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Symbolic Analysis of Switching Systems:
Application to Bifurcation Analysis of

DC/DC Switching Converters
Dong Dai, Member, IEEE, Chi K. Tse, Senior Member, IEEE, and Xikui Ma

Abstract—A symbolic method is proposed in this paper for an-
alyzing the bifurcation behavior of switching nonsmooth systems.
The proposed method focuses on the symbolic sequence describing
the topological change of the system which characterizes its bifur-
cation behavior. The concept of block sequence is first introduced.
Based on the block sequence, the smoothness of the Poincaré map is
described. Moreover, two main theorems are given to detect border
collision and standard bifurcations. Finally, a specific example of
the buck switching converter is presented to illustrate the applica-
tion of the proposed symbolic analysis method. Using the proposed
method, two-dimensional (2-D) bifurcation diagrams, which can
assist engineers in identifying regions of preferred or undesired op-
erations in the select parameter space, can be easily obtained.

Index Terms—Bifurcation, border collision, nonsmooth system,
switching converter, symbolic analysis, symbolic sequence.

I. INTRODUCTION

I N THE LAST decade, many nonlinear phenomena, such as
bifurcations and chaos, have been identified in switching

circuits and systems [1]–[3]. Detailed examinations of such
phenomena have revealed that the underlying mechanisms can
often be attributed to the switching operations that characterize
this class of circuits and systems. For instance, switching
power converters undergo topological changes cyclically in
time. Although each involving circuit topology is linear and
the dynamical behavior corresponding to each linear topology
is easy to understand, the overall dynamics of switching
power converters can be quite complicated. It has been shown
previously that switching power converters can operate in a
variety of regimes such as periodic operation, quasi-periodic
operation and chaotic operation depending upon the choice of
the parameters’ values.

One important aspect of the research into nonlinear behavior
of switching power converters is to investigate the different
types of bifurcations and reveal their intrinsic mechanisms. In
very general terms, there are two different types of bifurcations
exhibited by switching power converters, namely standard

Manuscript received October 29, 2004; revised January 24, 2005. This work
was supported by Hong Kong Research Grants Council under a competitive
earmarked Research Grant PolyU 5241/03E. This paper was recommended by
Associate Editor P. K. Rajan.

D. Dai and C. K. Tse are with the Department of Electronic and Informa-
tion Engineering, Hong Kong Polytechnic University, Hong Kong (e-mail:
encktse@polyu.edu.hk).

X. Ma is with the School of Electrical Engineering, Xi’an Jiaotong University,
Xi’an, Shaanxi, China.

Digital Object Identifier 10.1109/TCSI.2005.852029

bifurcation and border collision. The former is characterized by
a change of stability status, e.g., period-doubling, saddle-node,
and Hopf bifurcations [4], whereas the latter is characterized by
a change of operation as a result of a disruption of the operating
topological sequence [3].

Specifically, it has been pointed out by Tse [3] that border col-
lision occurs as a result of a “structural change” in the system
when a parameter is varied. In the case of switching converters,
this translates to a “change of topological sequence,” which is
not observed when standard bifurcations occur. Consequently,
this distinctive difference between a standard bifurcation and a
border collision provides a possibility of investigating these bi-
furcations through the corresponding topological sequence that
the system undergoes.

The purpose of this paper, unlike other previous studies, is
to analyze the bifurcation in switching systems from the point
of view of the operating topological sequences. The dynamics
of the system can be examined from a symbolic sequence
representing the topological sequence that the system assumes
at any time and for any given set of parameters. This symbolic
sequence naturally incorporates the information about the
evolution of the circuit topology. From the symbolic sequence,
the intrinsic mechanism of border collision can be exposed
explicitly. To facilitate analysis, we define a new variable,
block sequence, which can be used to distinguish border col-
lision from other standard bifurcations. For readability and
effectiveness of exposition, we will illustrate the application
procedure using the voltage-mode controlled buck converter as
an example. However, our method can be applied directly to
other switching power converters.

II. PRELIMINARIES

A. Defining Border Collision

Much attention has been paid to the characterization of border
collision in terms of how the qualitative behavior changes at
border collision. However, definitions of border collision have
been given mainly under specific contexts. In Di Bernardo et al.
[5], it has been pointed out that for a piecewise-smooth dynam-
ical system in continuous time, border collision occurs when the
system trajectory becomes tangential to one of the phase space
boundaries. In Nusse et al. [6]–[8] and Banerjee et al. [9], border
collision is considered for piecewise-smooth one-and two-di-
mensional (1-, 2-D) maps. Specifically, Nusse et al. [6] defined
border collision in terms of the difference of the sum of orbit
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indices before and after the bifurcation. Moreover, Banerjee et
al. [9] analyzed border collision and other bifurcations in 2-D
piecewise-smooth maps in a 2-D parameter space. Since the dy-
namics of the system can be more conveniently studied in terms
of its Poincaré map, a clear definition of border collision for dis-
crete-time maps will be indispensable for further analysis. In the
following, our discussion of border collision will be based upon
discrete-time maps.

First, we observe that when border collision occurs in a piece-
wise-smooth map, there exists at least one point of the periodic
orbit which lies exactly on the boundary that separates different
appropriately defined smooth regions. Based on this basic fea-
ture, we may define border collision as follows.

Definition 1: Consider a piecewise-smooth map
, where is the state and

is the parameter. Let ( is a finite or infinite
natural number) be a partition (or region) of the state space ,
and is smoothly dependent upon . In each region ,

has a different smooth functional form. At the boundaries of
these regions, loses its smoothness, either being discontinuous
or having discontinuous first derivative. If there exists
such that in the neighborhood
of , the map has different kinds of qualitative behavior on the
two sides of and at least one point of the steady-state orbit
lies on the boundaries when , then border collision is
said to occur at .

In the above definition, the condition different kinds of qual-
itative behavior1 deserves some special attention when it is ap-
plied to a piecewise-smooth map. Specifically, for a smooth
map, periodic orbits, nonperiodic orbits, and periodic orbits with
different periodicities are considered as being qualitatively dif-
ferent. Moreover, periodic orbits with the same periodicity are
considered as the same kind of qualitative behavior. However, in
a piecewise-smooth map, periodic orbits with the same period-
icity can in fact be different kinds of qualitative behavior if the
forms of the map leading to the corresponding periodic orbits
are different.

Furthermore, it is worth noting that the above definition is
consistent with those defined or implied in other publications. In
brief we define border collision as the crossing of a fixed point
or any point on a periodic orbit over boundaries of regions. In
Di Bernardo et al. [5], as aforementioned, border collision has
been observed in a continuous-time system when the trajectory
becomes tangential to one of the phase space boundaries. Their
subsequent analysis based upon local maps implies the location
of the fixed points being on the borders that separate different re-
gions of the local map. Moreover, in Nusse et al. [6]–[8], border
collision has been studied directly on discrete maps. In partic-
ular, they defined border collision as the crossing of a fixed point
over a border that separates two regions with different indices.
They also showed that the fixed point is actually located on the
border for the critical parameter value at border collision. Also,
Banerjee et al. [9], [10] have basically the same interpretation,
since their “borderlines” are essentially the boundaries of the
regions mentioned in our aforedescribed definition.

1Steady-state behavior is understood here. Thus, “different kinds of qualita-
tive behavior” may include, inter alia, fixed points, limit cycles, quasi-periodic
orbits, and chaotic orbits.

Fig. 1. Voltage-mode controlled buck converter. (a) Circuit. (b) Typical wave-
forms illustrating the operation.

B. Theorem on Continuity of a Hyperbolic Fixed Point

The following theorem, addressing the continuity of a hyper-
bolic fixed point as some parameters are varied [11], is relevant
to our subsequent study. However, for conciseness, we refer the
readers to Robinson [11] for a detailed proof.

Theorem 1: Let be a one-parameter family
of differentiable maps with and . Assume that

is as a function jointly of and , and that
and 1 is not an eigenvalue of . Then, there are (i)

an open set about , (ii) an interval about , and (iii) a
function such that and

. Moreover, for , has no fixed points in other
than .

III. GLIMPSE AT SWITCHING SYSTEMS: BUCK CONVERTER

We take a quick tour of a specific switching system, the objec-
tive being to expose some of the important features of switching
systems. Specifically we consider the buck switching converter
under a standard voltage-mode control, and examine its oper-
ation, describing vector field in continuous time, and Poincaré
map in discrete time.

A. Circuit Operation

The schematic diagram of the voltage-mode controlled buck
converter is shown in Fig. 1(a). The operation of this buck con-
verter can be briefly described as follows [3], [12]–[14]. The
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output voltage error with respect to the reference voltage is am-
plified to give a control voltage as

(1)

where is the output voltage, is the feedback amplifier gain,
and is the reference voltage. Then, switch is controlled
by comparing the control voltage with a ramp signal .
The ramp signal is given by

(2)

where and are the lower and upper thresholds of
the ramp, respectively. The comparator output gives the
pulsewidth-modulated signal necessary for driving the switch,
and is described by

if
if . (3)

When , switch is turned off, and when , switch is
turned on, as illustrated in Fig. 1(b). For simplicity, we consider
continuous conduction mode (CCM), in which the inductor cur-
rent never falls to zero. Thus, the system toggles between only
two linear circuit topologies.

Two practical points are worth mentioning here. First, in prac-
tice, a more elaborate form of compensation network than a
simple proportional control is often used in the feedback con-
trol. However, for the purpose of illustrating the effects of topo-
logical variation on the bifurcation behavior, it suffices to con-
sider a simplified control circuit such as the one defined in (1),
where only proportional feedback is included. Second, in most
practical control schemes (with the exception of some low-cost
implementations), a latch is included as part of the pulsewidth
modulator to prevent multiple switchings in one clock period.
Thus, topological variation is much richer in the absence of a
latch, and our illustration of symbolic analysis can be more ef-
fective if the latch is excluded. Nonetheless, we should bear in
mind that practical systems would be much limited in their topo-
logical variations (in other words, much simpler than the exam-
ples given here), but this should not affect the significance of
our results.

B. Vector Fields and Continuous-Time Description

The buck converter under study can be regarded as a
second-order nonautonomous continuous-time dynamical
system, which can be described by a state equation of the form

(4)

where is the state vector (with superscript
denoting transposition) and is the vector field. The

system is nonautonomous because the vector field is a
function of time . Moreover, the system is periodic with period

since for any . When the system
assumes a specific circuit topology, the corresponding vector
field is linear and continuous. However, the vector field of the
system becomes discontinuous at the switching instants where

Fig. 2. Extended 3-D state space (x ; x ; t) showing zone 
 and zone 

divided by the border B (xxx; t) shown as the ramp planes. The region above
these planes belongs to zone 
 , and the region under these planes belongs to
zone 
 .

the circuit topology is changed.2 Thus, the overall vector field
is discontinuous and the system is a typical piecewise-smooth
dynamical system.

Specifically, the vector field can be defined as

(5)

The input term in (5) is essentially equivalent to
due to the affine relation between and , and

can be written as

if
if (6)

Here, is obtained by an appropriate transformation of (2),
which is given by

(7)

where and . The above
equation effectively defines a switching border, which divides
the state space into two parts, namely zone

and zone . Thus, we may
write the switching border as

(8)

As formulated previously by Ma, Kawakami, and Tse [13],
the switching border for this system, , is periodically
moving, with period , in the state space. Therefore, the buck
converter under study can also be described as a switched dy-
namical system with a periodically moving border. To illustrate
this moving border, we extend the 2-D state space to
the 3-D state space by taking time as an extra state,
as shown in Fig. 2. For the sake of completeness (probably with

2At switching points, the state vector changes its orientation; the vector field,
being the time-derivative of the state vector, is discontinuous.
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no practical importance), we should also define for the
instant when . A consistent definition of , for
any , can be precisely written as

if
if
and

if
and .

(9)

Here, , and is sufficiently small.3 Basically, what
(9) gives is the precise state of the switch when ,
depending upon how the control signal approaches the ramp
signal . Hence, (9) complements (6) in completing the def-
inition of , though is of little practical significance.

It is worth stressing that the arrival of the trajectory on
the switching border does not necessarily imply switching.
Switching takes place when the trajectory transversely crosses
the border according to (6). Furthermore, is discontin-
uous at , where switching occurs with going
from 1 to 0 if .

C. The Poincaré Map

As aforementioned, the vector field is discontinuous at
switching instants and the buck converter under study is es-
sentially a piecewise-smooth dynamical system. A classical
technique for analyzing continuous-time dynamical systems
is via a Poincaré map which describes the flow in terms of
an iterative map [15]. For the time-periodic nonautonomous
system with minimum period described by (4), the Poincaré
map is

(10)

where is the solution to (4) with the initial condition
, and is conveniently taken as the start of any clock

period.
The construction of involves stacking of the solutions

of the individual vector fields given by (5) in the time interval
. When is equal to 0 or 1, the solution of

the corresponding linear differential equation is readily found.
Here, we denote the solutions by for (i.e.,
when the switch is off) and for (i.e., when
the switch is on) with the initial condition and

, respectively. Note that
with respect to time . Thus, can be found in the form

of a composition of and .
It should be noted that for all practical switching power con-

verters consisting of incrementally passive components and no
inductor-capacitor loops and/or cutsets, the solutions and

are uniquely found. Hence, for a given fixed topological se-
quence, the Poincaré map is homeomorphic.4 This property is
important in establishing the main results of this paper, as will
be discussed in Section IV.

3As is customarily used in mathematics, is the natural numbers set.
4Homeomorphism literally means “similar correspondence” between two ob-

jects. Mathematically, a homeomorphic map is continuous, one-to-one, onto,
and having a continuous inverse. Thus, adjective “global” or “local,” when ap-
plied to a homeomorphic map, specifies that the map is being homeomorphic
over the entire state space or a region of the state space, respectively.

IV. METHOD OF SYMBOLIC ANALYSIS OF BIFURCATION

A. Symbolic Representation

For any given Poincaré map and an initial point, a numerical
orbit can be generated by an iterative process, i.e.,

(11)

where is the initial point. Inspecting this orbit, the dynamics
of the system can be studied.

Suppose we are only interested in knowing the region in
which a point is located. We partition the state space into a
finite or infinite number of smooth regions, each of which is
denoted by a unique symbol. Here, we stress that we are now
dealing with discrete state space, which will be implicitly as-
sumed in our subsequent discussion. Then, from the numerical
orbit, we can get a symbolic sequence or symbolic orbit

(12)

where is the symbol representing the corresponding region to
which belongs.

Clearly, the description using symbolic sequences is much
cruder than that using the original numerical orbits [16], but
it is much simpler and can still retain the essence of the dy-
namics. Since many different numerical orbits may correspond
to the same symbolic sequence, classification of dynamical be-
havior may be more efficiently performed according to the type
of symbolic sequence. Of course, the use of symbolic sequences
in classification of dynamical behavior may suffer from a re-
duced level of differentiability (ability to distinguish different
types of behavior), which has to be compensated by some ad-
ditional identification procedures, as will be illustrated later in
this paper.

When using symbolic sequences in the analysis of system dy-
namics, the way in which the state space is partitioned will play
an important role. In fact, the essential dynamics can only be
extracted from the symbolic sequence which has been gener-
ated with an appropriate state-space partitioning. For the buck
converter studied here, it is intuitive to partition the state space
according to the switching pattern that is being assumed in a
switching period. For clarity of the subsequent discussion, we
define two variables related to symbolic sequences.

Definition 2: A switching block is a sequence of switch
states which is taken within one particular clock period (i.e.,
switching period in common engineering usage).5

Definition 3: A block sequence is a symbolic sequence of
switching blocks that describes the way in which the block of
switch states changes as time elapses.

From Definition 2, a sequence of switching states within a
switching period is encapsulated into a switching block. Thus,
the switching block is actually a symbolic series, , where

, with being the number of switchings that
occur in this switching period (switchings that occur at the be-
ginning and at the end of this switching period are not included).
Here, , where elements 0 and 1 represent the switch

5To avoid confusion, clock period is used in the above definition. In power
electronics, however, “switching period” is also commonly used. Throughout
the paper, we refer to “switching period” and “clock period” as the fixed period
of time defined by an independent clock.
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Fig. 3. Illustrative waveform of the switching block including symbol series 101. This block is denoted as block 6 according to the numbering rule (13).

states OFF and ON, respectively. Thus, for example, the fol-
lowing switching blocks are possible for any switching period:
{0}, {1}, {0,1}, {1, 0}, {0,1,0}, {1,0,1}, etc. Suppose switching
always bring along a change of the switch state from 0 to 1, or
from 1 to 0. Then, a switching block will be uniquely determined
if the total number of switchings and the initial switch state
of this switching block are known. Hence, we may denote the
switching block, which represents a symbol series ,
according to the following (arbitrary) numbering rule

if
if

(13)

where is the number of switchings in a period and is the
initial switch state of that period. Fig. 3 illustrates the correspon-
dence between the control voltage waveform and the symbolic
series of a specific switching block in the buck converter under
study. According to the numbering rule (13), the block shown
in Fig. 3 is block 6. Other blocks are illustrated in Fig. 4.

Now consider a point in the state space at time . If the
system assumes block as its block sequence for the time in-
terval , then we may write

(14)

where is an operator which maps to a symbol (i.e.,
a block number). Accordingly, the state space is divided into
many regions. Each region is a set of points in the state space
which are mapped to the same block, i.e., ,
where is the region corresponding to block . With this par-
titioning of the state space, the dynamics of the system can be
described by a block sequence, such as the one given in (12).
Furthermore, by examining the block sequence in conjunction

with other information,6 bifurcation phenomena in the buck con-
verter under study can be analyzed.

B. Periodicity

Periodicity is an important aspect of the dynamical behavior
of a system. However, inspecting the block sequence alone may
not allow the periodicity of the system to be properly exposed.
Now we need to distinguish two different types of periodicity.
One is the traditional periodicity of the system’s solution, pre-
cisely the waveform periodicity, which is denoted by . For
instance, a period- operation and a chaotic (quasi-periodic) op-
eration correspond to and , respectively. The
other is the block sequence periodicity, denoted by . Obvi-
ously, for any periodic solution, its block sequence must be pe-
riodic. In particular, for a period- operation, is a common di-
visor of , which means . Moreover, for an aperiodic so-
lution, its block sequence may be aperiodic or periodic. Hence,
a periodic block sequence does not necessarily imply a periodic
solution, but an aperiodic block sequence will imply an aperi-
odic solution. To simplify the description of various kinds of
block sequences, we use the following notations.

Let be switching blocks. We denote by
a finite block sequence which repeats the block

sequence times. Moreover, a periodic block
sequence is denoted as , and an aperiodic block
sequence as .

C. Some Properties of the Poincaré Map

As stated previously, the Poincaré map is constructed
through stacking of a series of solutions. Thus, given at , the
form of is dependent upon the sequence of switch states

6As aforementioned, classification of dynamics based solely on the symbolic
sequence may suffer reduced differentiability (ability to distinguish different
types of behavior) to some extent. Supplementary information may be needed
to reveal the dynamical behavior adequately. Such information will be discussed
later.
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Fig. 4. Illustrative waveforms for different types of switching blocks. (a) Block 1 (N = 1, c = 0). (b) Block 2 (N = 1, c = 1). (c) Block 3 (N = 2, c = 0).
(d) Block 4 (N = 2, c = 1). (e) Block 5 (N = 3, c = 0). (f) Block 6 (N = 3, c = 1).

from to , i.e., the block to which belongs. For clarity,
we summarize the procedure of deriving a specific , with

, as follows.
Assume and the switching instant between
and is for , with .7 Then, the

state at can be obtained by the recurrent mapping

(15)

where . Thus

(16)

If we use the symbol to denote the recurrent mapping de-
scribed by (15), the Poincaré map can be simply written as

(17)

where operator denotes composition.8 This notation clearly
emphasizes the relation between the Poincaré map and the
switching block. Moreover, it can be concluded that the
Poincaré maps for all in the region have the same form,
which is denoted as here. Then, the Poincaré map is
defined in the whole state space as

for (18)

where , and represents a switching block. From
(18), we know that is dependent upon and the symbolic
series given in . Thus, the Jacobian of will depend

7For N = 1, P (xxx) is reduced to ' (xxx; T ).
8Essentially, (17), and hence (18), should include all switching instants t and

corresponding states xxx (i = 1; � � � ; N �1). For simplicity, these intermediate
variables are not shown in the equation since they are implicitly dependent upon
xxx.

on both and since is essentially a composition of
functions.

In Olivar et al. [17], the structure of the regions corresponding
to different numbers of switchings in a switching period in the
state space was studied. The regions considered in Olivar et al.
[17] are actually equivalent to the regions defined here. In partic-
ular, it has been shown [17] that the whole state space is divided
into a doubly infinite number of regions by the line and the
curve , and each region is a connected set, where

and with .
The curve is a piecewise-smooth double spiral which inter-
sects the line with a bi-infinite sequence of points. It is easy
to show that the boundary of any two regions is a subset of

. The basic structure of the state space is illustrated
in Fig. 5, which has been numerically computed. Furthermore,
it can be shown that the Poincaré map for any switching
converter is continuous and homeomorphic in each of the re-
gions,9 but is piecewise-smooth (differentiable). Also, in each
region excluding its boundaries, is smooth, which means
that in (18) is smooth if is an inner point of .

The following proposition, a version of which was proved in
Olivar et al. [17] for the buck converter, will be useful in our sub-
sequent analysis. This proposition is applicable to all switching
converters whose Poincaré maps are homeomorphic in every
region of the state space partitioned in the above fashion, i.e.,

9As mentioned before, for power converters consisting of incrementally pas-
sive components and no inductor-capacitor loops and/or cutsets, a unique solu-
tion is guaranteed for any given topological sequence. Hence, the Poincaré map
is homeomorphic within any region where the topological sequence is fixed.
Local homeomorphism of P is thus guaranteed for all switching converters.
For the buck converter under voltage-mode control, P is globally homeomor-
phic [17].
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Fig. 5. Partitions of the state space for the voltage-mode controlled buck converter with L = 0:02 mH, C = 47 �F, R = 22 
, T = 400 �s, a = 8:4,
V = 11:3 V, V = 3:8 V, V = 8:2 V (i.e., V = 11:752 V, V = 12:276 V) and E = 28 V. It is clearly observed that different regions are separated by
the double spiral s together with the line r .

within every region of fixed topological sequence. See Olivar et
al. [17] for a proof.

Proposition 1: is smooth (differentiable) at if, and only
if, there exists some neighborhood of such that is
locally homeomorphic at and for all

.

D. Some Properties of

We will study some qualitative properties of , where su-
perscript denotes the th iteration. For example, ,

, etc.
Suppose is a period- orbit. Then, we have

for

(19)

Thus, can be considered as the fixed point
of the map .

Now, given an initial point , by iterating it
times, a series of points can be obtained as

. From Definition
3, this series corresponds to a block sequence, say ,
with for . Denoting this block
sequence by , we may define the symbolic representation of
any point in the state space under map as

(20)

where maps to a block sequence .
Intuitively speaking, since is piecewise-smooth, so is its

composition . The following propositions clarify this prop-
erty. These propositions will be used in proving our main results,
to be presented in the next subsection. The proofs are given in
the Appendix.

Proposition 2: is smooth (differentiable) at if, and
only if, there exists some neighborhood of such that

is locally homeomorphic in and for
all .

Proposition 3: Let for . Sup-
pose is locally homeomorphic in some neighborhood
of . Then, is not smooth at if, and only if, there exists
at least one such that . (Here, is the union of the
boundaries of all regions as defined previously.)

It should be noted that, as mentioned before, the Poincaré
map for all switching converters is homeomorphic in each
region of the state space corresponding to a fixed topological
sequence. Moreover, this local homeomorphic property of is
meaningful only when we consider practical parameter ranges.
Thus, throughout the paper, it is understood that the local home-
omorphic property, when required, applies only to practical pa-
rameter ranges. In other words, we do not care about impractical
conditions such as the case where the output voltage is bigger
than the input voltage for a buck converter, which is practically
absurd.

At this point, several important consequences arisen from
the above propositions, which are pivotal to understanding the
structure of the state-space partitioning of the different regions
described earlier, are worth noting.

1) Proposition 2 provides a direct relation between the block
sequence and the smoothness of the map . Moreover,
Proposition 3 gives the sufficient and necessary condition
for the map to lose its smoothness. Thus, the elemen-
tary structure of the state space in relation to the block
sequence can be qualitatively established as follows. The
whole state space is divided into an infinite number of re-
gions. In each region, is smooth and remains
identical for any point in this region. The smoothness
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Fig. 6. Illustration of the boundary of P . The parameters used here are the same as those in Fig. 5. (a) B . (b) B . (c) B . (d) B . (e) B . (f) B(P ).

will be lost on the boundaries which separate different re-
gions. In other words, is also piecewise-smooth and
has a similar structure in the state space as that of in a
topological sense.

2) The local homeomorphic property of is necessary for
the proofs of Propositions 2 and 3. See the Appendix.
For switching converters, is homeomorphic in each re-
gion defined according to the previously described state-
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space partitioning scheme. (Basically, under this parti-
tioning scheme, each region corresponds to one topolog-
ical sequence.) Moreover, for the buck converter under
voltage-mode control, it has been shown that is in fact
globally homeomorphic [17], which may facilitate finding
of the specific boundary for . Let for

. Now, let . Since is a
union of a curve and a line, will also be a union of two
curves under the homeomorphic transformation of .
Thus, from Proposition 3, the boundary of the map
is , which forms the bor-
ders of the partitioned state space of . As an illustra-
tive example, Fig. 6 shows , , , , and
their union . These boundary curves are obtained
numerically, all parameters being the same as those used
in Fig. 5.

3) Suppose is a period- orbit of . Then,
these points are the fixed points of . If there exists
one , then for all .
On the other hand, if there exists one , then

for all and there is at least
one such that

E. Detecting Border Collision and Standard Bifurcations:
Main Theorems

We present our main results, summarized in two theorems, for
detecting border collision and standard bifurcations using sym-
bolic analysis. All symbols used (e.g., , , etc.) are consis-
tent with those defined in Section IV-D.

Theorem 2: Consider a switching system with parameter
. Suppose its Poincaré map is locally homeomorphic in

each state-space region corresponding to a given topological
sequence. Suppose that there exists some interval of ,
and that the system is periodic for either or or
both. In the parameter interval , the block sequences in
the steady state are and for and , respec-
tively. Then, border collision occurs at if .10

Proof: Without loss of generality, assume that the
system has a period- orbit when

. This implies that is smooth and
has a stable fixed point for . Then, must
be nonsmooth at when . Otherwise, if is
smooth at when , from Theorem 1 there exists

such that has a stable fixed point which is
smoothly dependent on for . Thus,

remains identical for , which
means , contradicting the assumption that .
Therefore, must be nonsmooth at when .
Then, from Proposition 3, there exists at least one

such that when . Since
, the system has different dynamical behaviors on

the two sides of . Thus, from Definition 1, border collision
occurs at .

10Strictly speaking, it is possible that the steady-state solutions are aperiodic
on the two sides of � and LLL 6= LLL . We exclude this case from this theorem,
as comparison of two block sequences corresponding to aperiodic solutions is
impractical.

Fig. 7. Bifurcation diagram in the parameter plane f(R;E) : 2 � R �
25; 20 � E � 50g from symbolic analysis. Light blue: (3) ; magenta:
(35) ; red: (13 333 333) ; green: (1333) ; cyan: (13 331 335) ;
yellow: the rest including chaotic and periodic operating regions. Boundary
curves separating regions of different colors locate the occurrence of border
collision. Within a specific region, bifurcation boundary curves corresponding
to PD1, PD2a, PD2b, PD4a, and PD4b are also plotted. These curves locate
the standard period doublings.

Theorem 3: Consider a switching system with parameter
. Suppose its Poincaré map is locally homeomorphic in

each state-space region corresponding to a given topological
sequence. Suppose there exists some interval of .
In this parameter interval , the block sequences of the
steady state are and for and , respectively.
Moreover, the waveform periodicities of the steady state are

and for and , respectively. Then, stan-
dard bifurcation occurs at if and .

Proof: Since , some kind of bifurcation must
occur at . From Proposition 2, the condition
implies that is smooth at any orbit point of the steady state
when . Thus, no orbit point of the steady state belongs
to when . Otherwise, from Proposition 2, is not
smooth at such an orbit point when . This contradicts the
result implied from the condition . Therefore, border
collision cannot occur when , and the bifurcation oc-
curred at must be a standard bifurcation.

Theorems 2 and 3 provide a symbolic method for detecting
both border collision and standard bifurcations. As will be
demonstrated in the next section, this method is very simple
and fast because no heavy computation is required for the entire
process of detection.

V. SYMBOLIC ANALYSIS OF BUCK CONVERTER UNDER

VOLTAGE-MODE CONTROL: AN EXAMPLE

We apply the proposed symbolic analysis to a specific
voltage-mode controlled buck converter. By numerical com-
putations, a 2-D bifurcation diagram covering both border
collision and standard period-doubling bifurcation can be
plotted efficiently in the parameter plane.
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Fig. 8. Phase portraits and the boundariesB(P ) when border collision occurs. The load resistorR is fixed to 3. 6 
 and the input voltageE is varied as follows.
(a) E = 40:0 V. (b) E = 40:18 V. (c) E = 40:25 V. The state space shown in this figure is partitioned into three regions corresponding to block sequence (53),
(33), and (35), respectively. The boundary of these regions is B(P ) which consists of B and B .

To guarantee operation in CCM, the parameters are chosen as
follows:

mH F s

V V V

The load resistor and the input voltage are varied simulta-
neously and taken as bifurcation parameters.

Applying the symbolic analysis, we obtain the 2-D bifurca-
tion diagram shown in Fig. 7. In this diagram, the parameter
plane is divided into different regions according to their block
sequences, as explained earlier. For simplicity, only some main
regions are illustrated and shown in different colors. From The-
orem 2, we know that border collision occurs on the boundaries
that separates regions of different colors. Further, each region
of the same color may also be divided into several subregions
by some boundary curves, across which the waveform period-
icities are changed. Specifically, are doubled when the
parameters move across these curves from left to right. Thus,
these curves correspond to period-doubling bifurcations, and
are denoted by , where is the lower associated with
the period doubling and is an index for the same . Since the

color does not change when the parameters move across a spe-
cific curve, a standard period-doubling bifurcation takes place
on that curve according to Theorem 3. For example, border col-
lision takes place with block sequence being transmuted
to when the parameters move from the grey region
to the green region. Moreover, a standard period-doubling bi-
furcation occurs with the same block sequence when the
parameters move across the curve PD1 from left to right.

Furthermore, we show in Fig. 8 some phase portraits for the
purpose of illustrating the characteristic change of the block se-
quence when border collision occurs. Here, the state space is
partitioned into three regions by the boundaries which
correspond to block sequences (53), (33), and (35). When is
fixed at 3.6 and is around 40.18 V, the system has a pe-
riod-two orbit and each orbit point is a fixed point of . Fig. 8
clearly shows the variation of the block sequence from
to (or ) when moves across V.
Also, the orbit points are located on the boundary when

V. Therefore, border collision takes places at
V with block sequence being transmuted to

with the period unchanged.
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VI. CONCLUSION

In this paper, the bifurcation behavior of switching systems
has been studied from the symbolic dynamical viewpoint. Un-
like conventional methods, our method focuses on the charac-
teristic change of the symbolic sequence when the system un-
dergoes a specific bifurcation. For this purpose, the concept of
block sequence is introduced to describe the symbolic sequence
of the system. Then, it is shown that the loss of smoothness of
the Poincaré map and its composition is relevant to the change
of the corresponding block sequence. Two theorems are de-
rived for detecting border collision and standard bifurcations,
and a specific example is also given to illustrate the method.
Although the symbolic method proposed here is only applied
to a voltage-mode controlled buck converter, the basic method-
ology of using symbolic sequences for bifurcation analysis is
applicable to other switching circuits or piecewise-smooth dy-
namical systems.

APPENDIX

Proof of Proposition 2

Proof of the “only if” part: Assume for
all , where is some neighborhood of .
Let , where represents the block sequence

. Since for all , is
smooth at from Proposition 1. Then, since is locally
homeomorphic in , maps to , where

and is the corresponding neighborhood of
. Since for all , is also smooth at

from Proposition 1. Thus, by the chain rule of differentiation,
is smooth at . Repeating the above procedure,

we conclude that is smooth at .
Proof of the “if” part: Assume that there does not exist a

neighborhood of such that for
all . This means that for any neighborhood
of , there exists such that .
Then, two sequences and can be
found such that and with

. Now, denote the Jacobian of at point
as . Then, the Jacobian of at is

(21)

Let for or and .
Then,

(22)
and

for (23)

Since , .
Thus, we have found a sequence such that

. However,

. This means that is not smooth at . Obvi-
ously, the result derived from the assumption is contradictory
to the condition that is smooth at . Therefore, the as-
sumption does not hold.

Proof of Proposition 3

Proof of the “only if” part: Assume that there exists one
such that . Then, for any neighborhood of ,
there must exist such that since

. Thus, we cannot find a neighborhood of such
that for all . From Proposition 2,

is not smooth at .
Proof of the “if” part: Assume for any . Then we

can find a neighborhood of such that the successive
times mapping of together with

itself does not include any point which belongs to .
This means for any . Thus, from
Proposition 2, it implies that is smooth at . This result
is contradictory to the condition that is not smooth at .
Therefore, the assumption does not hold.
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