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Abstract A common problem in displaying within-subject data is that of how to show confi-

dence intervals that accurately reflect the pattern of significant differences between conditions.

The Cousineau-Morey method (Cousineau, 2005; Morey, 2008) is a widely used solution to this issue;

however, this method only applies to experimental designs with only one repeated-measures factor

(e.g., subjects). Many experimental designs in fields such as psycholinguistics and social psychology

use crossed random effect designs where, e.g., there are repeated measures both for subjects and

stimuli. For such designs, extant methods for showing within-subject intervals would require first

aggregating over stimuli, and thus such intervals might be a less accurate reflection of the statisti-

cal significance patterns if the data are actually analyzed using a method that takes both random

effects into account (e.g., linear mixed-effects models). The present paper proposes an extension

of the method described above to address this problem; the proposal is to scale the data using a

mixed-effects model, rather than using the means from each subject, and then calculate confidence

intervals from the data scaled thusly. Analysis of a sample of crossed random effect datasets reveals

that intervals calculated using this method give a slightly more accurate reflection of the pattern of

statistical significance in the between-condition differences.
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Introduction
Displaying informative summaries of data is a common

challenge in experimental psychology. One useful tool for

displaying and interpreting data is the confidence interval

(see, e.g., Cumming, 2014), which allows readers to see not

just a single parameter of a dataset (e.g., the mean), but

also an estimate of what that parameter differs from statis-

tically. Compared to a single mean, a confidence interval is

more useful for showing what null hypotheses are consis-

tent with that parameter and what null hypotheses can be

ruled out.
1

There is a challenge, however, when it comes to us-

ing confidence intervals to represent a pattern of signif-

icant differences between conditions. For a design with

two conditions to be compared, the only way to accu-

rately show the significance of the between-condition dif-

ference is to plot the confidence interval of the difference

(which Rouder and Morey, 2005, refer to as a “relational

CI”), not the confidence intervals of each condition’s mean

(which Rouder and Morey refer to as an “arelational CI”;

see Blouin & Rioppele, 2005; Cumming & Finch, 2005; Franz

& Loftus, 2012). For example, for the data shown in Figure

1, confidence intervals of each condition’s mean (panel B)

are uninformative with respect to whether the differences

between conditions are significant, but confidence inter-

vals of the pairwise differences (panel C) reveal that each

pair of conditions is significantly different, as the intervals

1
Confidence intervals are often said to be useful for indicating the precision of a parameter estimate or indicating the plausible values of a parame-

ter, but these inferences are not strictly justified (Morey, Hoekstra, Rouder, & Wagenmakers, 2016); confidence intervals are related to null hypothesis

statistical testing and do not assign likelihoods.
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Figure 1 Example of within-subjects intervals. (A) Sample repeated-measures data from Loftus and Masson (1994); each

line represents one subject’s data in three conditions. (B) Standard confidence intervals calculated across participants

for each condition, which do not accurately reflect that the between-condition differences are statistically significant in

a repeated-measures analysis. (C) 95% confidence intervals of the difference between each pair of conditions. (D) The

data scaled by subtracting the subject’s mean from each data point and adding back the grand mean, which removes

between-subject baseline variability and preserves just the pattern of within-subject differences. (E) 95% within-subject

intervals calculated using the method described by Cousineau (2005) and updated by Morey (2008), which are narrower

and more accurately reflect the significant between-condition differences.

do not cross zero.

However, plotting each pairwise difference between

conditions is not always a feasible way to display data.

When plotting the results of an experiment with a large

number of conditions, showing all possible pairwise com-

parisons may be prohibitive in terms of space or complex-

ity. A design withK levels has (K(K − 1))/2 pairwise dif-
ferences, so an experiment with, e.g., 8 conditions has 28

pairwise differences (plus main effects and interactions, in

the case of a factorial design) that could be shown. Even

with a small number of conditions, standard practice in

many fields is still to show each condition mean, rather

than each difference.

One such field is psycholinguistics. I reviewed pa-

pers published within the last year in two highly-regarded

psycholinguistics journals, Journal of Memory and Lan-
guage (N = 39) and Language, Cognition and Neuro-
science (N = 46) and found that, of 121 relevant figures
and tables that showed any kind of error bar, 92 (76%)

showed only individual conditions, not between-condition

differences (see Supplementary File 1; 163 figures and ta-

bles are listed there, but 42 of these did not show or de-

scribe any sort of error bar and thus are not discussed

here). Of the 29 figures and tables that did show between-

condition differences, 21 of these (72%) were regression ta-

bles with coefficients and standard errors. Only 4 papers

in the sample directly showed between-condition differ-

ences in figures. Nevertheless, practitioners often attempt
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to use the pattern of confidence interval overlap to make

inferences about which pairs of conditions have signifi-

cantly different means. For example, one paper made ex-

plicit reference to the pattern of confidence interval over-

lap in the interpretation of between-condition differences

(Gould, McKibben, Ekstrand, Lorentz, & Borowsky, 2016, p.

243), “The means of two conditions are considered statisti-

cally different if the mean of one condition is not captured

by the 95% CI of the other condition”—which is not strictly

correct for the type of confidence interval used in this ex-

ample), and indeed Belia, Fidler, Williams, and Cumming

(2005) have provided empirical evidence that researchers

rely (often erroneously) on comparing whether arelational

confidence intervals of condition means overlap in order

to make conclusions about significant differences.

What is often desirable is a way to show each condi-

tion’s mean (or some other relevant sample statistic) along

with an interval that allows rough inferences about which

conditions it differs from. A reader can then compare sepa-

rate confidence intervals of two different conditions to see

howmuch they overlap; while this is only a rough heuristic

for judging whether the two conditions differ (Cumming &

Finch, 2005), it can be a more efficient means of displaying

data compared to showing all pairwise differences. Rouder

and Morey (2005) likewise recommend the display of in-

dividual means along with [arelational] confidence inter-

vals, rather than or in addition to display of the differences,

for parsimonious data visualization, while reminding that

these need to be supplemented with direct statistical com-

parisons.

The reason for within-subject intervals

On top of this issue, an additional challenge is raised when

it comes to displaying confidence intervals for within-
subjects designs (for review see Baguley, 2012; Blouin & Ri-
oppele, 2005; Cousineau, 2005; Franz & Loftus, 2012; Lof-

tus & Masson, 1994; Morey, 2008). As Loftus and Mas-

son (1994) demonstrate, when a dataset includes condi-

tions with repeated measures (e.g., when a single partici-

pant contributes a data point to each condition in an ex-

periment), then standard confidence intervals around each

mean are even less informative for illustrating the pat-

tern of significant differences between conditions. Lof-

tus and Masson describe a memory experiment in which

each participant attempts to recall words in different con-

ditions; while the within-subject differences between con-

ditions are very systematic, there is large between-subject

variance in the average number of words recalled across

conditions, and thus the standard confidence intervals for

the conditions are very wide, overlapping substantially

and giving the impression that the between-condition dif-

ferences are not significant (Figure 1B). While this prob-

lem could be resolved by showing the confidence intervals

of the between-condition differences instead of the confi-

dence intervals of each condition’s mean (as done in Figure

1C), this is rarely done, and in some cases it is not feasible,

as described above.

As another way to address this problem of within-

subjects data, several methods have been proposed for cal-

culating within-subjects intervals (see Baguley, 2012, for re-
view).

2
What these methods have in common is that they

adjust the size of a confidence interval such that they only

reflect variance in within-subject effects; whether or not

two confidence intervals sufficiently overlap then roughly

corresponds to whether or not the difference between the

associated conditions is nonsignificant. While the inter-

vals produced by these methods are not true confidence

intervals, and are subject to Cumming and Finch’s (2005)

caveats about trying to compare two confidence intervals,

they can be useful for making a quick visual summary

of the dataset that allows very rough inferences about

which pairwise comparisons will probably be significant.

One type of within-subject interval (Cousineau-Morey in-

tervals) is shown in Figure 1E.

The problem of crossed random effects

The proposed methods, however, have thus far only been

implemented for designs with a single random effect, typi-

cally Subjects (hence the name "within-subject intervals").

Many research paradigms, however, have multiple ran-

dom effects. In psycholinguistics, for example, experi-

ments that cross Subjects and Items (or “Stimuli”) are com-

mon (Baayen, Davidson, & Bates, 2008; Chang & Lane,

2016; Judd, Westfall, & Kenny, 2012). For instance, a se-

mantic priming experiment might examine whether peo-

ple respond faster to words presented on a screen (e.g.,

DOCTOR) if the word is preceded by a related word (e.g.,
nurse) rather than an unrelated word (e.g., table). Usu-
ally such an experiment not only contains multiple sub-

jects, but also multiple words. Just as each subject will con-

tribute data points in each condition (i.e., a given subject

will complete both Related and Unrelated trials), so will

each word (e.g., DOCTORmay appear in both Related trials
and Unrelated trials). In such an experiment, both Subjects

and Items (words) are random effects with repeated mea-

sures. Extant methods for calculating within-subject inter-

vals would require first aggregating over items to get con-

dition means for each subject, or aggregating over subjects

2
Throughout this paper I refer to these as " intervals" rather than "confidence intervals" because, as noted originally by Loftus and Masson (1994),

these intervals are not true confidence intervals (i.e., it is not the case that if you repeat the experiment 100 times then 95 of the 95% confidence

intervals would contain the population parameter).
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Figure 2 Simulated data from a semantic priming experiment with a design that is both within subjects and within

items. (A) Pairwise differences (Unrelated minus Related) for each subject and for each item (one dot represents one

subject or one item); error bars show the standard 99% confidence interval of the mean of the differences. (B) Condition

means shown together with error bars depicting several types of interval at the 99% confidence level.

to get condition means for each item, and then calculating

within-subject intervals (or within-item intervals) across

those aggregated means. This, however, would not be an

accurate reflection of the actual statistical analysis of these

data: for the past decade, the field of psycholinguistics has

been moving away from using separate by-subject and by-

item analyses, and towards using linear mixed effect mod-

els that take into account both subject and item variance

simultaneously (Baayen et al., 2008; Chang & Lane, 2016).

Thus, if a researcher intends to display within-subject in-

tervals to summarize experimental data from a repeated-

measures paradigm, it would be ideal to use intervals that

reflect the corresponding statistical analysis as accurately

as possible (while keeping in mind the limitation that such

intervals are still only a rough heuristic and are not true

confidence intervals).

This problem is illustrated in Figure 2, which shows

simulated data from a semantic priming paradigm like that

described above (the data are available in Supplementary

File 2). As shown in panel A, the priming effect (the dif-

ference between unrelated and related prime conditions)

in this dataset is substantially more variable across sub-

jects than it is across items. Therefore, while the effect is

in fact close to significant at the α = .01 level (b = 27.04,

SE = 12.48, t = 2.17, when using a maximal linear
mixed-effects model – Barr, Levy, Scheepers, and Tily,

2013), the 99% confidence interval of the by-subject effects

nevertheless crosses zero. This problem could be avoided

by showing the confidence interval of the coefficient (i.e.,

the Unrelated-Related difference) from the mixed effects

model; however, as discussed above, researchers often de-

sire to show each condition mean rather than the mean

and confidence interval of the pairwise difference. The

problem of crossed random effects also affects the plot of

condition means: as shown in panel B, the within-subject

(solid blue) and within-item (solid black) intervals look

very different, with the non-overlapping within-item inter-

vals suggesting a significant difference whereas the sub-

stantially overlapping within-subject intervals suggest a

non-significant difference. If a researcher created a plot

showing only within-subject intervals, the significance pat-

tern suggested by the figure would be inconsistent with the

results of inferential statistics.

Previous methods for calculating within-subject inter-

vals (e.g., the Cousineau-Morey method and the Loftus &

Massonmethod) were never intended to be used in designs

with crossed random effects; therefore, their inapplicabil-

ity to the sorts of data described above is not a bug, but a
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feature. Nonetheless, such designs are common in cogni-

tive psychology. Therefore, newmethods that allow practi-

tioners to visualize patterns of significant differences, in a

similar way as allowed by within-subjects intervals, would

be of value.

A solution: linear mixed effect model residuals
One solution to the problem of crossed random effects is to

scale the dependent variable using a linear mixed effects

model. To motivate this solution, it is informative to com-

pare it to the scaling method used to calculate Cousineau-

Morey intervals (Cousineau, 2005; Morey, 2008), illustrated

in Figure 1D.

Deriving Cousineau-Morey intervals involves the fol-

lowing steps:

1. Scale the data to remove the between-subject baseline

differences. This is done by calculating the mean of the

dependent variable (e.g., number of words recalled in

Figure 1, or reaction time in the semantic priming ex-

ample) for each participant. The relevant participant’s

mean is then subtracted from each data point, preserv-

ing the within-participant pattern of effects but remov-

ing between-participant baseline differences.

2. Add the original (prior to scaling) grand mean back

to each data point to ensure that the overall dataset

has the same mean as the original data, simply with

between-subject variance removed.

3. Calculate within-subject intervals from the scaled data

using the typical formula for a confidence interval

(times a bias-removing scaling factor described by

Morey, 2008).

It should be clear that the first step of this process, sub-

tracting the relevant participant’s mean, is equivalent to

residualization. In regression, the difference between an
observed value and the predicted value is a residual. When

no other predictors are present, the predicted value for

a given participant is that participant’s mean. Thus, sub-

tracting the participant’s mean from each of that partic-

ipant’s data points is exactly the same as regressing the

dependent variable on Subject (treated as a fixed factor)

and extracting the residuals. The code given in Listing

1 demonstrates that this is true, using the sample data

from Loftus and Masson (1994); see Figure 1 and discus-

sion above,. It shows that the scaled values obtained by

subtracting each participant’s mean are exactly the same

as the regression residuals (r = 1).
Just like ordinary least squares regression, mixed ef-

fects regression can also return residuals. (These residu-

als, though, from a model in which subjects are treated as

a random effect, will not be exactly the same as residuals

from a model treating subjects as a fixed effect, which is

essentially what is done in the Cousineau-Morey and Lof-

tus & Masson methods. This is because random effects in a

mixed effect model undergo shrinkage: rather than reflect-

ing the actual mean for that subject or item, the best lin-

ear unbiased predictors for the subject and item intercepts

[i.e., the estimates of how much a given subject’s or item’s

mean deviates from the grand mean] are constrained to be

somewhat closer to overall intercept of the model; see e.g.

Blouin and Rioppele, 2005.)

Importantly, mixed effects regression residuals can be

calculated from a model that includes both subjects and

items as random effects. Thus, there is no need to ag-

gregate over subjects or items. Rather, the data can be

scaled in a way similar to the way data are scaled in the

Cousineau-Morey method (step 1 above): fit a model with

only a fixed intercept and with random intercepts for sub-

jects and items, extract the residuals, and add the grand

mean of the original data. In fact, as Blouin and Rioppele

(2005) note, methods that calculate within-subject inter-

vals based on treating subjects as fixed effects (including

the Cousineau-Morey and Loftus &Massonmethods) are in

fact just a special case of methods that use a mixed effect

model; the present proposal builds on their observation by

extending this concept to mixed effect models with more

than one random effect.

How to calculate intervals from scaled data

The next problem is how to use these scaled data to com-

pute an interval. The Cousineau-Morey method simply

uses a variation of the standard formula for a confidence

interval:

x̄ ±
(
sd (x) /

√
N × tinv1−α

2 , N−1 ×M
)

(1)

where x is the scaled data,N is the number of participants,
tinv is the quantile function for the t distribution (return-
ing the critical t value for a given significance level and de-
grees of freedom), andM the correction factor fromMorey

(2008). This method is not applicable for designs from a

mixed effect model, however, as the standard formula re-

lies on calculating the critical t statistic for a given num-
ber of degrees of freedom (N − 1), whereas the degrees of
freedom for a mixed effect model are not known (Baayen

et al., 2008). There are methods available to estimate the

degrees of freedom, but the best option for the present ap-

plication is to calculate bootstrap-based confidence inter-

vals of the scaled data for each condition (Davison & Hink-

ley, 1997) rather than using a confidence interval formula.

Bootstrapping for mixed effect models is straightforwardly

implemented in the bootMer package of the R statistical

environment. The LMEMinterval() function shown in
Appendix B on page 87 is a convenience function which

scales the dependent variable of a dataset using mixed-

effect model residuals, and then bootstraps the dependent
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variable to construct an interval; the mixed-effect-model-

based intervals shown in Figure 2Bwere derived using this

function.

Implementation and code

As mentioned above, Appendix B at the end of this

article contains R code for a convenience function,

LMEMinterval(), that calculates bootstrap mixed effect
model intervals using the procedure described above. This

code assumes that the random effects are crossed, and

there is no guarantee that it will work for between-subject

or between-item designs. It also requires that the lme4

package is installed.

To use the function, you must pass it a data frame and

a formula using the same formula syntax used in the lme4
package. See Baayen et al. (2008), Chang and Lane (2016),

inter alia, for introductions to the lme4 syntax.
By way of example, the following command may be

used to read the data from the semantic priming experi-

ment discussed above (Supplementary File 2) into R (after

having saved the file to a local drive, and after having run

the code in Appendix B to have the LMEMinterval()
function in R’s memory for the current session) and then

calculate the LMEM-based confidence intervals (this code

will take several minutes to run, and may issue several

failure-to-converge warning messages which may be ig-

nored):

simdata <- read.csv( file.choose() )
( CIs <- LMEMinterval( RT ~ Condition +

(1|Subject) + (1|Item), simdata ) )
### Lower Upper
### Related 470.1059 495.5972
### Unelated 499.1634 522.6883

(Because of the randomness involved in bootstrapping, the

results will be slightly different each time the function is

called.) The confidence level may be changed using the

conf parameter, e.g., conf=.99 will calculate a 99%
rather than a 95% interval. The number of bootstrap repli-

cates used for calculating the bootstrap interval may be

changed using the nsim parameter. The number of boot-
strap replicates is the main determinant of how long the

function call will take. The default is to use 2000 replicates

for a percentile bootstrap. To make the function run faster,

you can request a normal bootstrap instead of a percentile

bootstrap, which by default uses only 200 replicates:

( CIs <- LMEMinterval( RT ~ Condition +
(1|Subject) + (1|Item), boot.type =
"normal", simdata ) )

The function can straightforwardly be used for other

datasets as well. For instance, the following example

demonstrates the use of the function with the lexdec
dataset that is included in the languageR package.

library( languageR )
# Create a variable which will be fully
# within-subject and within-item
lexdec$WhichHalf <- factor( ifelse(

lexdec$Trial>106, "Second", "First" )
)

( CIs <- LMEMinterval( RT ~ WhichHalf +
(1|Subject) + (1|Word), lexdec ) )

Testing the method
It is worthwhile to test whether mixed effect intervals are

in fact more accurate summaries of the data pattern than

other types of within-subject interval. In what follows,

I use several real datasets (a convenience sample includ-

ing data from published psycholinguistics papers, datasets

available online, and data from unpublished experiments)

to compare mixed effect intervals, within-subject and

within-item Cousineau-Morey intervals in terms of how

closely they match the p-values obtained from a direct

comparison between the conditions of interest.

Evaluation criteria

A metric is needed to determine how accurate an interval

is. One appropriate metric is whether the overlap between

two conditions’ intervals accurately corresponds to a p-
value. As Cumming and Finch (2005) note, as long as sev-

eral assumptions about the distribution of the data hold,

two independent groups are usually different at the 5% sig-

nificance level if their respective 95% confidence intervals

overlap by just about 58% (specifically,

∣∣√2− 2
∣∣; see foot-

note 3) of the average margin of error (the margin of error

is half of the confidence interval—for a symmetrical con-

fidence interval, the margin of error is the distance from

the parameter estimate to the lower or upper bound of the

interval—and the averagemargin of error is the average of

3
This 58% overlap rule is related to the standard error of the difference between means. While the standard error for a single sample mean with N

observations is SD/
√
N , the standard error of a difference between sample means uses a different formula (see, e.g., Pfister & Jancyzk, 2013, equation

4). In a case where the two sample means have the same N and same variance, the formula for the standard error of the difference can be algebraically

reduced to SD/
√
N ×
√
2. If the margin of error for the confidence interval of a sample mean is multiplied by

√
2, then the difference between means

is significant if the confidence interval does not include the other mean, rather being significant if the two confidence intervals overlap by less than 58%

of the average margin of error as above. To illustrate, consider a hypothetical case of two means of unpaired samples where each sample has the same

N and same variance. The margin of error (MoE) can be calculated based on the standard error of each mean (and in this example the average MoE

will equal the MoE for either mean, since their variances and Ns are the same) or on the standard error of the difference. Assuming x1 is the lower of

the two sample means and x2 is the higher, then the critical MoE of the difference (i.e., the margin of error such that the difference between means will
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two condition’s respective margins of error).
3
This applies

to any significance level; for instance, if the p-value for the
difference between two groups is .2, then the two groups’

80% confidence intervals should overlap by just about 58%

of the average margin of error, if the right assumptions

are met. The same rough heuristic applies to two paired

groups and their Cousineau-Morey intervals (a demonstra-

tion of this, using simulations, is given in Appendix A).

Therefore, we can test the accuracy of mixed effect inter-

vals by calculating, for any given pairwise comparison in

a crossed random effect dataset, what the p-value of that
comparison is, and what is the largest interval that over-

laps by just about 58% of the margin of error. For example,

if the p-value for the difference between two conditions in
a mixed-effect model is .003, and the 99.7% mixed effect

based intervals of the two condition means overlap by 58%

of the average margin of error, then the intervals are con-

sistent with the p-value; on the other hand, if the 99.7% in-
tervals overlap by much less or much more than that, then

the intervals are inconsistent with the actual p-value.

Sample

A convenience sample of 11 psycholinguistic studies with

subject and item random effects, a continuous dependent

variable, and at least one nominal independent variable

was selected. This independent variable was repeated

within subjects and items. Some of these studies also in-

volved between-subjects or between-items variables; in

these cases, these were treated as separate experiments

and LMEM-based intervals for each group were calculated

separately (for example, if a study included two condi-

tions that were measured within both subjects and items,

but also had a Group variable that was between-subjects,

then this was treated as two separate datasets, one for

each group). This was done to avoid the complications in

creating appropriate intervals for a design involving both

within-subjects and between-subjects comparisons. Across

these studies, 162 pairwise comparisons were available to

compare the performance of different types of intervals.

The samples are summarized in Table 1; links to full cita-

tions are available in Supplementary File 4.

Calculations

Supplementary File 3 includes R code that compares

the actual p-value to the p-value suggested by the inter-
val, for all possible pairwise contrasts within any given

dataset. (This code is only included for demonstration

purposes; for calculating mixed-effect intervals under

normal circumstances, the reader is advised to use the

LMEMinterval() function included in Appendix B.) Be-
cause the exact p-values for mixed effect model contrasts

are not known, this script calculates several p-value ap-
proximations:

1. percentile bootstrap p-values (2 times the percentage

of bootstrap beta values for that contrast which fall on

the wrong side of zero; for example, if the estimate for

a difference is 3, and forty of 2000 bootstrap replicates

give an estimate below zero, then the bootstrap p-value
is 2× 40/2000 = .04);

2. p-values based on the Satterthwaite approximation

for mixed effect model degrees of freedom (Schaalje,

McBride, & Fellingham, 2002);

3. p-values based on treating the t statistic as a z statis-
tic (because the t distribution approaches the normal
distribution when the number of degrees of freedom is

high).

It then reports the corresponding interval-based p-

values (i.e., the confidence levels of the widest intervals

that overlap by just 58% of the margin of error) for three

types of interval:

1. within-subject Cousineau-Morey intervals;

2. within-item Cousineau-Morey intervals;

3. mixed effect intervals.

The crucial comparison is that between the “real” p-
value (the bootstrap-based p-value of the actual difference
between conditions) and the p-value suggested by how
much the mixed-effect intervals overlap (e.g., if the 85%

intervals for two conditions overlap by 58%, then this sug-

gests a p-value of about 1−.85 = .15 for the direct compar-
ison between these two conditions). If mixed effect inter-

vals are indeed more accurate, they should show a closer

correspondence to the p-values.

be just barely significant at the chosen alpha level) is the one that is equal to or just below the size of the difference between means, or in other words,

the difference between means is equal to the MoE. Keeping in mind that the MoE of the difference is, in this example, equal to the MoE of either mean

times

√
2, this means that the critical margin of error is as follows: (x2−x1) = MoE×

√
2. This can be solved for the MoE: (x2 − x1)/

√
2 = MoE.

On the other hand, when using the MoE of each mean, the critical MoE is the one such that the confidence intervals overlap by .58 times the average

MoE: (x1 +MoE) − (x2 −MoE) = .58 ×MoE. This can be solved for the MoE: (x2 − x1)/1.42 = MoE. As
√
2 ≈ 1.42, this demonstrates

the motivation behind using 58% overlap as an approximate value to judge statistical significance—it corresponds to the

√
2 used for calculating a

confidence interval of a difference. Indeed, instead of estimating whether two confidence intervals overlap by 58% the average MoE, another approach

to using confidence intervals to roughly visualize statistically significant differences is to multiply the MoEs by

√
2, creating difference intervals that

imply significance (except for the caveats mentioned above, if the sample variances or sample sizes differ) when the interval for one mean does not

include the estimate of the other mean.
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Table 1 Summary of the studies used to in the present test. Links to datasets are available in Supplementary File 4.

Number of

Source Publication status subjects items conditions pairwise

comparisons

Politzer-Ahles and Fiorentino (2013) published 28 48 4 6

Politzer-Ahles and Husband (2016) unpublished 48 48 4 6

Husband and Politzer-Ahles (2016) unpublished 48 48 6 15

Baayen (2008) online dataset (CRAN) 21 79 2 1

Politzer-Ahles (ms) unpublished 40 24 4 6

Politzer-Ahles and published 25 12 4 6

Zhang (in press) 25 12 4 6

22 12 4 6

22 12 4 6

Politzer-Ahles and Connell (dataset) unpublished 25 12 4 6

Fruchter et al. (2015) published 103 158 2 1

Matushanskaya online dataset (OSF) 24 40 6 15

et al. (dataset) 24 40 6 15

Gibson and Wu (2012) Published 37 15 2 1

Mädebach et al. (dataset) online dataset (OSF) 24 32 12 66

Note. Some studies were broken down into multiple smaller studies because they included between-subjects and/or
between-items manipulations; see text.

Results

Supplementary File 4 shows these various p-values from

all within-subject-and-item contrasts in the sample. On

average, the p-values implied by the LMEM-based inter-

vals deviated from the actual bootstrap p-values by .017

(SD=.026); these are shown in Column M of Supplemen-

tary File 4. On the other hand, p-values implied by within-

subject Cousineau-Morey intervals differed from actual p-

values by an average of .035 (SD=.059; Column N), and p-

values implied by within-item Cousineau-Morey intervals

by .050 (SD=.080; Column O). For instance, to take one rep-

resentative example: for the fourth comparison in Politzer-

Ahles and Fiorentino, 2013 (the fifth row of Supplemen-

tary File 4), the bootstrap p-value for the difference be-
tween these conditions in a mixed-effect model directly

comparing them is .352. The p-value suggested by LMEM-
based intervals is .36125 (i.e., it is the 63.875% intervals

that overlap by just about 58% of the average margin of er-

ror), which deviates from the real p-value by .00925. On
the other hand, the p-value suggested by within-subjects

Cousineau-Morey intervals is .3065 (deviating from the

real p-value by .0455), and that suggested by within-items
Cousineau-Morey intervals is .301 (deviating by .051). Fig-

ure 3 shows the distribution of these differences for the

entire sample of 162 pairwise comparisons; it can be seen

that the LMEM-based intervals have the most observations

clustered near 0 (i.e., very little difference between the real

p-value and the LMEM-based one), whereas within-subject
and within-item intervals have longer positive tails (indi-

catingmore values that are substantially different from the

real p-values). Figure 4 shows the correlations between the

real p-values and the p-values suggested by LMEM-based

intervals (r = .994), within-subject intervals (r = .973),
and within-item intervals (r=.952).

A mixed effects model regressing the deviation (i.e.,

the amount fromwhich the interval-based p-value differed
from the real bootstrap p-value) on interval type 4 found a
marginal effect of interval type (χ2(2) = 4.69, p = .096),
with mixed effects intervals marginally more accu-

rate than by-subject Cousineau-Morey intervals (b = 0.03,
SE = 0.02, t = 1.86) and significantly more accurate

4
The model (in the syntax of the lme4 package) was as follows: diff ~ IntervalType + ( IntervalType | Study/Experiment ) in

which diff represents the difference between the interval-based p-value (i.e., the p-value based on what confidence level was needed to make intervals

that overlapped by 58%) and the real p-value based on bootstrapping the pairwise contrast. IntervalType represents whether mixed effect intervals,

by-subject Cousineau-Morey intervals, or by-item Cousineau-Morey intervals were used. Study corresponds to a paper that one or more experiments

were put together into, and Experiment corresponds to a single dataset within the study (most studies analyzed here consisted of one experiment, but

some studies consisted of multiple experiments with the same design, or of an experiment including between-subject or between-item factors which I

used to split the dataset into sub-experiments with fully crossed subjects and items). IntervalType was dummy coded with mixed-effect intervals as the

baseline, and the main effect of IntervalType was tested via log-likelihood test comparing the above model with a model without that fixed effect (i.e.,

a model with only a fixed intercept and the random effects).
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Figure 3 Smoothed kernel density of the differences between (a) the real p-values and the LMEM-interval-based p-

values (dotted blue line); (b) the real p-values and the within-subject-interval-based values (dashed red line); and (c) the

real p-values and the within-item-interval-based values (solid black line).

than by-item Cousineau-Morey intervals (b = 0.05, SE =
0.02, t = 2.24).
This advantage for mixed-effect intervals relative to

within-subject and within-item intervals is also visible in

the simulated data shown in Figure 2B. The 99% within-

subject intervals (solid blue lines) in that figure suggest

that the difference between the two conditions is not sig-

nificant at the α = .01 level, as they overlap by far more
than 58% of the margin of error. The within-item inter-

vals (solid black lines), on the other hand, suggest that

the difference is significant at that level, as these inter-

vals do not overlap at all. The mixed-effect model inter-

vals, however, which are wider than the within-item inter-

vals but narrower than the within-subject intervals, over-

lap by just about half the margin of error. This is consis-

tent with the results of the direct statistical comparison,

which gives a test statistic of t = −2.17 (see above), which
corresponds to a p-value close to .01, which is consistent
with the fact that it is the 99%mixed-effect intervals which

overlap by close to 58% the margin of error. It should be

noted, however, that this is a trend, rather than a guar-

antee that LMEM-based intervals will align more closely

with p-values; in fact, as can be seen in Supplementary

File 4, there are some contrasts for which the p-values

suggested by within-subject or within-item intervals align

more closely with the real p-values, although these con-

trasts are in the minority.

Conclusion
The foregoing discussion presented a method for ex-

tending within-subject intervals to research designs with

crossed random effects, and demonstrated that, in a sam-

ple of real datasets, the extent to which these intervals

overlap (which is a common heuristic that practitioners

use, often erroneously, to judgewhether twomeans are dif-

ferent) corresponds more closely to the inferential statis-

tics than previous within-subject and within-item types of

intervals do. While these are not confidence intervals (i.e.,

they do not license conclusions about how often they will

include a given parameter on repeated sampling), and they

do not justify inferences about plausible parameter values

(a limitation shared by bona fide confidence intervals), they
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Figure 4 Scatterplots showing the correlation between real p-values and p-values suggested by each type of interval:

LMEM-based intervals (top), within-subject intervals (middle), and within-item intervals (bottom).

do offer a quick and roughly accurate means to visualize

significant pairwise differences between a large number

of conditions.

The presentmethod is only discussed for relatively sim-

ple designs here. While it could be extended to multi-

factor designs and to designs including non-categorical

(i.e., ordinal or continuous) predictors, these more chal-

lenging issues are beyond the scope of the present intro-

duction. Furthermore, a unique challenge for this method

is that random effects may also have different structures

than those presented here. Random effects can be nested

rather than crossed, or an experiment may have a com-

bination of crossed and nested random effects. Likewise,

some fixed effects may have corresponding random slopes

and others (e.g., between-subject effects) may not. Here I

have only considered designs that are fully within-subjects

and within-items (when faced with datasets with between-

subject or between-item factors, I split them up into mul-

tiple datasets and calculated mixed effect intervals sepa-

rately for each sub-dataset). The method could be used for

designs that are not like this (for example, where a given

subject contributes data to each condition, but a given item

only appears in one condition), but the code given here

would need to be adapted.

Because the method involves scaling, it is subject to

the same concerns discussed by Franz and Loftus (2012),

namely, the scalingmay sometimes cause variance to prop-

agate between conditions and may hide violations of the

assumption of circularity. To my knowledge, every type

of within-subject interval faces this problem; the only way

around it is to plot true confidence intervals of differences

(as noted by Franz and Loftus), rather than within-subject

or LMEM-based intervals of individual conditions.

Visually evaluating whether two intervals overlap by

58% of their average margin of error can sometimes be

difficult. Practitioners who are interested could instead

multiply the margins of error (i.e., half the interval) by√
2. As described above in Footnote 5 (see also Pfister &

Jancyzk, 2013), this creates a difference-adjusted interval

such that the difference between two means is likely to be

significant at the given alpha level if one mean’s interval

does not contain the other mean. Just as for any other at-

tempts to evaluate differences using two means’ intervals,

inferences made from this comparison are only rough es-

timates, and will be invalid if the two means have very

different standard deviations or very different numbers of

observations (Cumming & Finch, 2005).

A practical concern is that calculating bootstrap confi-

dence intervals takes a long time, particularly for models

with many conditions. The datasets analyzed here took

anywhere from several minutes to several hours to calcu-

late percentile bootstrap confidence intervals. Other meth-

ods of bootstrapping may be faster (for instance, normal

bootstrap confidence intervals can be estimated with far

fewer replicates than percentile bootstrap confidence in-

tervals), or intervals can be calculated using a confidence

interval formula and estimating the degrees of freedom,

but this method still is substantially slower than other

within-subject interval methods. Some researchers may

not want to spend this much extra time to obtain inter-

vals that are only slightly more accurate, especially given

that these intervals, just like other within-subject inter-

vals, are still only a rough heuristic and will never be true

confidence intervals. Nevertheless, for researchers who

have sufficient time and want to present the most accurate

heuristic data summary possible, while keeping in mind

the limitations, this method may be a useful extension of

other within-subject interval methods, as it does not re-
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quire aggregating across items or other random effects.

Author’s note
I would like to thank Drs. Page Piccinini and Rory Turnbull

for feedback on this work. Any errors are my own.
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Appendix A: Simulations to demonstrate the relationship between confidence interval overlap and p-values
Some simple simulations can be used to test the validity of a given type of confidence interval. These in turn will be useful

as diagnostics to examine whether LMEM-based intervals yield comparable results.

The CI of paired differences

Let’s first consider the simplest case: a test of two paired samples (which is mathematically equivalent to a one-sample

test against 0, once the two vectors of paired samples are turned into one vector of differences). In this case a CI is both
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descriptive and inferential (to adopt Tryon, 2001, terms): it is the case both that 95% of 95% CIs will contain the true

mean, and that a 95% CI that does not cross zero indicates significance at α = .05. Using simulations to illustrate the
descriptive validity of the CI (i.e., that 95% of samples contain the true mean) is straightforward; since the within-subject

CIs we discuss below are not true confidence intervals, however, I will only use simulations to illustrate the inferential

validity of the CI (i.e., that the CI fails to include the null hypothesis value α % of the time); for paired samples these are
really just two different ways of stating the same problem. To verify the inferential validity of the CI, one simply needs

to generate a large number of samples (of any sample size) from a given population where µdifference = 0, and count the
proportion of samples in which the CI fails to include 0 (i.e., the proportion of false positives). For a 95% CI this should be

5%, and this is indeed what we observe with a large number of samples. Listing 2 was used to run this simulation.

Also note that in this case a CI and a p-value (from a t-test) are mathematically related, and one can be derived from
the other. The p-value is simply the confidence level of the largest CI that just barely touches zero. This value can be
straightforwardly calculated from the formula for the margin of error (i.e., half of the CI) where qt() is the quantile
function (which finds the critical t value for a given significance level and degrees of freedom; here the significance level
is adjusted for a two-tailed test):

SDx√
n
· qt(1− α/2, n− 1) = x (2)

This can be algebraically solved for α (where pt() is the cumulative distribution function, the inverse of the quantile
function: for a given t-value it returns a significance level):

α = 2 ·
(

1− pt
(

x

SDx/
√
n
, n− 1

))
(3)

Notice that this is, in fact, the t-test formula. Thus it is straightforwardly demonstrable that a p-value corresponds to the
confidence level for the widest CI that just touches zero (or, specifically, 100 × (1 − p) corresponds to that confidence
level). This can also be confirmed with any random sample, as seen with Listing 3.

Two within-subject intervals, for two paired samples

Now we consider a more complicated case: within-subject intervals for the means of the two paired samples, rather than

one CI for the difference. As has been described previously (e.g., Cumming & Finch, 2005, , among others), a 95% CI of a

condition mean is not directly informative about differences between that condition mean and other condition means:

i.e., directly looking at whether that condition’s CI overlaps with another does not provide an inference about whether

the two conditions’ means differ at α = .05. Instead, as noted by Cumming and Finch (2005), as long as each group is
n > 10 and the two groups have similar variance, then the two means can be roughly inferred to differ at about α = .05
if the overlap between the two confidence intervals is about 58% of the margin of error (MoE; i.e., half the width of the
CI).

This .58×MoE rule only directly applies to normal CIs in the case of comparisons between two independent groups.
For comparisons between two conditions of within-subject (paired) data, a within-subject interval is needed (Loftus &

Masson, 1994). Here I will illustrate this with simulated Cousineau-Morey intervals. Just as we demonstrated inferential

validity for a one-sample test (i.e., a paired differences test) above by counting the proportion of CIs that were simulated

from a population with µdifference = 0 but failed to cross 0, we can conduct a similar demonstration for the two-condition
case by drawing a large number of paired samples and counting the proportion of simulations in which the sample

Cousineau-Morey CIs overlap by less than 58% of the average margin of error. Again, for a 95% interval and a population

in which µdifference=0, this should be approximately 5% of samples, and this is indeed the case in the simulations run

by Listing 4.

Just as we did above, we can also draw a relationship between the Cousineau-Morey interval and the p-value by noting
that the p-value is related to the confidence level of the interval. In this case, rather than corresponding to the confidence
level of the widest interval that just touches zero, now the p-value corresponds to the confidence level of the widest pair
of intervals that just barely overlaps by 58% of the average margin of error. (In the case with only two conditions, after

scaling the data according to the Cousineau-Morey procedure then the margins of error for the two conditions are equal,

and thus also equal to the average margin of error.) Once again, this can be algebraically calculated (where x1 is the
lower of the two condition means, and MoE is the margin of error for each condition):

(x1 + MoE)− (x2 −MoE)

MoE
= .58 (4)
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which can be solved for MoE:

MoE =
x2 − x1

1.42
(5)

And, in turn, solved for α after plugging in the MoE formula (with the correction factor, based on Morey, 2008):
SDxscaled/

√
n · qt(1− α/2, n− 1) ·

√
2 :

α = 2 ·
(

1− pt
(
x1 − x2
−1.42

·
√
n

SDxscaled ·
√

2

))
(6)

Finally, as we did above for differences, here we can demonstrate for any simulated sample that this widest pair of

Cousineau-Morey intervals that just barely reaches 58% overlap also has a confidence level approximately corresponding

to 100× (1− p). Listing 5 was used to verify this.
(Notice that here, because the .58 × MoE rule only approximates α = .05 significance level, rather than exactly

equaling it, the confidence levels do not exactly match up with the p value calculated by the t-test; in fact, they are
conservative, slightly overestimating the actual p value.)

In summary, for Cousineau-Morey intervals of two paired means, the validity of the interval can be confirmed by

using simulations to show that the false alarm rate (for inferences based on the proportion of overlap between two

intervals) in a population with a zero effect is close to the nominal α level, and that the significance levels that can be
inferred from the .58×MoE rule closely approximate (although do not exactly equal) the p-value that would be yielded
from directly testing the difference. We can then apply these same diagnostics to crossed mixed-effect intervals.

Appendix B: An R convenience function for calculating LMEM-based intervals.
This function is also available in the supplementary material on the journal’s web site.

LMEMinterval <- function(
formula,
data,
boot.type="percentile",
conf=.95,
nsim=NULL){

# This convenience function calculates LMEM-based "confidence" intervals for
# a given design and dataset.
# Parameters:
# formula: a usual model formula, with one DV and one or more IVs. Currently
# this function is able to handle functions in DVs (e.g., using log(RT)
# rather than RT as a DV), but not in IVs. And I haven’t done much testing
# of DVs with functions so there may be bugs; I prefer just creating a
# new column in the data frame (e.g., creating a logRT column).
# Also note that this is currently only implemented for single-factor
# designs. If you have a factorial (e.g. 2x2) design, this function will
# collapse it into a single-factor (e.g. 1x4) design.
# data: a data frame with repeated measures data
# conf: The confidence level (between 0 and 1) for the CI. Defaults .95.
# boot.type: which type of bootstrap to use. Defaults to "percentile". If set
# to anything else, it will instead use normal bootstrap.
# Percentile bootstrap is more accurate but slower, as it requires more
# iterations to get accurate.
# nsim: Number of bootstrap replicates to use. By default this will be 2000 if
# boot.type=="percentile" and 200 otherwise, but you can set ‘nsim‘ to
# override that.

# Load the lme4 and boot packages
require( lme4 )
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require( boot )

# Figure out the DV and the IVs.
# This doesn’t use all.var() because that strips away functions,
# whereas sometimes your formula might be like log(DV) ~ rather than just DV.
vars <- rownames(attr(terms(formula),"factors"))

# Figure out the DV
DV <- vars[1]

# Figure out what the random effects are. The first line finds which
# IVs look like random effects terms (which ones have pipes), and
# the next line grabs the stuff after the pipe
ranef_idx <- which( unlist( lapply( vars, function(x){ length( grep("|", x,
fixed=T ) ) } ) )>0 )
grouping.vars <- unlist( lapply( vars[ranef_idx],

function(x){ strsplit( x, " | ", fixed=T )[[1]][2] } ) )

# Figure out the fixed IVs
IVs <- vars[-c(1,ranef_idx)]

# handles cases where the DV has a function around it (e.g. when the DV
# is ‘log(RT)‘ rather than just ‘RT‘
realDV <- all.vars(formula)[1]
if( DV != realDV ){

func <- gsub( paste0("(",realDV,")"), "", DV, fixed=T )
DV <- realDV
data[,DV] <- unlist(lapply( data[,DV], func ) )

}

### A function to do the scaling. It first fits an intercept-only model to the
### data, then subtracts the residuals and adds the intercept (the grand mean)
LMEscale <- function( formula, data ){

model <- lmer( formula, data )
data$LMEscale <- as.numeric( resid(model) + fixef(model)["(Intercept)"] )
return(data)

}

# Scale the data, using a model with only a fixed intercept
# and random intercepts
lmerformula <- paste( DV, " ~ 1 + ", paste( "(1|", grouping.vars, ")", collapse=
" + " ) )
data <- LMEscale( lmerformula, data )

### The rest of the code handles making bootstrap CIs of the scaled data. The
### general procedure is as follows: to get the bootstrap CIs we have to fit
### an lmer model to the scaled data. To make the models more likely to
### converge, we want to fit the models without random correlation
### parameters; to do this use a hack from https://rpubs.com/Reinhold/22193,
### which requires first calculating a temporary model [which may not
### converge] and then extracting dummy coefficients directly from
### its model matrix to construct the good model.
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### Finally, we bootstrap the good model a lot of times and use the bootstrap
### coefficients to get "confidence" intervals.

# Collapse design into one factor (just treating each condition as its
# own condition, without considering main effects, interactions, etc.)
data$Condition <- factor( do.call( paste0, lapply( IVs, function(IV){ data[,IV]
} ) ) )

# Create the temporary model, which may not converge, it doesn’t matter
lmerformula <- paste( "LMEscale ~ 0 + Condition + ", paste( "(1|", grouping.vars
, ")", collapse=" + " ) )
junkmodel <- lmer( lmerformula, data )

# Pull out dummy variables from model matrix https://rpubs.com/Reinhold/22193
mydummies <- list()
for ( i in 1:dim( model.matrix(junkmodel) )[2] ) {

data[,paste0("c",i)] <- model.matrix(junkmodel)[,i]
}

# Make random effect terms using the dummy variables rather than the big
# ’Condition’ variable. Per https://rpubs.com/Reinhold/22193, this ensures
# that random correlations between the random effects will not
# be used.
# We also specify no random intercepts; because the data are scaled, every
# subject/item/whatever should already have a mean of 0, so the random
# intercept is meaningless and in fact often cannot be fit anyway.
ran <- paste( "0 +", paste( "c", 1:dim( model.matrix(junkmodel) )[2],

collapse="+", sep="" ) )

# Now fit the good model. Because there is no fixed-effect intercept, it will
# estimate a coefficient for each condition, rather than estimating
# comparisons between conditions.
lmerformula <- paste( "LMEscale ~ 0 + Condition + ", paste( "(", ran, "||",
grouping.vars, ")", collapse=" + " ) )
model <- lmer( lmerformula, data )

# A function that gets the fixed-effect estimates from a model; this will
# be used for bootstrapping
getcoef <- function(.){ getME(., "beta" ) }

# Print a message so we know the function is going
message( "Bootstrapping LME-scaled values, may be very slow..." )

# Figures out the number of bootstrap replicates to use (unless the user
# already specified how many)
if( is.null(nsim) ) {

nsim <- ifelse( boot.type=="percentile", 2000, 200 )
}

# Sets some variables that will be needed depending on whether we do a
# percentile or normal bootstrap
if (boot.type=="percentile" ) {
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ci_idx <- 4:5
ci.type <- "percent"

} else {
ci_idx <- 2:3
ci.type <- "normal"

}

# Bootstrap the model. This line is what takes time
bigboo <- bootMer( model, getcoef, nsim=nsim )

# Extracts the requested CIs from the bootstrap samples
CIs <- do.call(rbind, lapply( 1:length(fixef(model)), function(x){ boot.ci(
bigboo, index=x, type=substr(ci.type, 1, 4), conf=conf )[[ci.type]][ci_idx] } )
)

# Gives human-friendly row names and column names
rownames(CIs) <- substr( names( fixef(model) ), nchar("Condition")+1, nchar(
names(fixef(model))) )
colnames(CIs) <- c("Lower", "Upper")

# Returns the CIs
return(CIs)

}
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Listing 1 R code to demonstrate that scaled values based on the Cousineau approach are identical to residuals from

ordinary least squares regression.

library(reshape2)

# Re-create the Loftus \& Masson data
LoftusMasson <- melt(

cbind(
c(10,13,13),
c(6,8,8),
c(11,14,14),
c(22,23,25),
c(16,18,20),
c(15,17,17),
c(1,1,4),
c(12,15,17),
c(9,12,12),
c(8,8,12)

),
varnames=c("Condition","Subject"),
value.name="Recall"

)

# Calculate the mean for each Subject in the LoftusMasson dataset
subjectmeans <- aggregate( LoftusMasson$Recall, list(LoftusMasson$Subject), mean )

# Calculate the grand mean of the dataset
grandmean <- mean( LoftusMasson$Recall )

# Scale the data by the Cousineau method: from each datapoint, subtract the
# Subject mean and add the grand mean
LoftusMasson$CMscaled <- LoftusMasson$Recall - subjectmeans[ LoftusMasson$Subject,

"x" ] + grandmean

# Alternative method: calculate an intercept-only regression model for each
# Subject (using the function lme4::lmList), which just gets each Subject’s
# mean, and then extract the residuals from that model and add the grand mean
library(lme4)
model <- lmList( Recall ~ 1 | Subject, LoftusMasson )
LoftusMasson$residualscaled <- resid(model) + grandmean

# A plot demonstrating that these scaling methods give the same results
plot( CMscaled ~ residualscaled, LoftusMasson,

main=paste( "r =", cor( LoftusMasson$CMscaled, LoftusMasson$residualscaled ) )
)
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Listing 2 R code to simulate a large number of samples and demonstrate that the proportion of samples in which the CI

of the paired differences includes zero corresponds to the p-value.

simulate_diff <- function( within_effect, within_effectsd, between_sd, n ){
# Figure out what the effect will be for each subject
subjeffects <- rnorm( n, within_effect, within_effectsd )

# Figure out what the mean will be for each subject
subjmeans <- rnorm( n, 10, between_sd )

# Create a 2-row matrix, where rows are the two conditions and
# columns are the n subjects
subjmeans <- rbind( subjmeans - .5*subjeffects, subjmeans + .5*subjeffects )

# Calculate the pairwise differences
diff <- mean( subjmeans[2,] - subjmeans[1,] )

# Calculate the standard 95% CI of the differences
diffME <- sd( subjmeans[2,] - subjmeans[1,] ) / sqrt(n) * qt(.975, n-1)

# Return TRUE if the CI fails to include 0, FALSE otherwise
return( abs(diff) - diffME > 0 )

}

# Run this function 1,000,000 times and show the proportion of false positives
nsim <- 1000000
length( which(results <- unlist( lapply( 1:nsim, function(x){ simulate_diff( 0, 1,

3, 48) } ) ) ) ) / nsim

Listing 3 R code to simulate a large number of samples and demonstrate the p-value is equal to the confidence level of
the CI that just touches zero.

# Population parameters
n <- 48
within_effect <- 0
within_effectsd <- 1
between_sd <- 3

# Get a sample
subjeffects <- rnorm( n, within_effect, within_effectsd )
subjmeans <- rnorm( n, 10, between_sd )
subjmeans <- rbind( subjmeans - .5*subjeffects, subjmeans + .5*subjeffects )

# Get the within-subject differences
diff <- mean( subjmeans[2,] - subjmeans[1,] )

# Find the alpha level needed for a two-tailed CI that only just touches zero
CI_alpha <- 2*(1 - pt( abs(diff)*sqrt(n) / sd(subjmeans[2,] - subjmeans[1,]), n-1))

# Show the t-test results and the CI confidence level
t.test( subjmeans[2,], subjmeans[1,], paired=T )
paste0( "You need a ", round(100*(1-CI_alpha),3), "% CI to just touch 0" )
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Listing 4 R code to simulate a large number of samples and demonstrate the p-value is close to the confidence level of
the Cousineau-Morey intervals that overlap by just 58% of the average MoE.

simulate_cmci <- function( within_effect, within_effectsd, between_sd, n ){

# Figure out what the effect will be for each subject
subjeffects <- rnorm( n, within_effect, within_effectsd )

# Figure out what the mean will be for each subject
subjmeans <- rnorm( n, 10, between_sd )

# Create a 2-row matrix, where rows are the two conditions and
# columns are the n subjects
subjmeans <- rbind( subjmeans - .5*subjeffects, subjmeans + .5*subjeffects )

# Here we scale the subject means (per Cousineau, 2005)
scaled <- subjmeans - rbind(colMeans(subjmeans),colMeans(subjmeans)) + mean(
colMeans(subjmeans))

# Here we get the margin of error of the scaled means, times the
# Morey (2008) correction factor
MEs <- apply( scaled, 1, sd ) / sqrt(n) * qt(.975,n-1) * sqrt(2)

# Get the mean, CI lower bound, and CI upper bound for each subject
means <- rowMeans( subjmeans )
lower <- means - MEs
upper <- means + MEs

# Find the average margin of error for the two groups (in a 2-condition
# case, each ME equals the average ME)
average_margin_of_error <- mean( MEs )

# Calculate the absolute overlap
overlap <- ifelse( means[1]<means[2],

upper[1]-lower[2],
upper[2]-lower[1]

)

# Return TRUE if the overlap is less than 58% the average MoE, FALSE otherwise
return( overlap/average_margin_of_error <= .58 )

}

# Run this function 100,000 times and show the proportion of false positives
nsim <- 100000
length( which( results <- unlist( lapply( 1:nsim, function(x){ simulate_cmci(0, 1,

3, 48) } ) ) ) ) / nsim
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Listing 5 R code to calculate a large number of Cousineau-Morey intervals at differnet confidence levels for a simu-

lated dataset, and show that the confidence level of the intervals that overlap by just 58% of the average MoE closely

corresponds to the p-value.

# Population parameters
n <- 48
within_effect <- 0
within_effectsd <- 1
between_sd <- 3

# Get a sample
subjeffects <- rnorm( n, within_effect, within_effectsd )
subjmeans <- rnorm( n, 10, between_sd )
subjmeans <- rbind( subjmeans - .5*subjeffects, subjmeans + .5*subjeffects )

# Get the condition means
means <- rowMeans( subjmeans )

# Scale the data
scaled <- subjmeans - rbind(colMeans(subjmeans),colMeans(subjmeans)) + mean(

colMeans(subjmeans))

sds <- apply( scaled, 1, sd )

# Find the alpha level that would be needed for a two-tailed CI
# that only just touches zero
CI_alpha <- 2*(1 - pt( (-abs(means[1]-means[2])/-1.42) * ( sqrt(n)/ (mean(sds)*sqrt

(2)) ), n-1 ) )

# Show the t-test results and the CI confidence level
t.test( subjmeans[2,], subjmeans[1,], paired=T )
paste0( "You need a ", round(100*(1-CI_alpha),3), "% CI to just barely have 58%

overlap" )
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