 233–240, Feb. 2001.

[27] H. H. C. Iu and C. K. Tse, “Study of low-frequency bifurcation
phenomena of a parallel-connected boost converter system via simple
averaged models,”IEEE Trans. Circ. Syst. I: Fundam. Theory Appl.,
vol. 50, no. 5, pp. 679–686, May 2003.

[28] M. Huang, S. C. Wong, C. K. Tse, and X. Ruan, “Catastrophic
bifurcation in three-phase voltage-source converters,”IEEE Trans. Circ.
Syst. I: Reg. Papers,vol. 60, no. 4, pp. 1062–1071, Apr. 2013.

[29] M. Huang, C. K. Tse, S. C. Wong, C. Wan, and X. Ruan, “Low-
frequency Hopf bifurcation and its effects on stability margin in three-
phase PFC power supplies connected to non-ideal power grid,” IEEE
Trans. Circ. Syst. I: Reg. Papers,vol. 60, no. 12, pp. 3328–3340, Dec.
2013.

[30] C. Wan, M. Huang, C. K. Tse, S. C. Wong, and X. Ruan, “Nonlinear
behavior and instability in three-phase boost rectifier connected to non-
ideal power grid with interacting load,”IEEE Trans. Power Electron.,
vol. 28, no. 7, pp. 3255–3265, Jul. 2013.

[31] X. Xiong, C. K. Tse, and X. Ruan, “Smooth and non-smooth bifurcations
in multi-structure multi-operating-mode hybrid power systems,” Int. J.
Bifurcation and Chaos, vol. 23, no. 5, pp. 1–12, May 2013.

[32] X. Xiong, C. K. Tse, and X. Ruan, “Bifurcation analysis of standalone
photovoltaic-battery hybrid power system,”IEEE Trans. Circ. Syst. I:
Reg. Papers,vol. 60, no. 5, pp. 1354–1365, May 2013.

[33] T. Esram and P. L Chapman, “Comparison of photovoltaic array maxi-
mum power point tracking techniques,”IEEE Trans. Energy Conv.,vol.
22, no. 2, pp. 439–449, June, 2007.

Xiaoling Xiong (S’11) received the BEng and MEng
degrees from Nanjing University of Aeronautics and
Astronautics, Nanjing, China, in 2007 and 2010,
respectively. She is currently working toward the
PhD degree at Nanjing University of Aeronautics
and Astronautics, Nanjing, China.

She spent a short time with the Lighting De-
partment of GE (China) Research and Development
Center Co. Ltd., as an intern in 2010, and worked
as a Research Assistant in the Department of Elec-
tronic and Information Engineering at Hong Kong

Polytechnic University, from February 2011 to July 2012. Her main research
interests include modeling, analysis and design power electronic systems and
study the complex behavior in power electronic circuits.

Chi K. Tse (M’90–SM’97–F’06) received the BEng
(Hons) degree with first class honors in electrical
engineering and the PhD degree from the University
of Melbourne, Australia, in 1987 and 1991, respec-
tively. He is presently Chair Professor of Electronic
Engineering at the Hong Kong Polytechnic Univer-
sity, Hong Kong. From 2005 to 2012, he was the
Head of Department of Electronic and Information
Engineering at the same university. His research in-
terests include complex network applications, power
electronics and chaos-based communications.

Currently Dr. Tse serves as Editor-in-Chief for theIEEE Circuits and
Systems Magazineand Editor-in-Chief ofIEEE Circuits and Systems Society
Newsletter. He was/is an Associate Editor for the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS PART I—FUNDAMENTAL THEORY AND APPLI-
CATIONS from 1999 to 2001 and again from 2007 to 2009. He has been an
Associate Editor for the IEEE TRANSACTIONS ON POWER ELECTRONICS

and IEEE JOURNAL OF EMERGING AND SELECTED TOPICS ON POWER
ELECTRONICS since 1999 and 2013, respectively. He is an Editor of the
International Journal of Circuit Theory and Applicationsand is an Honorary
Member of the Editorial Board of theInternational Journal and Bifurcation
and Chaos.

Dr. Tse received the L.R. East Prize from the Institution of Engineers,
Australia, in 1987, the Best Paper Award from IEEE TRANSACTIONS ON

POWERELECTRONICSin 2001 and the Best Paper Award fromInternational
Journal of Circuit Theory and Applicationsin 2003. In 2005 and 2011, he
was selected and appointed as IEEE Distinguished Lecturer.In 2007, he was
awarded the Distinguished International Research Fellowship by the Universi-
ty of Calgary, Canada. In 2009 and 2013, he and his co-inventors won the Gold
Medal at the International Exhibition of Inventions of Geneva, Switzerland,
on LED lighting technologies. In 2011, he was appointed Honorary Professor
by RMIT University, Melbourne, Australia. He was awarded the Gledden
Fellowship and the Distinguished International Fellowship, in 2013 and 2015,
respectively, by the University of Western Australia, Perth, Australia.

Xinbo Ruan (M’97–SM’02) was born in Hubei
Province, China, in 1970. He received the BS and
PhD degrees in electrical engineering from Nanjing
University of Aeronautics and Astronautics (NU-
AA), Nanjing, China, in 1991 and 1996, respective-
ly.

In 1996, he joined the Faculty of Electrical En-
gineering Teaching and Research Division, NUAA,
where he became a Professor in the College of
Automation Engineering in 2002 and has been en-
gaged in teaching and research in the field of power

electronics. From August to October 2007, he was a Research Fellow in
the Department of Electronic and Information Engineering,Hong Kong
Polytechnic University, Hong Kong, China. Since March 2008, he has been
also with the College of Electrical and Electronic Engineering, Huazhong
University of Science and Technology, China. He is a Guest Professor with
Beijing Jiaotong University, Beijing, China, Hefei University of Technology,
Hefei, China, and Wuhan University, Wuhan, China. He is the author or
co-author of four books and more than 100 technical papers published in
journals and conferences. His main research interests include soft-switching
dc-dc converters, soft-switching inverters, power factorcorrection converters,
modeling the converters, power electronics system integration and renewable
energy generation system.

Dr. Ruan was a recipient of the Delta Scholarship by the DeltaEnvironment
and Education Fund in 2003 and was a recipient of the Special Appointed
Professor of the Chang Jiang Scholars Program by the Ministry of Education,
China, in 2007. Since 2005, he has been serving as Vice President of the
China Power Supply Society, and since 2008, he has been a member of
the Technical Committee on Renewable Energy Systems withinthe IEEE
Industrial Electronics Society. He has been an Associate Editor for the IEEE
TRANSACTIONS ONINDUSTRIAL ELECTRONICSand the IEEE JOURNAL OF

EMERGING AND SELECTED TOPICS ONPOWER ELECTRONICS since 2011
and 2013, respectively. He is a Senior Member of the IEEE Power Electronics
Society and the IEEE Industrial Electronics Society.




