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A generalized multiconductor transmission line (MTL) model is developed for modeling of wide frequency transient response on
busbars, cables and core-type transformer windings. Different from the traditional MTL model, the equations of the generalized
MTL model are built in the cylindrical coordinate system beside rectangular coordinate system. Based on further discussion, it is
found that generalized MTL model could be changed to MTL model where all lines have the same length as to the core-type trans-
former windings. Then, the optimized solution based on Time domain finite element method (TDFEM) is developed for the above
MTL equations. It avoids numerical oscillation of the finite difference time domain (FDTD) method. The numerical results are in
agreement with ones calculated by Bergeron’s method and FDTD method.

1. Introduction

Very fast transient overvoltages (VFTOs) generated by swit-
ching operation of circuit breakers and disconnected swit-
ches could cause a voltage oscillation on the busbars, cables,
and the windings inside the transformer connected. Because
of the large dimension of power substations, the FDTD
method and the method of moment (MOM) are not con-
venient to be used. Lumped circuit models have been used to
analyze the transient response. But for the analysis involving
the VFTO of much higher frequencies, the MTL theory is ap-
plied and a hybrid method of MTLs model and antenna the-
ory is proposed. The transient wave process along the trans-
mission line is calculated first, and then the field is calculated
[1–6].

In order to analyze the wave processes, time-domain me-
thod is always recommended. Bergeron’s method is a time-
domain method, which has been widely used to calculate the
wave processes in power system and has been implemented
in EMTP code [7, 8]. However, only the voltage and current
at some specified nodes can be calculated by this method.
It is not effective for the calculation of the complete wave
processes of voltage and current distributed along the MTLs.
Nonetheless, the problem can be solved by FDTD [9]. Paul

proposed an iterative algorithm for the lossy MTLs with arbi-
trary loads [10]. Lu et al. improved and complemented Paul’s
method [11–14]. Because of the Gibbs effect of FDTD me-
thod, Park and Lei develop the finite-element method (FEM)
and TDFEM for this problem [15, 16].

2. Generalized MTLs Model

The typical models of the busbars, cables, core-type transfor-
mer windings, and the print circuit board with n+ 1 conduc-
tors and the MTLs model of them are shown in Figure 1.
We suppose that the propagation of the MTLs is along
z-direction and its per-unit-length inductance L, capaci-
tance C, conductance G, and resistance R matrixes have been
known, which can be determined by the geometry of the
MTLs and its surrounding media. The governing equations,
called telegraph equations, can be expressed as follows:

∂U(z, t)
∂z

+ L
∂I(z, t)
∂t

+ RI(z, t) = VF ,

∂I(z, t)
∂z

+ C
∂U(z, t)

∂t
+ GU(z, t) = IF ,

(1)
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Figure 1: Examples and computational model of MTLs.

where z is the direction of wave propagation; U and I denote
the voltage and current vectors on the z point of line at t
moment, respectively; VF and IF , respectively, denotes the
excitation voltage source and motivation current source vec-
tors on the z point at time t.

The turn-to-turn MTL model is usually used for VFTO
distribution analysis of transformer windings. The MTL mo-
del requires all lines to have the same length. However, in
large power transformer the length difference between turns
could be large. When all turn lengths are assumed to be the
same, the coefficient matrices of the MTL equation are not
real unit length parameters. Also, it is hard to explain if
the same length assumption could cause inaccuracy in MTL
model. In [17] the circular MTL (CMTL) equations for the
winding are developed, and the characteristics of the coeffi-
cient matrices in the formulas are analyzed. The derivation of
the circular MTL equations for core-type transformer wind-
ings is similar to that of the traditional MTL equations for

busbars and cables. The propagation direction of the wave is
the same as the winding direction; that is, the wave propa-
gates along direction ϕ:

∂U
∂ϕ

+ Lϕ
∂I
∂t

+ RϕI = 0,

∂I
∂ϕ

+ Cϕ
∂U
∂t

+ GϕU = 0.

(2)

Lϕ and Cϕ are the per-unit-radian inductance and capaci-
tance matrix, respectively. They can be calculated by dividing
the lump inductance and capacitance matrix by 2π. Based
on the circular MTL equations, the rationality of using
equal-length assumption in the simulation of actual winding
can be discussed. Letting r0 be an assumed radius and not
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Figure 2: The MTLs elements in space and time.

considering lossless transmission lines, take place of ϕ in (2)
with z = r0ϕ, then there is

∂U
∂ϕ

+ Lz
∂I
∂t
= 0,

∂I
∂ϕ

+ Cz
∂U
∂t
= 0.

(3)

Assume that L and C are the lumped inductance and capaci-
tance matrixes; respectively, there is

Lz = 1
r0

Lϕ = 1
2πr0

L,

Cz = 1
r0

Cϕ = 1
2πr0

C.

(4)

If r0 is the average radius of the turns [17], then 2πr0 would
be the average length of the turns. In this condition, (3)
represents a MTL model where all lines have the same length
2πr0, and they have the same solutions as (2). So CMTL
model could be changed to MTL model where all lines have
the same length, with the prerequisite that the coefficient
matrixes are calculated correctly in the original circular sys-
tem.

So the generalized MTL model is (2). They can be
changed to MTL model where all lines have the same length.

3. Optimized Method for Solutions of
the MTL Equations

The authors in [15] describe a false time-domain finite-ele-
ment method for lossy transmission time analysis. The two
nodes of a fist-order finite element are placed in such away
that each voltage element contains an interpolation node for
the current and each current element contains an interpola-
tion node for the voltage as Figure 2. The final equations are

In+1/2
k = 2L− RΔt

2L + RΔt
In−1/2
k

− 2Δt
(2L + RΔt)Δz

(
Vn
k+1 −Vn

k

)
,

Vn+1
k = 2C −GΔt

2C + GΔt
Vn
k

− 2Δt
(2C + GΔt)Δz

(
In+1/2
k+1 − In+1/2

k

)
.

(5)
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Figure 3: MTLs’ finite element.

They can be obtained by multiplying and dividing both sides
of (6) and (7) in [10], respectively, by 2Δt and Δz and then
not considering VF .

(
L
Δz

Δt
+

R
2
Δz
)

In+1/2
k =

(
L
Δz

Δt
− R

2
Δz
)

In−1/2
k

−
(

Vn
k+1 −Vn

k

)
+
Δz

2

(
Vn+1/2
Fk +Vn−1/2

Fk

)
,

(6)
(

C
Δz

Δt
+

G
2
Δz
)

Vn+1
k =

(
C
Δz

Δt
− G

2
Δz
)

Vn
k

−
(

In+1/2
k − In+1/2

k−1

)
+
Δz

2

(
In+1
Fk + InFk

)
.

(7)

Following [16], the TDFEM to analyze single transmis-
sion is extended to MTLs. When solving Telegrapher’s equa-
tion by the finite-element method, the MTLs are divided into
finite elements. Figure 3 shows the finite-element of such
MTLs.

The starting point to obtain a local matrix and vector of
line finite element is the Telegrapher’s equations:

∂U(z, t)
∂z

+ L
∂I(z, t)
∂t

+ RI(z, t) = 0,

∂I(z, t)
∂z

+ C
∂U(z, t)

∂t
+ GU(z, t) = 0.

(8)

Using weighted residual method, a system of two residual
equations is obtained as follows:

∫ z2

z1

[
∂U(z, t)

∂z
+ L

∂I(z, t)
∂t

+ RI(z, t)
]
W1dz = 0,

∫ z2

z1

[
∂I(z, t)
∂z

+ C
∂U(z, t)

∂t
+ GV(z, t)

]
W1dz = 0.

(9)

Choosing the weighting functions W1 = 1, voltage and
current waves over the finite element can be approximated
by a linear combination of interpolation functions such as

U(z, t) =
2∑

k=1

Φk(z)Uk(t),

I(z, t) =
2∑

k=1

Φk(z)Ik(t).

(10)
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Figure 4: Voltage waveform on a distortionless line.
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Figure 5: Crosstalk problem of two wires.

Variables Uk(t) and Ik(t) represent voltage and current waves
associated to node “k”, k = 1, 2 of the finite element:

Uk(t) = [Uk,1(t),Uk,2(t), . . . ,Uk,N (t)
]T ,

Ik(t) = [Ik,1(t), Ik,2(t), . . . , Ik,N (t)
]T ,

(11)

where Φk(z), k = 1, 2 represent interpolation functions, and
they are

Φ1(z) = diag
[
z2 − z

z2 − z1
,
z2 − z

z2 − z1
, . . . ,

z2 − z

z2 − z1

]
,

Φ2(z) = diag
[
z − z1

z2 − z1
,
z − z1

z2 − z1
, . . . ,

z − z1

z2 − z1

]
.

(12)

Time integration performed on the system of ordinary
differential equations is carried out using explicit/implicit
mixed procedure. Using the Newton-Raphson method in

the case of nonlinear distributed parameters, local system of
algebraic equations is

⎡
⎢⎣

−θΔt −θΔt

−Δz

2
(C + θΔtG) −Δz

2
(C + θΔtG)

⎤
⎥⎦
⎡
⎣ΔU1

ΔU2

⎤
⎦

+

⎡
⎣−

Δz

2
(L + θΔtR) −Δz

2
(L + θΔtR)

−θΔt −θΔt

⎤
⎦
⎡
⎣ΔI1

ΔI2

⎤
⎦

=
⎡
⎣−Ψ1

−Ψ2

⎤
⎦,

(13)

Ψ1 = R
Δz

2
Δt
[

In1 + In2
]

+ Δt
[

Un
2 −Un

1

]
,

Ψ2 = G
Δz

2
Δt
[

Un
1 + Un

2

]
+ Δt

[
In2 − In1

]
,

(14)

where ΔUk = Un+1
k − Un

k , ΔIk = In+1
k − Ink , k = 1, 2, Δt =

diag{Δt,Δt, . . . ,Δt}, Δt is the time step, and Δz = z1 − z2.
Assembly of global system of equations is based on satis-

faction of continuity equation (Kirchhoff ’s current law) for
each node in electrical network. Therefore, it is necessary to
transform system (13) into

⎡
⎣ΔI1

ΔI2

⎤
⎦ = −A

⎡
⎣ΔU1

ΔU2

⎤
⎦ + B

⎡
⎣−Ψ1

−Ψ2

⎤
⎦, (15)

where A and B matrices can be obtained by simple numerical
procedure.

Previously defined local system of various finite elements
has to be assembled. To obtain global system, it is necessary
to satisfy continuity equation in each node of electric circuit.
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Figure 6: Comparison of the results of TDFEM and FDTD method.

Each node has its local and global index. For node with global
index “s,” one can write integral form of continuity equation
as

∫ t2

t1

⎡
⎣

m∑

j=1

(−1)p
(
I j,p
)
s

+ (IF)s

⎤
⎦dt = 0

s = 1,M; p = 1 or 2.

(16)

The matrix relation (15) for each finite element is

ΔI1 = −A11ΔU1 − A12ΔU2 − B11Ψ1 − B12Ψ2,

ΔI2 = −A21ΔU1 − A22ΔU2 − B21Ψ1 − B22Ψ2;

(17)
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for the case when the local node is “1” is

θ
[
A11 A12

]⎡⎣ΔU1

ΔU2

⎤
⎦ = θ(−B11Ψ1 − B12Ψ2)

+
[
(1− θ)In1 + θIn+1

1

]

+
[

(1− θ)InF + θIn+1
F

]
;

(18)

for the case when the local node is “2” is

θ
[
A21 A22

]⎡⎣ΔU1

ΔU2

⎤
⎦ = θ(−B21Ψ1 − B22Ψ2)

+
[
(1− θ)In2 + θIn+1

2

]

+
[

(1− θ)InF + θIn+1
F

]
.

(19)

Summing up the contributions of all incident finite ele-
ments over all nodes, global system for k-iterative step be-
comes

Ag

[
ΔUg

]
= bg . (20)

The present numerical procedure is stable for 0.5 ≤ θ ≤ 1.
The first example is the example in [15]. Signals on a

distortionless lossy line experience attenuation without any
distortion. A line with C = l F/m, L = 1 H/m, R = 1Ω, and
G = 10 S/m is excited by a sinusoidal source with frequency
of 60 Hz and amplitude of 1 V. The resulting waveforms of
the TDFEM, the FDTD method, and Bergeron’s method and
the zoomed waveforms of them are shown in Figure 4.

The other example is the crosstalk problem of two wires
as shown in Figure 5. The voltage source is step function and
its magnitude is 1V. Rs1 = 50, Rs2 = 50, RL1 = 50, Rs2 = 50.
The length of the MTLs is 0.5 m.Δz = 0.005 m. The per-unit-
length parameters are the same as in [9]. The comparison of
the results of the TDFEM and FDTD method is shown in
Figure 6.

From Figures 4 and 6, we can see that the results of the
TDFEM basically agree with the results of FDTD method
and Bergeron’s method in the sinusoidal steady analysis and
transient analysis. But from the zoom part in the Figure 6, in
transient analysis, the results of the FDTD have numerical
oscillation. As to Bergeron’s method, only the voltage and
current at some specified nodes can be calculated. And
the TDFEM can overcome these disadvantages. So the
TDFEM would be the optimized method for analyzing the
traditional MTLs. But the FDTEM is complicated; so, for the
overhead lines with multi-layer soil, the frequency-depen-
dent overhead lines nonuniform MTL, and the FDTD is as
the first point for its simplicity [10–12].

4. Conclusion

In this paper, a generalized MTL model is developed for
modeling of wide frequency transient response on busbars,
cables and core-type transformer windings. Different from
the traditional MTL model, the equations of the generalized

MTL model are built in the cylindrical coordinate system.
Then, the optimized solution based on TDFEM is developed
for the above MTL equations. In the sinusoidal steady anal-
ysis, its results agree with ones of the FDTD method and
Bergeron’s method. But in transient analysis, it avoids of
numerical oscillation of the FDTD method. Comparing with
Bergeron’s method, all voltages and currents along the MTLs
can be calculated with the TDFEM.
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