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Abstract

This paper proposes a damage detection approach for a structure under moving
vehicular loads. The dynamic response reconstruction technique in the wavelet
domain is extended in the scenario where a structure is subject to moving vehicular
loads. The transmissibility matrix between two sets of response vectors of the
structure is formulated using the unit impulse response function in the wavelet
domain with the moving loads at different locations. Measured acceleration
responses from the structure in the damaged state are used for the identification and
the damage detection procedure is conducted without the knowledge of the
time-histories of the moving loads and properties of the moving vehicle. A dynamic
response sensitivity-based method is used for the structural damage identification
and the adaptive Tikhonov regularization technique is adopted to improve the
identification results when noise effect is included in the measurements. Numerical
studies on a three-dimensional box-section girder subject to a two-axle
three-dimensional vehicle are conducted to validate the proposed approach of
damage identification of a structure under moving loads. The simulated damage can
be effectively identified even with 10% noise in the measurements.

Key words: Damage identification, Response reconstruction, Unit impulse response
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1. Introduction

Traffic excitations are usually mixed with other ambient excitation sources, such as
ground motions, wind loading and temperature effect for bridge structures in real situations.
The response due to the moving vehicular loads is generally far larger than that under
ambient vibrations especially for short- and medium-span concrete bridge decks. Therefore
damage identification could also be conducted in the time domain using measured dynamic
responses directly instead of the modal information in the frequency domain. Majumder and
Manohar'” developed a time-domain approach to detect damages in a beam using vibration
data under the passage of a moving oscillator. The study combines finite element modeling
for the vehicle-bridge system with a time-domain formulation to detect changes in the
structural parameters. The structural properties and motion of the moving vehicle are
assumed to be known. Park et al.’) proposed a method to identify the distribution of
stiffness reductions in a damaged reinforced concrete slab bridge under moving loads by
using a modified bivariate Gaussian distribution function. The information of moving loads
is assumed available in this study. A method for simultaneous identification of moving
masses and structural local damage from measured responses has been presented”. The
masses and damage extents are taken as the optimization variables. The mass model may
not accurately represent the moving vehicle and the bridge-vehicle interaction effect. In
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practical applications, the properties of the moving vehicle and the road surface roughness
are not easy to obtain accurately and thus they are usually assumed as unknown. Therefore
the interaction forces induced by the moving vehicle should be treated as unknown moving
load time-histories.

It is desirable to conduct the system identification based only on the system output
(vibration responses of the bridge) because the system input (traffic excitations) is difficult
to measure. With the aid of high computation capacity of digital computers, it is possible to
analyze the bridge-vehicle interaction problem with more sophisticated bridge and vehicle
models”. Zhu and Law"® proposed a method for identification of the time-histories of
interaction forces and structural damage iteratively using a two-step identification
procedure. Later, the structural condition assessment problem is studied in a three-span
box-section concrete bridge deck subject to a three-dimensional moving vehicle by
identifying the time-histories of the interaction forces and system parameters in an iterative
manner'”. The effect of bridge-vehicle system interaction and road surface roughness
profile are implicitly taken into account by identifying the moving interaction forces using
measurements from the bridge structure. It is found that a sufficient number of sensors may
be required to make sure that the identification equation for the identification of the
interaction forces and system parameters is over-determined. It is noted that the accuracy of
the identified moving loads may have a large influence on the identification accuracy of the
structural damage.

Most existing methods assume that the properties of the vehicle are available or the
vehicle-bridge interaction load is needed to be identified from the measured responses of
the structure. This paper proposes a damage identification approach where knowledge of the
moving vehicle is not required and there is no need to identify these moving loads in the
damage detection process. The dynamic response reconstruction technique in the wavelet
domain'” is further developed for a structure subject to moving vehicular loads.

2. Response Reconstruction in a Structure under Moving Vehicular Loads

2.1 Dynamic Response of a Structure under Moving Vehicular Loads
The dynamic equation of motion of a damped structural system with N
degrees-of-freedom (DOFs) subject to moving vehicular loads can be written as,

[MEe )+ [Chio}+ [K o)) = {R (O Pu ()} M
where M, C and K are the Nx N mass, damping and stiffness matrices of the
structure respectively; X, X and X are respectively the acceleration, velocity and
displacement response vectors of the structure; {P

int (t)} is the bridge-vehicle interaction
force vector acting on the bridge structure. {R,(1){P..(¢)} is the equivalent nodal load
vector applied on the structure at location / at time instant / with the mapping vector
R, (t ) The vector R, (t ) is time-varying and it can be represented by the shape function
to compute the equivalent nodal loads®. Rayleigh damping [C ]=a, [M ]+ a, [K ] is
assumed, where 4, and a, are the Rayleigh damping coefficients. The dynamic

responses of the structure can be obtained from Equation (1) using the Newmark-$
method®.

2.2 Unit Impulse Response Function in Wavelet Domain under Moving Loads
It should be noted that the mapping vector {R, (t )} in Equation (1) is time-varying
when the structure is subject to moving vehicular loads. The impulse response function with

the moving loads at different locations is developed in the following paragraphs to
formulate the input-output relationship for the structure when subject to the interaction
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forces {P:m (¢ )} :

The equation of motion of the damped structural system under the unit impulse
interaction force at location / at a specific time instant 7 is,

[MEso}+ [CRi@}+ [K Jix(0)} = {R (0)}5(0) @
where, R, (t ) denotes the shape function mapping the interaction force at location / at

time instant # to the associated DOFs of the structure. The impulse response function with
the moving loads at location / can be obtained using the Newmark-$ method by solving
the following equation of motion and initial conditions,

{[M]i’l;(")"‘[C]];;(f)"'[f‘,h(t):0 3)
h(0)=0, #(0)=M"R()

where, #,, h, and A, are the unit impulse displacement, velocity and acceleration
vectors with the moving loads at location [/, respectively.

When the structural system is subject to the moving load P, (t ) with zero initial

conditions, the acceleration response X, ({) from sensor location § at time instant

can be obtained as,
J' hs {, ml (T MT (4)
in which, h_w, (t) is the unit impulse response function with the moving loads at location

[, for sensor location . It is noted that h; ; (1‘ ) can be obtained from Equation (3) with

the moving loads placed at different locations one time step at a time. Then the impulse
response function with the moving loads at different locations will be used in Equation (4)

to formulate the input-output relationship. The vectors 1-1-5 I, (l - ) and Pm,( ) can be
expanded in terms of the discrete wavelet transform (DWT) as''?,
i DRT
h, (r L ZZh ot w2z~ k) (5)
wT DWT
P (7)=P"" + ZZP .-,y(zfz- k) (6)
where l;/(2“’ T—k ) is the wavelet basis function, hﬁ;z: . P;) : are the expansion

coefficients for the impulse response function and moving force vectors respectively.
Substituting Equations (5) and (6) into the convolution integral in Equation (4), and using
the orthogonal conditions of the wavelet basis functions'"" as follows,

j';z;/(zf r—kHr=0 -

v , _|1/27 whenr= jands=k
Lw(zfr—k)y(z £-shr _{ 0 otherwise ®

The following formula can then be derived as

¥ (¢)= """ (1)P2"T )

int
in which, il.fw(f) and Puf: T are the discrete wavelet transforms of };-"--*: (t - 'r) and

P

mnt

(T), respectively and they are given as,

] A R
RO =[hY (1) RET@) - RO (0)127]
For the entire time history data, for example, X = [5:;(1‘]) .i‘s(tz) fs(t”)]r,
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the system input-output relationship for the structure subject to moving loads can be

expressed as,
1 DWT
— h_‘ PDH‘T

X (mxr)” ot (ruxl) (10)

S(nx=l)
in which,
7" (1)]
;;DWT _ ;,-;PW({Z)

3 =

h'DHf":"' (f )

where #, r and u are the number of sampled data in the response data, the number of
moving loads and the number of wavelet coefficients in the discrete wavelet transform,
respectively.

2.3 Response Reconstruction in a Structure under Moving Loads
The measured responses from the structure subject to moving loads are divided into two
sets, noted as the First-set response vector X, (t) and the Second-set response vector

X, (t) respectively. They are represented in the wavelet domain from Equation (13) as

follows,

X, (t)(mnxl} = ;I.IDWT(mnxm)Pilﬁw(mx]} (11)

X, (t)(qnxl) = ’-Q.;Jw(qnxm)})ilﬁw(mx])
in which, m and ¢ are the number of measurements in the First-set response vector and
the number of measurements in the Second-set response vector, respectively.

When the number of measurements in the First-set response vector is at least equal or

larger than the number of moving loads on the structure, the pseudo-inverse (h,DWT

exists"? and the following Equation can be obtained from the first row of Equation (11),

2T = () 5,(e) (12)
Substituting Equation (12) into the second row of Equation (11), we have,

i, (£) = T% (1) (13)
where,

PR r—

e (14)

The Second-set response vector 56'2r(t) can be reconstructed from the First-set
response vector X, (t) of the structure from Equation (13).

Moreover, Equation (14) defines the transmissibility matrix in the wavelet domain
between two sets of time-domain response vectors from the structure and the presented

response reconstruction technique for a bridge structure subject to moving loads can be
applied for the structural damage detection.

3. Structural Damage Detection

In some existing condition assessment approaches where an initial analytical finite
element model of the structure is needed, the parametric model updating method for damage
identification is popular because it keeps the structural connectivity and the physical
meaning of the updated stiffness matrix is clear. The initial structural finite element model is
updated to match the predicted and measured vibration properties or vibration responses as
closely as possible. In this study, a sensitivity-based finite element model updating method
is used for structural damage identification. The damage is assumed only related to a
stiffness reduction such as a change in the elastic modulus of a specific element. The mass
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matrix is assumed to be unchanged before and after the damage. The elemental stiffness
factors in the initial intact structural finite element model are iteratively updated to
minimize the difference vector {Ax } between the reconstructed acceleration responses and
the measured acceleration responses from the damaged structure.

3.1 Damage Model
The initially linear-elastic structure is assumed to remain linear-elastic after the
occurrence of small local damage. The system stiffness matrix K, of the damaged

structure can be expressed as,
n n
K,=> aK =) (1+Aa)K, (15)
i=1 i=1

where, K;, @, are the ith elemental stiffness matrix in the intact state and the ith
elemental stiffness factor in the damage state, respectively. Therefore, A, represents the

extent of stiffness reduction of the ithelement with 0.0 <, <1.0.

3.2 Damage Detection Algorithm
The objective function of the damage detection algorithm is defined as the difference
between two sets of response vectors

Josy = o (0)= 5, () (16)
where, X, (t) is the measured Second-set response vector from the damaged structure
subject to moving loads. 552,(1) is the reconstructed Second-set response vector from
Equation (13) with the measured First-set response vector X, (t) in the damaged state. The
transmissibility matrix 7], in Equation (14) is obtained by using the impulse response
function matrix from Equation (9). The vector @ of structural elemental stiffness factors
is then iteratively updated by minimizing the objective function in Equation (16) such that
the reconstructed response vector X, (3‘ ) can match the measured response vector fzm(t)
well.

The dynamic response sensitivity-based model updating method® without considering
the second- and higher-order effects is adopted here with

[sKaa}={as}={x,,} - {5} a7
where, Aa is the perturbation of the vector of structural elemental stiffness factors, [S ]
is the sensitivity matrix of the response X,, (I) with respect to the structural elemental
stiffness factors. The objective function in Equation (16) is an implicit function with respect
to structural elemental stiffness factors. It has been verified that the numerical sensitivity
matrix can also be used for model updating effectively'’¥, and thus the sensitivity matrix
[S ] is obtained using numerical finite difference method''”. It is noted that the number of
equations ¢ Xn should be larger than the number of unknown elemental stiffness

parameters to make sure that the identification in Equation (17) is over-determined.

3.3 Adaptive Tikhonov Regularization

The adaptive Tikhonov regularization method'® has been proposed to improve the
model updating results by categorizing all the structural elements to be assessed into two
groups of possible damaged elements and intact elements from results obtained in previous
iteration. The perturbation of elemental stiffness reduction factors of the possible damaged
elements in each iteration is limited to a small range and the reduction factors of other
elements are restrained close to zeros. It has been shown that the adaptive Tikhonov
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regularization has obvious advantage over the traditional Tikhonov regularization with less
false positives and false negatives especially when relatively high noise level exists in the
measurements. On the other hand, adaptive Tikhonov regularization can give results without
divergence but with a slower convergence speed. The adaptive Tikhonov regularization
technique is used in this study to obtain the solution vector Aa from Equation (17).

4, Numerical Studies

Numerical studies on a simply-supported box-section girder bridge structure are
conducted to illustrate the accuracy and effectiveness of the proposed structural damage
identification approach. The total length of the box-section bridge deck is 30m. The plan
view and cross-section of the bridge deck model are shown in Figures 1(a) and 1(b),
respectively. The Young’s modulus and mass density are respectively 2.6 x 10* MPa and
2500kg / m’.

The finite element model of the bridge deck consists of 66 nodes and 60 flat shell
elements"’” with six DOFs at each node. The numberings of nodes and elements of the
finite element model are shown in Figure 1. The structural system has 396 DOFs in total.
The bridge deck is simply-supported at nodes 5, 6, 65 and 66 at two ends of the deck, and
the translational restraints at the supports are represented by a large stiffness of 3 X 10°
kN/m. The first ten intact structural natural frequencies are from 4.44 to 21.61 Hz. Rayleigh
damping is assumed in this study and the damping ratios for the first two modes are taken as

£=0.012.

4.1 Dynamic Analysis of the Bridge-Vehicle System

The vehicle is according to H20-44 truck in AASHTO"® with a two-axle
three-dimensional vehicle model with seven DOFs as shown in Figure 2. The specific
parameters of the vehicle are from reference’” with a mass of 17, 000kg. The dynamic
responses of the bridge structure are obtained by solving the coupled bridge-vehicle system
equation of motion®”.

The two-axle three-dimensional vehicle crosses the bridge along the travelling path as
shown in Figure 1(a). Seven sensors are assumed distributed on the deck in this case to
measure the acceleration responses from the damaged bridge deck. The measurements are
divided into two sets of responses and they are shown in Table 1. The number of
measurements in the First-set response vector is equal to five and it is greater than the
number of interaction forces induced by the moving vehicle which is four. The velocity of
the moving force is 20 m/s and the sampling rate is 100Hz. Class C road surface
roughness®", corresponding to the average road pavement condition, is included in the
bridge-vehicle system analysis. The acceleration response data within the first 3 seconds are
used except otherwise stated.

4.2 Forward Response Reconstruction in Wavelet Domain

10% damage in both the 28th and 29th elements is simulated in the web of the bridge
structure in the form of a reduction in the elastic modulus of these elements as shown in
Figure 1. The simulated local damages are introduced in the structure and responses are
obtained at the First-set and Second-set sensor locations in the damaged state. The
reconstructed Second-set response vector is obtained from Equation (13) and is compared
with the true Second-set response. It should be noticed that no noise is added to the
measurements. The comparisons of forward response reconstruction results are shown in
Figure 3. Figures 3(a) and 3(c) show the true and reconstructed responses at the sensor
locations in the Second-set response vector. The difference vectors (:'!i'we (t )*fw (I))

between the true and reconstructed responses of these two sensors in the Second-set
response vector are shown in Figures 3(b) and 3(d). The relative errors are 1.74x10™"! and
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1.39x10™"", respectively. These results indicated that the proposed response reconstruction
method in the structure subject to moving vehicular loads is very accurate.

4.3 Damage Identification Results

Damage identification is performed with the two-axle three-dimensional vehicle
crossing the bridge along the travelling path as shown in Figure 1(a). The acceleration
responses are obtained from the damaged bridge structure subject to the moving vehicle and
they are taken as the simulated “measured” responses. 10% noise effect is included in the
acceleration measurements.

Acceleration measurements with and without noise effect are used for the damage
identification. Table 2 gives the associated information on convergence of the iterative

procedure. The computation of matrix 7}, in this case becomes intensive since four

interaction forces from the moving vehicle are applied on the bridge structure. It should be
noticed that approximately 6 hours are required for one iteration with a Intel Core 2 Quad
2.4G PC with 8G memory in the bridge-vehicle system analysis and in the process of
computing sensitivity matrix for the structure subject to moving loads.

Figure 4 shows the damage identification results. For the noise-free case, the dynamic
response data within the first 3 seconds are used for damage identification. The damage
locations and extents are identified accurately with 9.9996% and 9.9987% stifiness
reductions in 28" and 29" element respectively. This indicates that the proposed approach
for damage identification in the structure under moving vehicle loads is correct. For the case
with 10% noise, response data in the first 0.8s and 1.5 to 2.2s are used for the identification
since the responses in these periods are much larger and could be less sensitive to the noise
effect. The damages can be identified effectively with 10.41% and 11.84% stiffness
reduction in 28" and 29" elements respectively when 10% noise effect is included in the
measurements with very small false positives and false negatives similar to the observations
in Figure 4. In addition, it should be noticed that the sensor selections in the First-set and
Second-set response vectors would influence the damage identification results especially for
the case with noisy measurements. However, the issue on optimal placement of sensor in the
First-set and Second-set response vectors is not examined in this study.

Table 1. Sensor placement configuration

Sensor placement .
Sensor locations

configuration
) Node 8(z), 20(z), 21(z), 45(z),
First-set
56(z)
Second-set Node 14(z), 51(z)

Note: “Node 8(z)” denotes that the sensor is placed along the Z -direction at Node 8.

Table 2. Information on convergence

No 10%
noise noise
' Rec'lun‘ed 6 29
iterations
Error of 2.01 9.85x
convergence x107 10°
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5. Discussions and Conclusions

A structural damage identification approach is proposed for bridge structures under
moving vehicular loads based on the dynamic response reconstruction in the wavelet
domain. The relationship between two sets of time-domain response vectors from the
structure is formulated using the unit impulse response function with the moving loads at
different locations. Acceleration responses from the damaged structure are used for the
identification without the need to identify the time-histories of the moving loads and the
properties of moving vehicle are not required. A dynamic response sensitivity-based method
is used for the structural damage identification with the local damage modelled as a change
in the elemental stiffness factors. The adaptive Tikhonov regularization technique is adopted
to improve the identification results when noise effect is included in the measurements.
Numerical studies on a three-dimensional box-section bridge deck subject to a two-axle
three-dimensional vehicle are studied to validate the proposed approach. The simulated
damage can be identified even with 10% noise in the measurements.

The proposed approach for structural damage identification is verified numerically with
simulated “measured” responses without and with noise effect. Additional model errors due
to complex environmental effects, such as wind, temperature effect and other random
sources would arise in the filed-testing. Therefore, further studies are required to
demonstrate the performance of the proposed damage identification approach with in-field
testing data.

References

(1) L. Majumder, C. S. Manohar, A time-domain approach for damage detection in beam
structures using vibration data with a moving oscillator as an excitation source, Journal of
Sound and Vibration, Volume 268(4), 2003, pp. 699-716.

(2) T. Park, M. Noh, S. Lee, G. Z. Voyiadjis, Identification of a distribution of stiffness
reduction in reinforced concrete slab bridges subjected to moving loads, ASCE Journal of
Bridge Engineering, Volume 14(5), 2009, pp. 355-365.

(3) Q. Zhang, L. Jankowski, Z. D. Duan, Simultancous identification of moving masses and
structural damage, Structural and Multidisciplinary Optimization, Volume 42(6), 2010, pp.
907-922.

4) F T K. Au, Y. S. Cheng and Y. K. Cheung, Vibration analysis of bridges under moving

11



14" Asia Pacific Vibration Conference, 5-8 December 2011, The Hong Kong Polytechnic University

vehicles and trains: an overview, Progress in Structural Engineering Materials, Volume
3(3), 2001, pp. 299-304.

(5) X. Q. Zhy, S. S. Law, Damage detection in simply supported concrete bridge structure
under moving vehicular loads, ASME Journal of Vibration Acoustics, Volume 129(1),
2007, pp. 58-65.

(6) S.S. Law, J. Li, Updating the reliability of a concrete bridge structure based on condition
assessment with uncertainties, Engineering Structures, Volume 32(1), 2010, pp. 286-296.

(7) 1. Li, S. S. Law, Substructural response reconstruction in wavelet domain, ASME Journal
of Applied Mechanics, Volume 78(4), 2011, 041010.

(8) S.S.Law, J. Q. Bu, X. Q. Zhu, S. L. Chan, Vehicle axle loads identification using finite
element method, Engineering Structures, Volume 26(8), 2004, pp. 1143-1153.

(9) N. W. Newmark, A method of computation for structural dynamics, ASCE Journal of the
Engineering Mechanics Division, Volume 85(3), 1959, pp. 67-94.

(10) D. E. Newland, An Introduction to Random Vibrations, Spectral and Wavelet Analysis,
third ed., Longman Group Limited, England, 1993.

(11) L Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.

(12) R. Penrose, A generalized inverse for matrices, Mathematical Proceedings of the
Cambridge Philosophical Society, Volume 51(3), 1955, pp. 406-413.

(13) Z.R.Lu,S. S. Law, Features of dynamic response sensitivity and its application in damage
detection, Journal of Sound and Vibration, Volume 303(1-2), 2007, pp. 305-329.

(14) S. Zivanovic, A. Pavic, P. Reynolds, Finite element modeling and updating of a lively
footbridge: the complete process, Journal of Sound and Vibration, Volume 301(1-2), 2007,
pp. 126-145.

(15) K. W. Morton, D. F. Mayers, Numerical Solution of Partial Differential Equations, An
Introduction, second ed., Cambridge University Press, 2005.

(16) X. Y. Li, S. S. Law, Adaptive Tikhonov regularization for damage detection based on
nonlinear model updating, Mechanical System and Signal Processing, Volume 24(6), 2010,
pp. 1646-1664.

(17) Y. W. Kwon, H. C. Bang, The Finite Element Method using MATLAB, second ed., USA:
CRC Press LLC, 2000.

(18) AASHTO LRFD bridge design specifications. American Association of State Highway and
Transportation Officials. Washington, DC. 2007.

(19) X. Q. Zhu, S. S. Law, Dynamic load on continuous multi-lane bridge deck from moving
vehicles, Journal of Sound and Vibration, Volume 251(4), 2002, pp. 697-716.

(20) S. S. Law, J. Li, S. Q. Wu, Prestress identification in box-girder bridge deck under traffic
load, Proceedings of the 3™ International Symposium on Environment Vibrations:
Prediction, Monitoring, Mitigation and Evaluation, Taipei, TAIWAN, 2007, pp. 631-638.

(21) ISO 8606: 1995(E). Mechanical vibration — road surface profiles — reporting of measured
data.

Acknowledgements

The work described in this paper was supported by the grants from the Hong Kong

Research Grant Council Project No. PolyU5201/07E and from the Niche Area Project
Funding of the Hong Kong Polytechnic University Project No. 1-BB6F.

112



