Pearl Hunter: A Cross-domain Hyperheuristic that Compiles Iterated Local Search Algorithms

7th September 2011, Nottingham, UK

Fan Xue, CY Chan, WH Ip, CF Cheung Department of Industrial & Systems Engineering Hong Kong Polytechnic University

Department of Industrial and Systems Engineering

工業及系統工程學系

Introduction

Pearl Hunter

Training and Validation on HyFlex

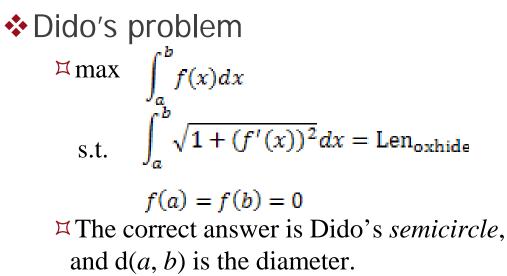
Migrating to Quadratic Assignment

Discussion and conclusion

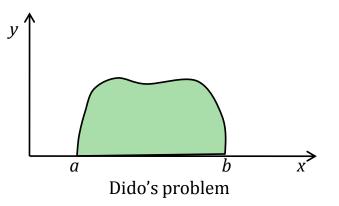
Ancient stories (intelligence & optimization)

Carthaginian bull's hide

(In 810s B.C.,) ... Elissa (Dido) had an bull's hide cut into strips and lay them out end-to-end in a *crescent* circumscribing a sizeable area of land. This ox-hide enclosed area was known as Carthage.



Ruins of Carthage (from Wikipedia)



Ancient stories (intelligence & optimization)

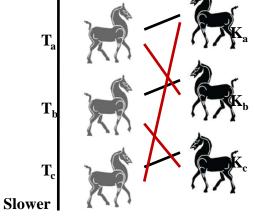
✤ Tian Ji's racing horses

"(In 340s B.C.,) General *Ji Tian* of Kingdom *Qi* raced horses with other members of royal family several times. His guest *Bin Sun* (author of *Sun Bin's Art of War*) found *Tian*'s 3 horses covered 3 levels and were not much inferior in races..." (Sima, 91bc)

✤ Sun's strategy

- *Tian* and King *Wei* of *Qi* had a horseracing. *Tian* won 2/3 races, and won a prize of about 500 oz st copper. *Sun* became the military counselor of *Qi*.

XUE et al: Pearl Hunter: A Cross-domain Hyper-heuristic



Tian's usual races *Sun*'s strategy

- Enormous of optimization methods have been proposed so far. Four issues have been concerned:
 - *¤ Effectiveness* able to find highly satisfactory solutions,
 - *¤ Efficiency* with quick running,
 - *≍Easiness* (IMO) easy to understand and deploy, and
 - *¤ Portability* scalable to *different domains* and datasets.
- Machine Learning: main source of the portability power
- ♦ Hyper-heuristics $\subseteq^{(?)}$ Metaheuristics
 - ➡ Hyper-heuristics select or generate heuristics via online or offline learning, to combine the strength and to compensate the weakness of each "low-level" heuristic (like Sun's?), if each heuristic has its own strength and weakness.

5

Pearl hunting is an out-of-date diving activity of retrieving pearls from oysters. Can still be found in:

ĭ Some Aisa tourist sites,

¤ Virtual games.

In a search perspective, pearl hunting consists of repeated

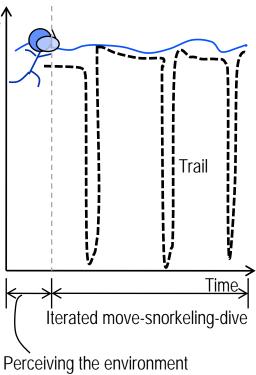
¤ diversification (surface and change target area)

ĭ intensification (dive and find pearl oysters).

Pearl hunting is in the paradigm of Iterated Local Search (Lourenço *et al*, 2003).

Pearl Hunter: a hyper-heuristic imitation

◆ Basic actions made of low-level heuristics^{Obj} Value *¤ Snorkeling*: local search with a low "depth of search", stops after any improvements *□ Deep dive* (SCUBA): local search with a high "depth of search", till no further improvements ×Why two intensifications? $N_{\text{snorkeling}}/N_{\text{dive}}$? *¤ Surface moves*: non-local-search heuristics × Crossover (MI): 2 or more input solutions ×*Mutation* (SI): 1 input solution "Environment":

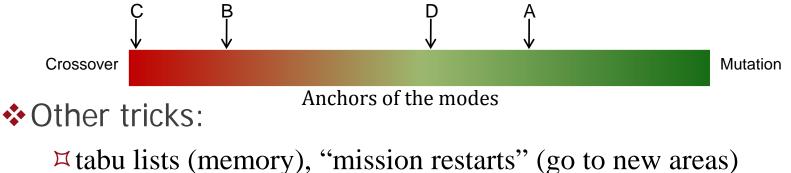


and selecting a portfolio

≍ Shallow water, where local search is useless *≍ Sea trench*, where local search costs too much time *≍ Default, otherwise*

Pearl Hunter: a hyper-heuristic imitation (Continued)

- Pearl Hunter can drop a *Buoy* at the depth of first deep dive, to escape from local optimum by mutations (SIs).
- Four running modes (portfolios) of moves:
 - **□ A**: all moves averagely, with a *Buoy* mark
 - **¤ B**: *crossover* with a *Buoy* mark (triggering a few mutations)
 - **¤C**: *crossover* only, no mutation, no *Buoy*
 - impliest D: Sea trench mode, all surface moves averagely, no *Buoy*. Moves are subject to online pruning.



Pearl Hunter: a hyper-heuristic imitation (Continued)

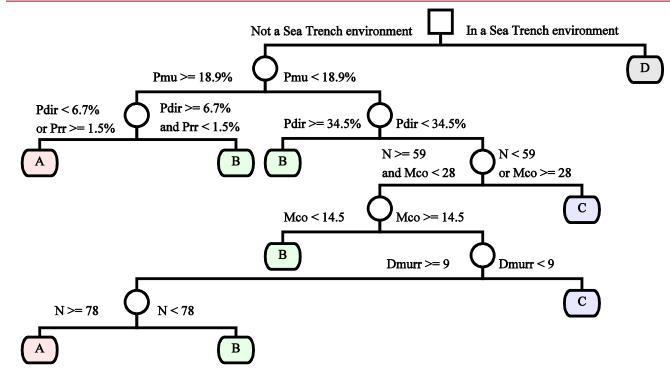
1)Selecting low-level heuristics and 2)determining one mode after the "perceiving" period (classification)

¤Off-line learning

×Rule induction ×... ×Full problem \times A division of problem \forall A "cropped" problem with a subset of given variables, smaller but "<u>keeps flavor</u>" (good in division, good in problem). Attributes for offline learning: ^I Suboptimal solutions found by moves, dives ¤Restarts, MI vs SI, ...

- HyFlex (Hyper-heuristics Flexible framework) is a java cross-domain platform (Burke *et al*, 2011)
 - 6 domains, 4 public (training domain) and 2 hidden
 - ¤ "Black-box" low-level heuristics in 4 categories:
 - ×Crossover, Mutation, Ruin-recreate, and Local search
 - □ Parameters to control low-level heuristics :
 - ×"Intensity" of mutations, and "depth of local search"
- CHeSC 2011 is the first Cross-domain Heuristic Search Challenge on HyFlex. (<u>http://www.asap.cs.nott.ac.uk/chesc2011/</u>)
- Pearl Hunter was ranked in CHeSC:
 - 4th out of 20 entries overall,
 - rightarrow 1st out of 20 entries in the hidden domains.

HyFlex and CHeSC: BF-Tree obtained by offline learning (by Weka v3.5)



 $rac{H}$ D_{murr}: Depth of the mission in the Mutation and Ruin-recreate test,

- $rac{H}{M_{co}}$: Number of missions completed in the Crossover test,
- ¤ N: Number of sub-optimal solutions found in total,
- ⊭ P_{dir}: Percent of sub-optimal solutions found right after some moves (before any dive),
- $rac{H}{P}_{mu}$: Percent of sub-optimal solutions found in iterations started with Mutation moves,
- □ P_{rr}: Percent of sub-optimal solutions found in iterations started with Ruin-recreate moves,

Tests on personnel scheduling: beyond the 600s time limit of CHeSC

On large-scale personnel scheduling problems,

- ¤Running time was increased to 10 hours (normalized to P4 3GHz),
- **¤** Same decision tree

New best known solutions:

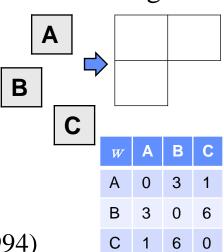
Instance	Men days	Time (h)	Result	Prev BK*	% improved
CHILD-2A	41 42	10	1,095	1,111	1.4
ERRVH-A	51 42	10	2,142	2,197	2.5
ERRVH-B	51 42	10	3,121	6,859	54.5
MER-A	54 42	10	9,017	9,915	9.1

* Best known values were collected from <u>http://www.cs.nott.ac.uk/~tec/NRP/misc/NRP_Results.xls</u>

A possible reason

 A new "vertical" swap concept first implemented in low-level heuristics on HyFlex

- Quadratic assignment problem (QAP)
 - $\varkappa \sum \omega_{a,b} \cdot d_{A(a),A(b)}$ where A is assignment.
 - $\stackrel{a,b\in F}{=} Example: place N facilities in a grid of cellular manufacturing (facility layout problem).$
 - ¤NP-hard
- Coded as a new domain on HyFlex
- Low-level heuristics implemented
 - ⊂ Crossover heuristics
 - ×Partially Matched Crossover (Chan and Tansri, 1994)
 - ×Order Crossover (Chan and Tansri,1994)
 - ×A voting recombination crossover



×Random swaps

×Shifting mutation (PSSC Lab, 2005)

×Spiral reassignment (Yaman et al, 1993)

¤Ruin-recreate heuristics

×Chan's heuristic (Chan *et al*, 2002)

×GRASP (greedy randomized adaptive search procedure, Feo and Resende, 1995)

Local search heuristics

×Variable Depth Search with partial gains (Burke *et al*, 2007)

×Tabu Search (Taillard, 1991)

×Selecting flow and distance matrices with closest means and deviations from 1000 random division samples. XUE et al: Pearl Hunter: A Cross-domain Hyper-heuristic

Instances

IO largest from QAPLIB, Euclidean and non-Euclidean

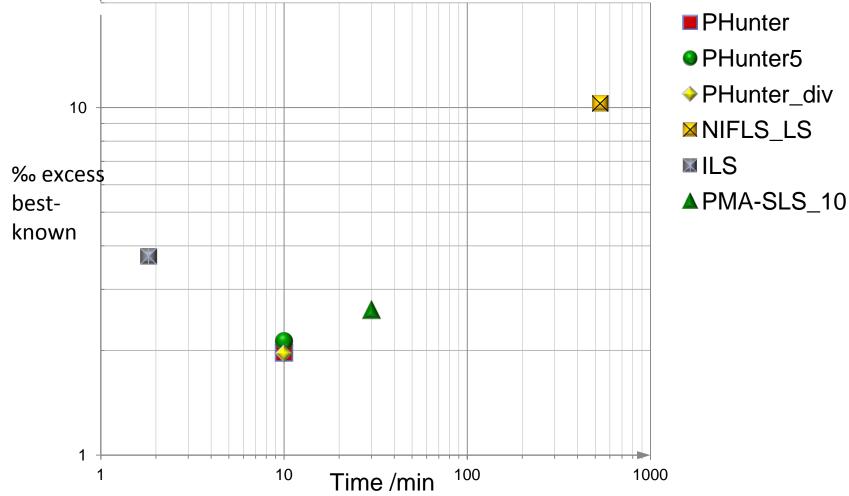
Algorithms

- **□ PHunter**: Codes and rules for CHeSC (no modification)
- **¤ PHunter**₅: Same codes, Appended QAP to training domains (4->5)
- **¤ PHunter**_{div}: Same codes, CHeSC rules, appended a simple online mode learning via a division (N'= 0.47*N) : try different modes independently (5% time, pow(5%, 0.25)=0.47), chose the best one.
- **≍ NIFLS_LS**: Iterated local search (Ramkumar *et al*, 2009).

ILS: Iterated Local Search (Stützle, 2006) **□**

¤PMA-SLS₁₀: Parallel Memetic Algorithm with Selective Local Search (10 islands, Tang *et al*, 2006)

Off-the-peg Hunters versus custom-made methods on *N*=100 instances (10 independent runs, 600s for each run, time normalized to a P4 3.0GHz)



XUE et al: Pearl Hunter: A Cross-domain Hyper-heuristic

Average objective values excess best-known values (%)

Prob	BK	PH	PH_5	PH _{div}		ILS	PMA-SLS ₁₀
Sko100a	152002	0.0566	0.0577	0.0597	0.32	0.312	0.0663
Sko100b	153890	0.0248	0.0130	0.0164	0.49	0.5068	0.0636
Sko100c	147862	0.0122	0.0104	0.0114	0.34	0.6023	0.0226
Sko100d	149576	0.0602	0.0602	0.0850	0.59	0.021	0.0706
Tai100a	21052466	0.6999	0.6654	0.6464	1.83	0.6933	1.5684
Tai100b	1.19E+09	0.4908	0.6390	0.4966	3.36		0.0048
Tai150b	4.99E+08	0.6080	0.6080	1.440		0.095	
Tai256c	44759294	0.2984	0.2984	0.2804	0.34		
Tho150	8133398	0.1171	0.1171	0.1684		0.068	0.1418
Wil100	273038	0.0383	0.0429	0.0565	0.26	0.1041	0.0332

The off-the-peg hyper-heuristics can be comparable to the custom designed metaheuristics

Results of PH, PH₅, PH_{div} are very close
 PH: Pearl Hunters seem portable without tweak on codes

 $\cong PH_{div}$: Capability of learning online from a proper division

• Difficulties in getting size of division N':

 $\bowtie N'$ could be determined by: $t_{LS}(N') / t_{LS}(N) = t_{\text{perceiving}} / t_{\text{hunting}}$

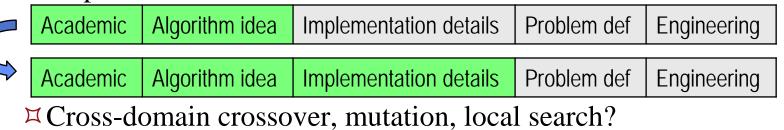
×Proportions of local search may change, e.g., $t_{LS1}=O(N^5)$, $t_{LS2}=O(N^2)$ \bowtie Complexity of division is still not well redressed by the equation. (NP-hardness versus polynomial algorithms)

 $\times N$ ' too small, easy to find optimum, unable to rank heuristics;

 $\times t_{\text{perceiving}} / t_{\text{hunting}}$ larger, less time for hunting.

Eventually a "point and shoot" hyper-heuristic software for daily use?

ĭ Step 1: Define variables, an objective function, and constraints,



More accessible function on HyFlex?

ĭ Such as "Similarity between two solutions"

* "Learn-and-generate" hyper-heuristic on HyFlex?

Encapsulate training data <attribute1_i, value1_i, attribute2_i,
value2_i, ..., label> for each low-level heuristic i?

- We present a hyper-heuristic
 - Imitates pearl hunting
 - ¤ Perceives "environment" of search
 - □ Determines a perturbation mode by online / offline learning
 - ☐ Generates different modes of ILS
- We find the results of tests encouraging
- Possible future works
 - □ Other reasonable ways to classify mode online
 - Hunters can generate new low-level heuristics

×(Custom designed for TSP) Generated an association-rules-based weighting heuristic to determine candidate set, and facilitated branch-and-bound and local search (LKH) (Xue *et al*, 2010).

- Burke E.K., Curtois T., Qu R., Vanden Berghe G. (2007) A Time Pre-defined Variable Depth Search for Nurse Rostering. Technical Report No. NOTTCS-TR-2007-6. University of Nottingham
- □ Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., and Qu, R. (2010) Hyperheuristics: A Survey of the State of the Art, University of Nottingham. Technical Report No. NOTTCS-TR-SUB-0906241418-2747.
- □ Burke, E., Curtois, T., Hyde, M., Ochoa, G., Vazquez-Rodriguez J. A. (2011) HyFlex: A Benchmark Framework for Crossdomain Heuristic Search, ArXiv e-prints, arXiv:1107.5462v1
- Chan W. M., Chan C. Y., Ip W. H. (2003). A heuristic algorithm for machine assignment in cellular layout. Comput. Ind. Eng. 44(1):49-73
- ⊭ Feo T.A., Resende M.G.C. (1995) Greedy randomized adaptive search procedures. J. of Global Optimization, 6:109-133.
- Lourenço, H., Martin, O., Stlützle, T. (2003) Iterated Local Search. In Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics. Springer New York. 320-353.
- Production Scheduling and Soft-Computing Lab (2005) The Genetic Algorithm for Solving the Quadratic Assignment Problem and Continuous Problem. available at:

http://peterchenweb.appspot.com/publications/sourceCodes/OpenGA/OpenGA.pdf

- ¤ QAPLIB: <u>http://www.seas.upenn.edu/qaplib/</u>
- □ Ramkumar, A. S., Ponnambalam, S. G., Jawahar N. (2009) A new iterated fast local search heuristic for solving QAP formulation in facility layout design, Robotics and Computer-Integrated Manufacturing, 25(3):620-629.
- ¤ Sima, Q. (91B.C.) Biographies of Sun Tzu and Wu Qi, in Records of the Grand Historian, Vol. 65. (In Chinese)
- [™] Taillard E. (1991) Robust taboo search for the quadratic assignment problem, Parallel Computing 17:443-455.
- Tang, J., Lim, M. H., Ong Y. S., Er M. J. (2006) Parallel memetic algorithm with selective local search for large scale quadratic assignment problems, International Journal of Innovative Computing, Information and Control, 2(6):1399-1416
- □ Xue F., Chan, C.Y., Ip, W.H., Cheung, C.F. (2010) Towards a learning-based heuristic searching reform scheme, XXIV European Conference on Operational Research (EURO), Lisbon, Portugal.
- Yaman, R., Gethin, D. T., Clarke, M. J. (1993). An effective sorting method for facility layout construction. International Journal of Production Research, 31(2), 413-427.

Thank you for your attention!

E-mail addr.: mffxue@inet.polyu.edu.hk dewolf_matri_x@msn.com

Industrial and Systems Engineering

工業及系統工程學系