
1

A 3.0 Gb/s Throughput Hardware-Efficient Decoder
for Cyclically-Coupled QC-LDPC Codes

Qing Lu, Jianfeng Fan, Chiu-Wing Sham,Member, IEEE,Wai M. Tam,
and Francis C. M. Lau,Senior Member, IEEE

Abstract—In this paper, we propose a new class of quasi-cyclic
low-density parity-check (QC-LDPC) codes, namely cyclically-
coupled QC-LDPC (CC-QC-LDPC) codes, and their RAM-
based decoder architecture. CC-QC-LDPC codes have a simple
structure and are constructed by cyclically-coupling a number
of QC-LDPC sub-codes.They can achieve throughput and error
performance as excellent as LDPC convolutional codes, but
with much lower hardware requirements. They are therefore
promising candidates for future generations of communication
systems such as long-haul optical communication systems.In
particular, a rate- 5/6 CC-QC-LDPC decoder has been imple-
mented onto a field-programmable gate array (FPGA) and it
achieves a throughput of3.0 Gb/s at 100 MHz clock rate with
10-iteration decoding. No error floor is observed up to anEb/N0

of 3.50 dB, where all 1.14 × 1016 transmitted bits have been
decoded correctly.

Index Terms—Cyclically-coupled QC-LDPC code, Decoder
architecture, FPGA implementation, QC-LDPC code

I. I NTRODUCTION

W ITH the growing need of advanced communica-
tion technologies, developing superior forward-error-

correction (FEC) schemes has become imperative. Low-
density parity-check (LDPC) block codes [1] have undoubt-
edly been one the most promising FEC classes recently due
to their capability in approaching channel capacity. Quasi-
cyclic LDPC (QC-LDPC) codes, having a regularized structure
that reduces the encoder/decoder complexities, have further
demonstrated the practical value of LDPC codes [2], [3], [4].
It has also been proved that QC-LDPC codes can achieve as
excellent error performance as random LDPC codes [5].

By spatially-coupling consecutive LDPC block codes,
LDPC convolutional codes (LDPCCCs) having an infinite code
length are formed1 [6], [7], [8]. LDPCCCs have been shown
to possess lower thresholds and better error performance
compared with LDPC block codes [9], [10]. However, when
burst erasures occur and the erasures are beyond recovery,
the chain decoding of LDPCCCs becomes seriously disrupted.
Moreover, the infinite coupling structure of LDPCCCs incurs

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

The work described in this paper was supported by a grant from the RGC
of the Hong Kong SAR, China (Project No. PolyU 152088/15E).

The authors are with the Department of Electronic and Information En-
gineering, Hong Kong Polytechnic University, Hong Kong (email: encm-
lau@polyu.edu.hk).

1In general, spatially-coupled LDPC codes are constructed byre-connecting
the edges among a large number of block codes and form a much larger code.

application challenges such as initial delay, termination diffi-
culty and a gigantic memory requirement [9]. Subsequently,
a tail-biting convolutional LDPC code has been proposed
[11]. The tail-biting convolutional LDPC code is technically a
block code. The overall length of the tail-biting code increases
linearly with the number of times that a sliding convolutional
structure is repeated (see Supplementary Materials for more
details) and so is the memory requirement at the decoder.
Also, if the decoder hardware is to be fully utilized, multiple
codewords have to be decoded at the same time to fill the
pipeline holes [12]. It implies much more memory will be
needed at the decoder.

As to the decoding of LDPC (block or convolutional)
codes, a method called sum-product algorithm (SPA) or belief
propagation (BP) has been widely used [13], [14]. However,
due to the complex process involved in updating the check-
to-variable messages, the original SPA is usually applied with
approximations. One of the most widely used substitutes is
known as the min-sum (MS) algorithm [15], which executes
the check-node updating by making simple comparisons. The
min-sum algorithm hence has lowered the decoder complexity
by a significant scale, but at the same time has caused a
non-negligible bit-error-rate (BER) degradation [16], [17].
Normalized/offset MS algorithms have been proposed [18].
However, in practical implementations where messages are
highly quantized, the accuracy degradation of MS techniques
is still not negligible, especially when the check-node degree
or code rate is high [16]. In another dimension, a layered
decoding schedule is proposed to speed up the convergence
of iterative decoding [19]. It has been shown that layered
decoding can generally make the convergence rate two times
faster compared to the flooding scheme [20], [21].

From time to time, the decoding practices of QC-LDPC
codes, with either pragmatic or investigative purposes, are
reported in literatures. A partially parallel decoder architecture
has been developed using FPGA for a 9216-bit 1/2-rate (3,6)-
regular LDPC code [22]. With a throughput of 54 Mbps, the
decoder achieves a BER of10−6 at Eb/N0 = 2 dB over
an additive white Gaussian noise (AWGN) channel. Then a
modified SPA algorithm that balances the computation load
between the two decoding phases has been implemented on a
FPGA with both uniform and non-uniform 6-bit quantization
[23]. For a 7/8-rate QC-LDPC code of length 8176 bits, a
throughput of 175 Mbps is attained with a clock frequency
of 193 MHz. Unlike the above practices, CMOS technol-
ogy has been employed to complete a code-specific design
characterized by a chunk-by-chunk check-node updating [24].

This is the Pre-Published Version.

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

2

Min-sum algorithm together with layered decoding has been
implemented using0.18 µm CMOS process [25]. Moreover, a
bypassing scheme that effectively reduces the memory access
and energy consumption has been proposed [24], [25]. How-
ever, without general applicability, this code-specific design
may have a problem in migrating to other platforms.

As mentioned earlier, a great loss in BER performance
is observed when the messages are quantized and min-sum
decoding is used. The BER performance of quantized MS
algorithm with offset is elaborated and optimized [26]. De-
spite a certain amount of BER compensation, implementation
barriers exist. Another issue of common concern in literatures
is memory requirement that relates to a great portion of
hardware resources as well as power dissipation. Aware of the
FPGA’s popularity in evaluating LDPC codes, optimizations
in memory-throughput tradeoff of modern FPGAs have been
presented [27]. In addition, a synthesis tool is provided for
architecture optimization of LDPC decoders.

In some specific applications such as future generations of
optical transport networks, FEC schemes have to meet several
characteristics. Firstly, a high code rate, say above 80%, is
the key to achieving a high raw data rate. Secondly, no error
floor should exist at or above a bit error rate of10−15 so
that no more than 10 bit errors exist per day in a 100 Gbps
transmission link. Thirdly, a large net coding gain (NCG) is
preferred considering the cost of installing repeaters. Last but
not least, an acceptable complexity in the overall FEC design
is a must due to practical concerns such as fabrication cost,
power dissipation, etc.

With comparable decoder complexities, an LDPC convolu-
tional code generally outperforms its block code counterpart in
terms of bit error rate and net coding gain [6]. The advantages
of using block code, however, keep spurring researchers to
close the above gap. Intuitively we may borrow the idea of
spatial-coupling from LDPCCC and apply it to the design of
the block code such that a lower BER can be achieved. In this
paper, we make use of the aforementioned idea and propose
a specific type of QC-LDPC codes, namelycyclically-coupled
QC-LDPC (CC-QC-LDPC) codes, as well as their decoder
architecture.

Like QC-LDPCCC, a CC-QC-LDPC code can be con-
structed from an original QC-LDPC block code. However, CC-
QC-LDPC codes differ from QC-LDPCCCs in the following
aspects. First, a QC-LDPCCC is formed by re-connecting the
edges among a number of consecutive QC-LDPC block codes;
whereas our proposed CC-QC-LDPC code is constructed by
combining variable nodes of consecutive block codes. Second,
in a CC-QC-LDPC code, the coupling between consecutive
block codes is performed in a cyclic manner, i.e., the first
block couples with the second one, the second one with the
third one, . . . , and the last one with the first one (similar to
tail-biting). Third, part of the original QC-LDPC block code
does not couple with other block codes.

The contributions of this work can be summarized as
follows. Firstly, we propose a new class of QC-LDPC codes
called CC-QC-LDPC codes. Secondly, we propose a compos-
ite decoder architecture, which consists of subordinate QC-
LDPC sub-decoders, for the decoding of CC-QC-LDPC codes.

With mutual dependence between adjacent sub-decoders, the
overall decoder gains a remarkable improvement in decoding
capability. In addition, a concurrent operation is appliedin the
decoder resulting in a high decoding parallelism and a high
throughput. Thirdly, specific arrangements are made to reduce
the memory size of the random access memories (RAMs).
Wherever possible, we assign only one RAM location for
each variable-check connection. Thus the same location stores
the variable-to-check (V2C) message and check-to-variable
(C2V) message alternately. Compared to existing designs [25],
[28], the required memory is substantially reduced. For some
redundant messages not being able to be dynamically stored
as such, we minimize the memory requirement by using two
sets of RAMs — one for the odd layers and the other for the
even layers. Fourthly, a check-node processor implementing
the quantized SPA computation is applied. By using look-up
tables (LUTs), the quantized SPA computation has a similar
complexity as the quantized MS computation [12]. Also, we
set up the LUTs in a parallel way to alleviate the delay. Last,
we implement the decoder and evaluate its complexity under
different code lengths. The BER results of a high rate, long
CC-QC-LDPC code are attained under the AWGN channel.
The proposed decoder has been experimentally demonstrated
to achieve very low error rate, moderate complexity and high
throughput.

The rest of this paper is organized as follows. Section II
reviews the details of LDPC codes and the widely used SPA
decoding algorithm. Section III describes the basic structure of
our proposed CC-QC-LDPC codes. In Section IV, a CC-QC-
LDPC decoder architecture with layered decoding is developed
and presented. In Section V, an experiment to evaluate our
decoders is presented with results and observations. Finally
conclusions are drawn in Section VI.

II. BACKGROUND

A. LDPC Codes
LDPC codes are a class of linear block codes that can

be represented by a sparse parity-check matrixH. In this
matrix, each row serves as a constraint (check node) towards
the specified received signal bits corresponding to columns
(variable nodes) which contain elements of ‘1’ in that row.
The parity-check matrix of a QC-LDPC code is represented
by

H =

I
a1,1 I

a1,2 · · · I
a1,L

I
a2,1 I

a2,2 · · · I
a2,L

...
...

. . .
...

I
aJ,1 I

aJ,2 · · · I
aJ,L

, (1)

where L and J denote the number of block columns and
block rows, respectively, andIaj,l , of size z × z, is formed
by cyclically shifting the columns of an identity matrix to the
right by aj,l (0 ≤ aj,l < z) times. The codeword length is
L× z and the code rateR is lower bounded byR ≥ 1−J/L.

B. Decoding Algorithm

In the realm of LDPC decoders, the sum-product algorithm
(SPA) is the most widely used decoding scheme and is also the
essence of many other variants such as min-sum (MS) decod-
ing. Also known as belief propagation (BP), SPA carries out

3

Algorithm 1 Equivalent Layered Decoding for the QC-LDPC
code in (1) using SPA
Initialization

setλn = βmn = 2yn/σ2 andαmn = 0, ∀m,n
Iteration

for iteration i = 1, 2, · · · , I do
for layer j = 1, 2, · · · , J do

for groupg = 1, 2, · · · , G do
for check nodem = (j − 1) z + (g − 1) z

G
+ 1, (j − 1) z +

(g − 1) z
G

+ 2, · · · , (j − 1) z + g z
G

do
for ∀n ∈ N (m) do

update the C2V messagesαmn in the current layer using

αmn = 2 tanh−1

∏

n′∈N (m)\n

tanh

(

βmn′

2

)

 (2)

update the APPβn of the variable nodes using

βn = λn +
∑

m′∈M(n)

αm′n (3)

for check nodem′′ ∈ M (n) AND in the next layer, i.e.,
layer (j + 1) mod J do

update the V2C messagesβm′′n in the next layer using

βm′′n = βn − αm′′n (4)

end for
end for

end for
end for

end for
end for

Decision
set x̂n = 0 if βn ≥ 0, or setx̂n = 1 if βn < 0, ∀n.

iterative message-passing processes to achieve convergence
for all constrained variables. To speed up this convergence,
a layered decoding schedule making an immediate use of the
updated messages can also be employed.

Considering the parity-check matrixH in (1), we denote
the check-to-variable (C2V) message withαmn and variable-
to-check (V2C) message withβmn, wherem = 1, 2, · · · ,M
and n = 1, 2, · · · , N . We further defineN (m) as the set
of variable nodes connected to check nodem; M(n) as the
set of check nodes connected to variable noden; N (m)\n
as the setN (m) excluding variable noden; and M(n)\m
as the setM(n) excluding check nodem. For each layer
(i.e., block row),z check nodes can be divided intoG groups
that are processed in a sequential order. Finally we denote
λn as the channel message (CM) andβn as the a posteriori
probability (APP) for variablen. The layered SPA decoding
is summarized in Algorithm 1. In our design a binary input-
additive white Gaussian noise (BI-AWGN) channel is assumed
and henceλn is initialized as2yn/σ2, whereyn is the received
value andσ is the standard deviation of noise samples.
We computeβn in the log-likelihood ratio (LLR) form and
therefore its sign bit exactly symbolizes the bit state.

C. Modified SPA for Implementation

Due to the nonlinearity of (2), SPA cannot be implemented
with simple circuits unless some algorithmic adjustments are
made. An adder-based architecture is implemented by intro-
ducing extra log-domain mapping and demapping units [29].

The check-node processing function is then

sign(αmn) =
∏

n′∈N (m)\n

sign(βmn′) (5)

|αmn| = φ−1

∑

n′∈N (m)

φ (|βmn′ |)− φ (|βmn|)

 (6)

where
φ (x) = φ−1 (x) = − log

(

tanh
x

2

)

. (7)

III. C YCLICALLY -COUPLED QC-LDPC CODES

As demonstrated by LDPCCCs, using spatial coupling is
an effective way of improving the loose constraints suffered
by short codes such that an enhanced decoding capability is
achievable [10]. In this paper we propose a structured sub-
class of QC-LDPC codes which are constructed by cyclically
coupling a number of QC-LDPC sub-codes. Similar to QC-
LDPCCCs, the proposed cyclically-coupled QC-LDPC (CC-
QC-LDPC) block codes can be constructed from an original
QC-LDPC sub-code. First, we divide the parity-check matrix
of a QC-LDPC sub-code into three portionsHl, Hm and
Hr. Hence, the parity-check matrix of the sub-code can be
rewritten from (1) to

Hs =
[

Hl Hm Hr

]

. (8)

By cyclically-couplingK such sub-codes, we form a CC-QC-
LDPC code whose parity-check matrix is represented as

Hcc =

H
1
l H

1
m H

1
r 0 0 · · · 0 0

0 0 H
2
l H

2
m H

2
r · · · 0 0

0 0 0 0 H
3
l · · · 0 0

...
...

...
...

...
. . .

...
...

0 0 0 0 0 · · · H
K−1
r 0

H
K
r 0 0 0 0 0 H

K
l H

K
m

,

(9)
Note that in this paper, we assume that all the sub-codes are
identical. In general, they can be different.

We assume that each sub-codeHs consists ofJ × L sub-
matrices each of sizez × z. We use the following notation to
relate adjacent sub-codes. We denote the sub-code to the cyclic
left of the current sub-code as the preceding sub-code, and the
one to its cyclic right as the following sub-code. For example,
if the current sub-code is[H3

l H
3
m H

3
r], the preceding sub-

code will be [H2
l H

2
m H

2
r], and the following sub-code will

be [H4
l H

4
m H

4
r]. Referring to (9), we say thatHl of the

current sub-code couples withHr of the preceding sub-code
becauseHl andHr correspond to the same block columns in
(9) but they come from different sub-codes. Hence, we also
can say thatHr of the current sub-code couples withHl of
the following sub-code. SinceHl andHr correspond to the
same block columns in (9), they must have the same number
of block columns. We call the number of such coupled block
columns as the coupling degree and denote it byW . In other
words, bothHl andHr consist ofJ × W sub-matrices and
Hm consists ofJ × (L− 2W) sub-matrices. Then the rate of
the CC-QC-LDPC code is easily shown to be lower bounded
by 1 − J

L−W
. Note also that the check-node degree of the

CC-QC-LDPC code is the same as those of the sub-codes.
In other words, coupling the QC-LDPC sub-codes to form a
CC-QC-LDPC code will not increase the check-node degree.

4

In summary, a CC-QC-LDPC code is constructed by cycli-
cally couplingK QC-LDPC sub-codes. Moreover, the parity-
check matrix corresponding to the original QC-LDPC sub-
code consists ofJ block rows andL block columns, and each
block is a circulant matrix of sizez × z. Among theL block
columns,W of them (i.e.,Hl) share the same variable nodes
with the preceding sub-code, anotherW of them (i.e.,Hr)
share the same variable nodes with the following sub-code,
and the remainingL− 2W of them (i.e.,Hm) do not couple
with any variable nodes of other sub-codes.

The structural features of CC-QC-LDPC codes shall benefit
the corresponding decoders in a hardware sense compared
with other codes having equivalent decoding capabilities.
Firstly, the overall CC-QC-LDPC decoder architecture can be
assembled from subordinate decoders of smaller size to reduce
the complexity. In our architecture, the decoder forHs after
modification is used as a sub-decoder ofHcc. Secondly, the
decomposable structure endows the decoding with a chance of
high parallelism, which is especially appreciated by circuits
and critically relevant to the throughput. Thirdly, when the
sub-codes are identical, some decoding circuits (e.g., multi-
plexers and controllers) can be shared and hence the hardware
efficiency is improved. We make use of these advantages in
our proposed decoder architecture, the details of which are
presented in the following sections.

Note that CC-QC-LDPC codes differ from QC-LDPCCCs
in several aspects. Firstly, a CC-QC-LDPC code is constructed
by combining variable nodes of consecutive block codes. For
example,H2

r andH3
l correspond to the same variable nodes.

Secondly, in a CC-QC-LDPC code, the coupling between
consecutive block codes is performed in a cyclic manner, i.e.,
the first block couples with the second one, the second one
with the third one, . . . , and the last one with the first one
(similar to tail-biting). Thirdly, part of the original QC-LDPC
block code, i.e.,Hm, does not couple with other block codes.

IV. CC-QC-LDPC DECODERARCHITECTURE

A. Overall Architecture

The overall architecture of our proposed CC-QC-LDPC
decoder is illustrated in Fig. 1. In this architecture, there are
K identical sub-decoders and a global controller. Moreover,
the sub-decoders are connected in a cyclic way, similar to the
coupling among the corresponding sub-codes. The components
in each sub-decoder can be classified into the following three
main categories.

1) The first category includes the computational logics (and
registers for pipelining) consisting of (i) check-node
processor (CNP), (ii) variable-node processor (VNP),
and (iii) format converters (2’s complement to sign-
magnitude (C2S) and its inverse (S2C)). The function
of these logics is to update the edge messages between
the variable nodes (VNs) and check nodes (CNs). Since
we adopt a layered decoding, we called this category of
components a layered decoder.

2) The second category includes the random access mem-
ories (RAMs) which store the updated messages and

channel messages. Each RAM contains memory loca-
tions that can be accessed easily based on their inde-
pendent addresses.

3) The third category includes a switch network that con-
nects the layered decoder and RAMs. The switch net-
work is implemented with multiplexers and controlled
by a controller.

The V2C messages are stored in sign-magnitude formats.
These V2C messages are used to compute new C2V messages
by the CNP that executes (2). Then other existing C2V
messages and channel messages can be retrieved from the
corresponding RAMs and added to the newly updated C2V
messages by the VNP. The purpose is to evaluate the new V2C
messages using (4) and the APP using (3). For convenience, all
the updated C2V messages are converted into 2’s complement
format in advance. The newly generated V2C messages have
to be first converted into sign-magnitude format by the C2S
converters before being stored into the RAMs whereas the
updated C2V messages are stored without further conversion.
All the updated messages are then ready to be used for the
decoding of the following layer in the layered decoder. After a
pre-defined number of iterations has been performed, the VNP
shall make decisions on the received bits based on the APP
values (3) which have been updated according to the C2V
messages and channel messages.

The layered decoder adopts a parallel structure that simulta-
neously processes a group of check nodes and their associated
variable nodes. During the decoding of Layerj, the groups
denoted byg = 1, 2, . . . , G are sequentially processed. When
the memory locations of the messages have been appropriately
allocated, the different groups can simply be controlled by
counters that are incremented by one at each clock cycle.
Another function of the controller is to switch the connections
when the last group of Layerj has been processed and the
first group of Layerj + 1 (or Layer 1 if j = J) is to begin.

Referring to the structure of a CC-QC-LDPC code, the
C2V messages corresponding toHl and the V2C messages
corresponding toHr are updated by the current sub-decoder.
However, these two types of updated messages are to be used
by the preceding sub-decoder and the following sub-decoder,
respectively. Hence, these messages are stored with particular
storage arrangements such that memory redundancies can be
minimized. Details of the message storage will be discussed
in Section IV-C.

B. LUT-based CNP with Parallel Routing

A CNP based on look-up tables (LUTs) is applied in our
architecture to realize the quantized SPA [12]. In other words,
the CNP consists of functional units performingO (Ii, Ij) =

Q
{

2 tanh−1
(

tanh Ii
2 tanh

Ij
2

)}

, whereQ denotes quantiza-
tion. Then the C2V updating formula (2) can be completed by
repeatedly using such LUTs. To reduce the gross usage of the
LUTs, a recursive structure has been proposed in [30]. At first,
the partial V2C products (in hyperbolic tangent domain) can
be bidirectionally achieved with two sets of cascaded LUTs,
each LUT taking in an untapped V2C input and the up-to-
date partial product. Then the resultant C2V message to each

5

CNP

VNP

S2C C2S

RAMs

(V2C)

RAMs

(V2C/C2V)

RAMs

(C2V)

RAMs

(CM)

R
eg

V2C

C2V

V2C*

C2V

V2C

C2V*

CM

R
e
g

V2C*

C2V*

Controller

V2C*

C2V*

1
st
sub-decoder

Decisions

C
2
S

CNP

VNP

S2C C2S

RAMs

(V2C)

RAMs

(V2C/C2V)

RAMs

(C2V)

RAMs

(CM)

R
eg

V2C

C2V

V2C*

C2V

V2C

C2V*

CM

R
e
g

2
nd
sub-decoder

C
2
S

CNP

VNP

S2C C2S

RAMs

(V2C)

RAMs

(V2C/C2V)

RAMs

(C2V)

RAMs

(CM)

R
eg

V2C

C2V

V2C*

C2V

V2C

C2V*

CM

R
e
g

K
th
sub-decoder

C
2
S

Decisions

V2C* V2C*

C2V* C2V*

Decisions

Fig. 1. The overall architecture of the CC-QC-LDPC decoder.The messages passing between adjacent sub-decoders are marked by asterisks.

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O12 O13O11 O14

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14

P1-1
P1-2

P2-1
P2-2 P2-3 P2-4

P3-1 P3-2 P3-3 P3-4 P3-5 P3-6

P3-7

(P4-13)
P4-1 P4-2 P4-3 P4-4 P4-5 P4-6 P4-7 P4-8 P4-9 P4-10 P4-11 P4-12

P3-8

(P4-14)

P'2-1

P'3-1

P'4-1

1
st level

2
nd
level

3rd level

4th level

Hierarchy

2
nd
level

3rd level

4th level

Balanced

binary tree

Mirrored

tree

Fig. 2. The parallel structure of LUTs in the CNP withdc = 14.
I1 ∼ I14 and O1 ∼ O14 are the V2C inputs and C2V outputs, respec-
tively. Solid/hollow nodes represent the LUTs and the arrows represent the
connections among them.Pi−j denotes the partial product of V2C messages,
and that with a prime denotes the partial product of a mirror node. Dashed
circles and lines are, respectively, the LUTs and valid connections related to
the computation ofO1.

variable node can be computed by feeding another LUT with
two partial V2C products, which come from different sets of
LUTs. For a check node with degreedc, this type of CNP
consumes a total of3(dc − 2) LUTs.

One notable drawback of this structure is that the cascaded
LUTs may cause a significant delay, which equals(dc − 2) τ
whereτ is the average delay caused by each LUT. Here we
reroute these LUTs to make them operating in parallel. We
denote the set of variable nodes connected to a degree-dc check
nodec by {Ii : 1 ≤ i ≤ dc}. Our target design can be derived
by dividing these variable nodes in a hierarchical manner. First,
we divide {Ii} into 2 sub-sets. Next we consider a specific
variable nodev ∈ {Ii} which must fall into one of these two
sets. We useSv/S v̄ to denote the sub-set that includes/excludes
v. Then the C2V message passing fromc to v is written as

αcv = 2 tanh−1

∏

v′∈Sv\v

tanh
(

βcv′

2

)

∏

v′′∈Sv̄

tanh
(

βcv′′

2

)

 .

(10)
If we keep dividing the sub-set in whichv exists, (10) can

eventually be decomposed into

αcv = 2 tanh−1

∏

1≤t≤T

∏

v′∈Sv̄
t

tanh
(

βcv′

2

)

 (11)

whereT denotes the total number divisions made (or equiva-
lently the number of levels) andS v̄

t represents the set of vari-
able nodes separated from the set containingv at thetth divi-
sion. Accordingly, we haveS v̄

1 = S v̄ andS v̄
2

⋃

S v̄
3 · · ·

⋃

S v̄
T =

Sv\v.
As a natural representation, a binary tree is adopted to illus-

trate our division strategy. We consider an example in which
the check-node degree equals14, i.e., dc = 14. Referring to
Fig. 2, there are 14 variable nodes andT = 4 levels. In the first
level, the variable nodesI1 ∼ I8 are assigned to the sub-set
P1−1 while the remaining nodesI9 ∼ I14 are assigned to the
sub-setP1−2. Note that we allow the larger sub-set (i.e.,P1−1)
to contain 8 elements so that the number of hierarchical levels
can be minimized. Next,P1−1 is further divided intoP2−1

containingI1 ∼ I4 andP2−2 containingI5 ∼ I8; while P1−2

is divided intoP2−3 containingI9 ∼ I12 andP2−4 containing
I13 andI14. At this level the size of every sub-set is a power of
2 and hence equal divisions can be executed at the subsequent
levels, as shown in Fig. 2. Note that we can decomposeP2−4

at either the third level or the fourth level, and hence bothI13
and I14 can have two different labels. In Fig. 2, each filled
circle/node represents an LUT that outputs the partial product
of a certain sub-set. These filled nodes reflect the division
strategy and also make up a binary-tree structure. Note that
the root node (at the 0-th level) is omitted because there is no
need to compute the overall product of the variable set{Ii}.

After dividing the set{Ii} into different sub-sets, the partial
products of these sub-sets (at different levels) need to be
multiplied together according to (11) in order to compute
all the C2V messages. Without loss of generality, the output

6

(denoted byO1) to the first variable node, which is computed
using I2 ∼ I14, is considered. According to the above
divisions, the required partial products areP1−2, P2−2, P3−2,
andP4−2 (refer to nodes along the dashed line in Fig. 2). We
will complete the multiplication among these partial products
using three cascaded LUTs at three levels. As illustrated in
Fig. 2, P1−2 and P2−2 are used to computeP ′

2−1, which
becomes the partial product ofI5 ∼ I14. Next, P ′

2−1 and
P3−2 (the product ofI3 and I4) are used to computeP ′

3−1,
which becomes the partial product ofI3 ∼ I14. Finally, P4−2

(i.e., I2) combines withP ′

3−1 to compute the resultP ′

4−1 (i.e.,
O1), which is the partial product ofI2 ∼ I14. After taking
all outputs into account, we minimize the total number of
LUTs required by re-using all the partial products as much
as possible. For example,P ′

3−1 can be combined with each of
the elements (I1 andI2) in P3−1 to produce two outputs (O2

and O1). Hence, the path for producingO2 differs by only
one segment (LUT) compared with that for producingO1.

As shown in Fig. 2, another LUT tree formed by the
hollow circles/nodes and mirroring the tree formed by the
filled circles (from the second level downwards) has been
constructed. In this tree, the output of each hollow node
will be shared by the subsets/variable nodes of the subset
corresponding to its symmetric node. For example, the output
of P ′

2−1 will combine with the respective subsets ofP2−1 (i.e.,
P3−1 andP3−2); and the output ofP ′

3−1 will combine with
the respective variable nodes ofP3−1 (i.e., P4−1 andP4−2).

Intuitively, a fewer number of levels in the (division) hi-
erarchy implies a smaller delay of the critical path. It can
be easily shown that the number of levelsT is bounded by
T ≥ ⌈log2 dc⌉. Accordingly, the delay of the CNP can be
minimized to2 (⌈log2 dc⌉ − 1) τ with our proposed structure.
Another observation is that a total of3(dc − 2) LUTs is
employed and is the same as that required in the traditional
structure. To construct our proposed symmetric-tree structure
in a systematic way, we can make use of the following steps.

1) Forward Step: Placedc − 2 LUTs in parallel to form
a balanced binary tree so that the minimum number
of levels is achieved. In this tree, the inputs of each
node (LUT) are the outputs of its children (LUTs) or
the leaves corresponding to the V2C inputs of the CNP.

2) Backward Step: Construct the mirror of the balanced
binary tree generated in the Forward Step from the
second level onwards. To every node at the second
level of the mirrored tree, the two inputs come from
the outputs of (i) the sibling of the corresponding node
in the original balanced binary tree and (ii) the sibling
of the parent of the corresponding node in the original
balanced binary tree. For example, we considerP ′

2−1 at
the second level of the mirrored tree. The corresponding
node in the original balanced binary tree isP2−1. Hence,
the sibling of the corresponding node isP2−2 and the
sibling of the parent of the corresponding node isP1−2.
The outputs of these two nodes therefore become inputs
of P ′

2−1.

C. Memory Arrangement

In our decoder, the message storage is fulfilled by RAMs
that have been organized to fit the code structure. In each sub-
code, thez check nodes forming one layer are connected to
no common variable nodes. This characteristic allows thez
check nodes to be split intoG distinct groups such thatz/G
check nodes can be processed in parallel. As a result, a totalof
z/G RAMs are required to store the edge or channel messages
corresponding to each sub-matrix of the sub-code2 and each
RAM should containG entries.

Recall that for each sub-code of the CC-QC-LDPC code in
(9), there is a corresponding sub-decoder in Fig. 1. Further-
more, each sub-code is divided into three portions, i.e.,Hl,
Hm andHr. We consider thek-th sub-code (k = 1, 2, . . . ,K)
and its corresponding sub-decoder. The sub-decoder is respon-
sible for updating all the C2V messages of the sub-code. The
variable nodes corresponding toHm of the k-th sub-code are
not shared by other sub-codes. Thus, these edge messages can
only be updated by thek-th sub-decoder. However, variable
nodes corresponding toHl of the k-th sub-code are common
with those corresponding toHr of the (k − 1)-th sub-code;
and variable nodes corresponding toHr of the k-th sub-
code are common with those corresponding toHl of the
(k + 1)-th sub-code. As a result, we can choose using the
k-th sub-decoder to update the V2C messages corresponding
to eitherHl orHr of thek-th sub-code, leaving the other V2C
messages to be updated by the adjacent sub-decoder. In our
design shown in Fig. 1, thek-th sub-decoder is responsible for
updating the V2C messages corresponding toHr of the k-th
sub-code, leaving the V2C messages corresponding toHl of
the k-th sub-code to be updated by the(k − 1)-th sub-coder.
Hence, thek-th sub-decoder is responsible for updating (i) the
C2V messages of thek-th sub-code; (ii) the V2C messages
corresponding toHm andHr of the k-th sub-code; and (iii)
the V2C messages corresponding toHl of the (k+1)-th sub-
code.

Given the behavioral differences of the messages under
different sub-code partitions, the RAMs are classified intofour
different categories and storage schemes. They are described
as follows.

1) The first category of RAMs performs a dynamic stor-
age where the V2C and C2V messages corresponding
to [Hm Hr] of each sub-code, are alternately stored.
During the decoding of Layerj (j = 1, 2 . . . , J) of
the k-th sub-code, only V2C messages of that layer
and C2V messages of the other layers are required.
Consequently, we can save the memory by assigning
only one memory location for each variable-check edge.
After a V2C message has been accessed by the layered
decoder, the corresponding memory location will be
immediately overwritten by the updated C2V message
of the same variable-check edge. Each C2V message,
moreover, will be accessedJ−1 times in each decoding
iteration and shall be replaced by the V2C message
after the last use during the decoding of Layerj − 1

2The channel messages can be considered as an additional layer of check
nodes in which every sub-matrix is the identity matrix.

7

(or Layer J if j = 1). Numerically, the total number
of RAMs in the first category for each sub-decoder is
J (L−W) z/G.

2) The second category of RAMs are dedicated to storing
the C2V messages corresponding toHl. These C2V
messages, while updated by the current sub-decoder,
will be used in the V2C and APP message-updating
process of the preceding sub-decoder. In consequence,
each RAM is continually read by the(k − 1)-th sub-
decoder (orK-th sub-decoder ifk = 1) but written only
when a specific layer of thek-th sub-code is processed.
The total number of RAMs in this category for each
sub-decoder isJWz/G.

3) The third category of RAMs are dedicated to storing
the V2C messages corresponding toHl. As opposed to
the second category, these messages are produced by
the preceding sub-decoder and are used by the current
sub-decoder to update its C2V messages. Among the
C2V messages (i.e., corresponding toHl, Hm andHr)
updated by the current sub-decoder, moreover, those
corresponding toHl will be returned to and used by
the preceding sub-decoder. Since all sub-decoders are
operating at the same time, the preceding sub-decoder
will be writing V2C messages to the RAMs while the
current sub-decoder is reading them. To ensure that there
are no conflicts occurring when the sub-decoders are
writing to/reading from the third category of RAMs, we
allocate two sets of RAMs to alternately and respectively
convey the V2C messages for the odd and even layers of
each sub-code. Referring to Fig. 3, when Set 1 of RAMs
is being accessed for the decoding of Layerj in thek-th
sub-decoder, Set 2 of RAMs is written by the(k−1)-th
sub-decoder (orK-th sub-decoder ifk = 1) with the
V2C messages for Layerj + 1 (or Layer 1 if j = J)
of the kth sub-code. Similarly, when Set 2 of RAMs is
being accessed, Set 1 of RAMs is being written. Using
this method, the memory efficiency is optimal in terms
of the RAM usage. Altogether, there are2Wz/G such
RAMs required for each sub-decoder.

4) Distinct from the previous categories, the last categoryof
RAMs stores the channel messages. During the decoding
process, the channel messages are kept unchanged and
continually output to the layered decoder for updating
the V2C and APP messages. After the decoding of
the current codeword has been completed, these RAMs
are loaded with a new block of channel messages for
the decoding of the next codeword. Totally, there are
(L−W) z/G RAMs in this category for each sub-
decoder.

To summarize the above discussions, a total of
[(J + 1)L+W] z/G RAMs each containingG entries
are required for each sub-decoder. Since there areK sub-
decoders, the overall memory size of our proposed decoder
architecture equalsK [(J + 1)L+W] zd bits whered is the
width of each message in binary format.

Layer 1
Layer 2
Layer 3
Layer 4

Layer J-1
Layer J

Set 1

Set 2
V2C2 Layer 2

Layer 1

Layer 3
Layer 4

Layer J-1
Layer J

Set 1

Set 2

Layer 3
Layer 2
Layer 1

Layer 4

Layer J-1
Layer J

Set 1

Set 2
Layer 4

Layer 2
Layer 1

Layer 3

Layer J-1
Layer J

Set 1

Set 2

State 1 State 2

State 3 State 4

V2C1

V2C3

V2C2

V2C4

V2C3

V2C5

V2C4

Fig. 3. Two sets of V2C-dedicated RAMs alternate to serve theodd or even
layers of a sub-code. V2Cj is the messages from common (with the preceding
previous sub-code assumed) variable nodes to the check nodes of Layerj.

D. Switch Network

In each sub-decoder, the layered decoder and the RAMs
need to be connected perfectly in order to complete the
processing of theJ layers of the corresponding sub-code. To
reduce the complexity, we make use of a network that switches
layer-by-layer to correctly arrange the messages passed be-
tween the layered decoder and the RAMs. Specifically, we
use multiplexers to fulfil this task. Denoting RAM(i) as one
or more RAMs in theith category as specified in Section IV-C,
each input port selects data fromP possible output ports where
P is given as follows.

1) From the layered decoder to RAM(1),P = 2.
2) From the layered decoder to RAM(2),P = 1.
3) From the layered decoder to RAM(3),P = J/2.
4) From RAM(1) to the layered decoder,P = J .
5) From RAM(2) to the layered decoder,P = J .
6) From RAM(3) to the layered decoder,P = 2.
7) From RAM(4) to the layered decoder,P = J .

Note that the worst scenarios are mentioned here andP can
be much smaller for a certain configuration or a specific code.
For example, ifG = z, there will be a fixed connection from
RAM(4) to the layered decoder, i.e.P = 1.

There are also multiplexers connecting the RAMs and the
address counters because the initial addresses vary for the
decoding of different layers. To control the read and write
addresses of the RAMs,G modulo-G counters with strong
fan-out capabilities, each with a different output number,are
needed. For the read/write address port of each RAM selecting
output numbers fromP counters, the following cases are
concluded:

1) read operation of RAM(1),P = J ;
2) read operation of RAM(2),P = J ;
3) read operation of RAM(3),P = 1;
4) read operation of RAM(4),P = J ;
5) write operation of RAM(1),P = 2;
6) write operation of RAM(2),P = 1;
7) write operation of RAM(3),P = J/2.

Note that the conclusions of the multiplexing cases are con-
sistent with the arrangement of the RAMs.

8

Sub-code a

Sub-code b

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

V1 V2

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

RAMa1

V12C1

V22C2

V32C3

RAMa3

C12V1

C22V2

C32V3

RAMa5

V5-C1

V6-C2

V4-C3

RAMa7

V9-C1

V7-C2

V8-C3

RAMa9

V11-C1

V12-C2

V10-C3

RAMa2

V22C4

V32C5

V12C6

RAMa4

C42V2

C52V3

C62V1

RAMa6

V4-C4

V5-C5

V6-C6

RAMa8

V9-C4

V7-C5

V8-C6

RAMa10

V12-C4

V10-C5

V11-C6

RAMb1

V102C7

V112C8

V122C9

RAMb2

V112C10

V122C11

V102C12

RAMb4

C102V11

C112V12

C122V10

RAMb3

C72V10

C82V11

C92V12

RAMb6

V13-C10

V14-C11

V15-C12

RAMb5

V14-C7

V15-C8

V13-C9

RAMb7

V18-C7

V16-C8

V17-C9

RAMb9

V2-C7

V3-C8

V1-C9

RAMb10

V3-C10

V1-C11

V2-C12

RAMb8

V18-C10

V16-C11

V17-C12

RAMb12

CM16

CM17

CM18

RAMb11

CM13

CM14

CM15

RAMa13

CM10

CM11

CM12

RAMa12

CM7

CM8

CM9

RAMa11

CM4

CM5

CM6

RAMb13

CM1

CM2

CM3

1

1

1

V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18

Fig. 4. A CC-QC-LDPC code withK = 2, L = 4, J = 2, W = 1 and
z = G = 3.

E. Example

In this subsection, we make use of an example, where
K = 2, L = 4, J = 2, W = 1 and z = G = 3,
to elaborate the decoding process of the proposed decoder.
As shown in Fig. 4, the code is constructed by two sub-
codes, namelya and b, and therefore two sub-decoders are
used in the decoder. Each sub-decoder, moreover, contains 13
RAMs: RAM1 and RAM2 for V2C messages corresponding
to leftmost block column (i.e.,Hl); RAM3 and RAM4 for
C2V messages corresponding to same block column; RAM5
to RAM10 for V2C/C2V messages corresponding to the other
block columns (i.e.,Hm and Hr); and RAM11 to RAM13
for the channel messages corresponding toHm andHr. We
assume a discordant schedule as an example, i.e., when one
sub-decoder is processing its first layer, the other sub-decoder
is dealing with its second layer. To clarify the relevant timing
terminology, the simultaneous decoding of the two layers
described above shall be referred to as a state and each time
slot within a state is called a stage. In our case, the decoding
procedure of one complete iteration is comprised of two states
and each state is comprised of three stages. Fig. 5 and Fig. 93

provide the step-by-step details of this process.
Referring to Fig. 5, the messages corresponding to the first

layer of sub-codea and those corresponding to the second
layer of sub-codeb are updated in sub-decodersa and b,
respectively.

1) At the beginning of State 1, the initial contents of
{RAMa5, RAMa7, RAMa9} are V2C messages. In the

3Due to lack of space, Fig. 9 is shown in the Supplemen-
tary Materials and is also available on the authors’ website
http://www.eie.polyu.edu.hk/∼encmlau/ccqcldpcsupp mat.pdf.

first stage when check node C1 is activated, the first
entries of these RAMs are accessed for the messages
{V52C1, V92C1, V112C1}. They, together with V12C1

at the first entry of RAMa1, are fed into the CNP4. The
updated C2V messages{C12V5, C12V9, C12V11} will
overwrite the original V2C contents in the first entries of
{RAMa5, RAMa7, RAMa9} and will be used in State 2;
whereas the updated C2V message C12V1 will replace
the original one stored in the first entry of RAMa3 and
will be instantly read by the sub-decoderb in the next
(second) stage.

2) With the updated C2V messages{C12V5, C12V9,
C12V11}, sub-decodera further computes the V2C mes-
sages corresponding to variable nodesV5, V9 andV11.
The other C2V messages{C52V5, C42V9, C62V11}
at the second, first and third entries of{RAMa6,
RAMa8, RAMa10} are therefore retrieved. Moreover,
sub-decoderb provides C2V messages concerning V11.
They are C82V11 and C102V11 located at the second and
first entries of RAMb3 and RAMb4, respectively. (This
shows the coupling effect between the sub-codesa and
b.) Together with the channel messages{CM5, CM9,
CM11} retrieved from{RAMa11, RAMa12, RAMa13},
sub-decodera updates the V2C messages{V52C5,
V92C4, V112C6, V112C8}. The V2C messages{V52C5,
V92C4, V112C6} replace the original C2V messages
{C52V5, C42V9, C62V11} stored in{RAMa6, RAMa8,
RAMa10}; whereas V112C8 is stored in the second
entry of RAMb1 in sub-decoderb. As shown in Fig. 9,
in State 2 during which sub-decoderb decodes Layer 1,
the contents in RAMb1 will be used while the contents
in RAMb2 will be updated.

3) Referring to the first stage of Fig. 5, sub-decoderb up-
dates the messages related to check node C10 and its as-
sociated variable nodes.{V112C10, V132C10, V182C10,
V32C10} are read from the first entries of{RAMb2,
RAMb6, RAMb8, RAMb10} and the CNP then up-
dates the corresponding C2V messages, i.e.,{C102V11,
C102V13, C102V18, C102V3}. C102V11 is stored at
the first entry of RAMb4 while {C102V13, C102V18,
C102V3} replace the original V2C messages stored in
the first entries of{RAMb6, RAMb8, RAMb10}.

4) Similar to decodera, decoderb then retrieves other C2V
messages ({C92V13, C72V18, C82V3} from {RAMb5,
RAMb7, RAMb9} and{C32V3, C52V3} from {RAMa3,
RAMa4} of decodera) and channel messages ({CM13,
CM18, CM3} from {RAMb11, RAMb12, RAMb13}).
Using the updated C2V messages in the previous step,
decoderb updates the V2C messages{V132C9, V182C7,
V32C8, V32C5}. {V132C9, V182C7, V32C8} replace the
original C2V messages in{RAMb5, RAMb7, RAMb9}
while V32C5 is stored in RAMa2 of decodera. By
analogy, the second and third stages of State 1 and the
three stages of State 2 can be deduced. The descriptions
are therefore omitted here.

4The design for a degree-4 CNP can be easily completed with theproposed
method and the result can be found identical to the traditional structure.

9

Comparing Fig. 5 and Fig. 9, an address-hopping can be
found at the end of each State and, according to the discussion
in Section IV-D, is fulfilled by switching the connected address
counters. Another observation is that{RAM5, RAM7, RAM9}
and {RAM6, RAM8, RAM10}, both belonging to the first
category of RAMs, keep swapping their roles as storage of
V2C and/or C2V messages in successive states. We refer to
such type of storage as dynamic storage.

In Fig. 6, the switch network between the RAMs and the
layered decoders is illustrated. Since there are two decoding
states, 2-to-1 multiplexers are exclusively used for data se-
lections at all input ports (except for the channel messages
becauseG = z). Each multiplexer is controlled by the State
signal S0 that is negated by the controller every time three
decoding stages have been completed. SinceJ = 2, most
multiplexers are paired up and each multiplexer in a pair
delivers the message for one of the two layers. In this diagram,
the network used for routing messages internal to the sub-
decoder is shown in the lower part while that for routing
messages external to the sub-decoder is shown in the upper
part. The routing reveals how the sub-codes are cyclically
related and meanwhile possess respective autonomies.

The above example can also be used to show the scalability
of the proposed architecture. If the code length needs to be
extended, we can simply insert replicas of the sub-decoders
in a ring-shape manner as illustrated in Fig. 1. Details within
each sub-decoder are left unchanged and so are the incoming
controlling signals. Then statistics will be scaled up accord-
ingly including memory, logics and throughput. Similarly,the
decoder can also be scaled down by extracting sub-decoders
out and splicing the remaining parts together.

V. I MPLEMENTATION AND PERFORMANCE

The proposed decoder has been implemented on an Altera
Stratix IV EP4SE530H35C2 FPGA which provides424, 960
Adaptive Look-Up Tables (ALUTs) and10, 624 memory logic
array blocks (MLABs). CC-QC-LDPC codes of rate5/6 are
constructed withK = 4, L = 28, J = 4, W = 4 and sub-
matrix sizes ofz = 128, 256, 512, 1024. Assuming that 4-bit
quantization5 is used together with10 decoding iterations (i.e.,
I = 10), Table I shows the implementation details of our CC-
QC-LDPC decoders. For codeA, B andC, each sub-decoder
adopts a degree-8 parallelism but for codeD both 8 and 16
parallelism degrees have been attempted. It is observed that
there is not much difference in the complexities of the first four
cases except that their memory sizes hold a linear dependence
on z. For CodeD, when the parallelism degree is increased
from 8 to 16, the number of ALUTs and registers are about
doubled but the number of memory bits remains the same.

All the implementations are evaluated at a normalized
clock rate (100 MHz) for an evident comparison and the
information throughput (T) is related to other parameters as
T = Kz(L−W)

IJ(G+Np)
×R×f , whereNp is the number of pipelining

stages,R is the code rate andf is the clock frequency. We
have arranged four stages in our design, which are tasked with

5A larger number of quantization bits results in a higher complexity of,
namely, CNP, VNP, memory size, etc., but a better error performance [31].

(1) reading messages from the memory, (2) updating the C2V
messages, (3) updating the V2C messages, and (4) writing
messages into memory.

In Table I, we also list the complexity of the best-error-
performing LDPC convolutional code (LDPCCC) decoder in
[30]. Firstly, a strong memory size contrast can be noticed.Nu-
merically, even the largest CC-QC-LDPC decoder consumes
only 13.4% (2,359,296 bits versus 17,558,528 bits) of the
LDPCCC decoder memory. Next we compare the CC-QC-
LDPC decoder of codeD having degree-16 parallelism with
the LDPCCC decoder. It is shown that with a lower combi-
national ALUTs and registers requirement and a substantially
lower memory requirement, the CC-QC-LDPC decoder can
achieve a 3.0 Gbps6 throughput, i.e., 50% higher than that
of the LDPCCC decoder. Note however that the total number
of iterations are different for the CC-QC-LDPC decoder and
LDPCCC decoder. One feature of the LDPCCC decoder in
[30] needed to be mentioned is that it adopts a fully pipelining
structure so that all the iterations are performed by a series of
processors. Therefore, its hardware size is proportional to the
iteration number while its throughput is constant. Moreover,
the better the target BER, the higher the implementation com-
plexity. In contrast, the proposed CC-QC-LDPC decoder can
flexibly trade between the BER performance and throughput
by adjustingI with a given complexity.

Note that we select the parametersK = 4, L = 28, J = 4,
W = 4 such that our CC-QC-LDPC code achieves the same
code rate (i.e.,5/6) as the LDPCCC in [30]. For a given sub-
codeHs = [Hl Hm Hr], adjusting the coupling degreeW
has the following effects. Generally, the larger the number
of coupling columns (i.e.,W), the more hardware required. A
larger overlapping region calls for a larger number of adders to
implement the VNP. It also consumes more memory locations.
It will also more likely improve the BER. However, the code
rate (given by1− J

L−W
) is reduced and so is the information

rate. So the coupling degree should be the result of tradeoff
between error performance and hardware complexity.

Based on the FPGA simulation on codeD with degree-
16 parallelism, an experiment is conducted to collect the
BER results of our proposed CC-QC-LDPC decoder. In our
simulations, binary phase-shift-keying (BPSK) modulation and
AWGN channels are applied and the number of decoding
iterations I is assumed to be 10. As shown in Fig. 7, no
error floor is observed above a BER of10−14. Moreover, at
Eb/N0 = 3.5 dB, we are able to decode all the received
1.14 × 1016 bits correctly. Such evidence suggests that er-
ror floor might be bounded by10−16, although a hundred
times more bits are required to be simulated to ascertain the
statistical significance of this bound. The error performance
of this CC-QC-LDPC decoder is compared with that of the
aforementioned LDPCCC decoder. Referring to Fig. 7, we can
observe that there is only a 0.02 dB difference at a BER of
10−12 and the gap is narrowing asEb/N0 increases. Next, we
investigate the gain of the CC-QC-LDPC code due to coupling.
Fig. 7 plots the BER curve of the QC-LDPC code without

6The maximum clock rate based on our implementation model is slightly
over 110 MHz, and hence the possible highest throughput is 3.3 Gbps.

10

C122V2

RAMb3

C72V10
C82V11
C92V12

RAMb4

C102V11
C112V12
C122V10

RAMa11

CM4
CM5
CM6

RAMa12

CM7
CM8
CM9

RAMa13

CM10
CM11
CM12

RAMa6

C42V4
C52V5
C62V6

RAMa8

C42V9
C52V7
C62V8

RAMa10

C42V12
C52V10
C62V11

C2V*

CM

V2C

C2V

RAMa5

V52C1
V62C2
V42C3

RAMa7

V92C1
V72C2
V82C3

RAMa9

V112C1
V122C2
V102C3

RAMa1

V12C1
V22C2
V32C3

C2V

V2C*

RAMb5

C72V14
C82V15
C92V13

RAMb7

C72V18
C82V16
C92V17

RAMb9

C72V2
C82V3
C92V1

RAMa3

C12V1
C22V2
C32V3

RAMa4

C42V2
C52V3
C62V1

RAMb13

CM1
CM2
CM3

RAMb11

CM13
CM14
CM15

RAMb12

CM16
CM17
CM18

C2V

CM

RAMb2

V112C10
V122C11
V102C12

V2C

V2C*

Stage 1 Stage 2 Stage 3

Layered

decoder

Layered

decoder

RAMb6

V132C10
V142C11
V152C12

RAMb8

V182C10
V162C11
V172C12

RAMb10

V32C10
V12C11
V22C12

V2C*

V2C

C2V*

V2C*

C2V*

RAMa11

CM4
CM5
CM6

RAMa12

CM7
CM8
CM9

RAMa13

CM10
CM11
CM12

RAMb13

CM1
CM2
CM3

RAMb11

CM13
CM14
CM15

RAMb12

CM16
CM17
CM18

V2C

C2V

CM

V2C

C2V

C2V

V2C

Layered

decoder

RAMa11

CM4
CM5
CM6

RAMa12

CM7
CM8
CM9

RAMa13

CM10
CM11
CM12

C2V

CM

Layered

decoder
V2C

RAMa1

V12C1
V22C2
V32C3

RAMb2

V112C10
V122C11
V102C12

V2C*

V2C*

RAMb13

CM1
CM2
CM3

RAMb11

CM13
CM14
CM15

RAMb12

CM16
CM17
CM18

V2C

C2V

C2V*
V2C*

V2C* C2V*

CM

V2C

C2V

C2V

V2C

Layered

decoder

RAMa11

CM4
CM5
CM6

RAMa12

CM7
CM8
CM9

RAMa13

CM10
CM11
CM12

RAMa1

V12C1
V22C2
V32C3

V2C*

C2V

CM

Layered

decoder
V2C

RAMb13

CM1
CM2
CM3

RAMb11

CM13
CM14
CM15

RAMb12

CM16
CM17
CM18

V2C

C2V

RAMb2

V112C10
V122C11
V102C12

V2C*

V2C*

V2C*

C2V*

C2V*

RAMa2

V22C4
V32C5
V12C6

RAMb1

V102C7
V112C8
V122C9

RAMa1

V12C1
V22C2
V32C3

RAMb2

V112C10
V122C11
V102C12

Sub-decoder a

C2V* C2V*

Sub-decoder bC2V* C2V* C2V*

RAMa6

C42V4

C62V6

RAMa8

C52V7
C62V8

RAMa10

C42V12
C52V10

V92C4
V52C5

V112C6

RAMa5

V62C2
V42C3

RAMa7

V72C2
V82C3

RAMa9

V122C2
V102C3

C12V5 C12V9 C12V11

RAMa2

V22C4

V12C6

V32C5

RAMa3

C22V2
C32V3

RAMa4

C42V2
C52V3
C62V1

C12V1

RAMa6

C42V4

RAMa8

C62V8

RAMa10

C52V10

V92C4
V72C5V52C5

V62C6

V122C4

V112C4

RAMa5

V42C3

RAMa7

V82C3

RAMa9

V102C3

C12V5
C22V6

C12V9
C22V7

C12V11
C22V12

RAMa2

V22C4
V32C5
V12C6

RAMa3

C32V3

RAMa4

C42V2
C52V3
C62V1

C12V1
C22V2

RAMa5 RAMa7 RAMa9

C12V5
C22V6
C32V4

C12V9
C22V7
C32V8

C12V11
C22V12
C32V10

RAMa2

V22C4

V12C6

V32C5

RAMa3 RAMa4

C42V2
C52V3
C62V1

C12V1

C12V3

C22V2

RAMb3

C72V10
C82V11
C92V12

RAMb4

C112V12
C122V10

C102V11

RAMb1

V102C7

V122C9

V112C8

RAMb6

V142C11
V152C12

RAMb8

V162C11
V172C12

RAMb10

V12C11
V22C12

C102V13 C102V18 C102V3

RAMb5

C72V14
C82V15

RAMb7

C82V16
C92V17

RAMb9

C72V2

C92V1

V182C7

V132C9

V32C8

RAMb3

C72V10
C82V11
C92V12

RAMb4

C122V10

C102V11
C112V12

RAMb1

V102C7
V112C8
V122C9

RAMb6

V152C12

RAMb8

V172C12

RAMb10

V22C12

C102V13 C102V18 C102V3
C112V14 C112V16 C112V1

RAMb5

C82V15

RAMb7

C92V17

RAMb9

C72V2V142C7 V182C7

V132C9 V12C9

V162C8 V32C8

RAMb3

C72V10
C82V11
C92V12

RAMb4

C102V11

C122V10

C112V12

RAMb1

V122C9

V102C7
V112C8

RAMb6 RAMb8 RAMb10

C102V13 C102V18 C102V3

C122V15 C122V17

C112V14 C112V16 C112V1

RAMb5 RAMb7 RAMb9

V142C7 V182C7 V22C7

V132C9 V172C9 V12C9

V152C8 V162C8 V32C8

Written Written and to be readTo be read

RAMa6 RAMa8 RAMa10

V42C4
V52C5
V62C6

V92C4
V72C5
V82C6

V122C4
V102C5
V112C6

Fig. 5. State 1 of the decoding procedure in the example.

RAMa5

RAMa6

Layered

decoder

RAMa11

RAMa12

RAMa13

CM(2)

CM(3)

CM(4)

C2V(2)

V2C(2)

S0

0

1

S0

0

1

S0

0

1

S0

0

1

S0

0

1

S0

0

1

S0

0

1

C2V(3)

V2C(3)

C2V(4)

V2C(4)

S0

0

1

S0

0

1

S0

0

1

S0

0

1

S0

0

1

RAMa7

RAMa8

RAMa9

RAMa10

V2C(2)

C2V(2)

V2C(3)

C2V(3)

V2C(4)

C2V(4)

RAMb4

RAMb3

RAMb1

RAMb2
S0

0

1

C2V*(1)

V2C*(4)

C2V*(4)

C2V*(4)

V2C*(1)

C2V*(4)

C2V*(4)

Multiplexer: S0=0 at State 1

and S0=1 at State 2

S0

0

1

RAMb6

RAMb5

RAMb11

RAMb12

RAMb13

CM(2)

CM(3)

CM(4)

C2V(2)

V2C(2)

S0

0

1

S0

0

1

S0

0

1

S0

0

1

S0

0

1

S0

0

1

S0

0

1

C2V(3)

V2C(3)

C2V(4)

V2C(4)

S0

0

1

S0

0

1

S0

0

1

S0

0

1

S0

0

1

RAMb8

RAMb7

RAMb10

RAMb9

V2C(2)

C2V(2)

V2C(3)

C2V(3)

V2C(4)

C2V(4)

C2V*(1)

V2C*(4)

V2C*(1)

RAMa3

RAMa4

RAMa2

RAMa1
S0

0

1

S0

0

1

S0

0

1

Layered

decoder

S0

0

1

S0

0

1

Fig. 6. The switch network for the decoder example. The numbers in parentheses indicate the order of block columns in the sub-code to which the messages
correspond.

coupling (i.e., using only one sub-code in codeD). We can
observe that our proposed CC-QC-LDPC code outperforms the
original QC-LDPC code (the one without coupling) by more
than0.25 dB at a BER of10−7. Furthermore, a larger gain is
expected at a lower BER.

Lastly, we examine the performance of our proposed check-

node processor (CNP) that implements quantized SPA (QSPA)
based on LUTs. Two other CNPs, namely (i) approximate
SPA (ASPA) based on mappers and adders and (ii) min-
sum based on comparators, are also studied for comparisons.
The BER performance of the QC-LDPC decoder is plotted in
Fig. 8 when different types of CNPs are used. The floating-

11

TABLE I
HARDWARE INFORMATION OF THE DECODER IMPLEMENTATIONS. CODEA: z = 128; CODEB: z = 256; CODEC : z = 512; CODED: z = 1024. ALL

THE CC-QC-LDPCCODES ARE CONSTRUCTED BY FOUR4× 28 SUB-CODES WITH A COUPLING DEGREE OF4. FOR COMPARISON, THE INFORMATION OF

A LDPCCCDECODER IS IMPORTED FROM[30] (CODE 2-P). ALL DECODERS ARE DESIGNED UNDER4-BIT QUANTIZATION .

z Stage No.G Combinational ALUTs Registers Memory bits Clock Iteration No.I Throughput (info bits)
CodeA 128 16 66,285 43,798 294,912 100 MHz 10 1.55 Gbps
CodeB 256 32 66,974 43,799 589,824 100 MHz 10 1.55 Gbps
CodeC 512 64 67,878 43,800 1,179,648 100 MHz 10 1.55 Gbps

CodeD 1024
128 70,324 43,801 2,359,296 100 MHz 10 1.55 Gbps

64 134,170 87,575 2,359,296 100 MHz 10 3.00 Gbps
LDPCCC[30] 512 512 170,102 105,505 17,558,528 100 MHz 18 2.00 Gbps

1.00E-14

1.00E-13

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7

B
E
R

Eb/N0(dB)

CC-QC-LDPC

LDPCCC

QC-LDPC

Fig. 7. The BER comparison of different decoders. The CC-QC-LDPC code
is code D and the QC-LDPC code is the sub-code of codeD. All the
results are obtained from FPGA simulation under AWGN channels and 4-
bit quantization.

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

B
E
R

Eb/N0(dB)

BP simulation

QSPA

ASPA

Min-sum

Fig. 8. The BER comparison of various decoders using different CNPs:
QSPA using the LUTs, ASPA using mappers and adders, and min-sum using
comparators. All the hardware simulations are under 4-bit quantization. BP is
the result of computer-based simulation with double-precision floating-point
data. The simulations are all based on the same QC-LDPC code with a check-
node degree of 28.

point computer simulation result is also shown. With 4-bit
quantization, the LUT-based architecture (QSPA) degradesby
only 0.1 dB compared with the double-precision floating-point
decoder at a BER of10−7. Also at this level, there is only
a 0.03 dB difference between the ASPA decoder and the
QSPA decoder. The min-sum decoder, however, is notably

TABLE II
COMPARISON OF THECNPS USING DIFFERENT METHODS. THE RESULTS

ARE COLLECTED BY SYNTHESIZING THECNPAND A PARTITION WITH

REGISTERED INPUTS AND OUTPUTS.

CNP Combinational ALUTs Maximum clock
Min-sum [15] 309 210 MHz
ASPA [29] 1068 140 MHz
QSPA (cascaded) [30] 274 80 MHz
QSPA (parallel) 277 220 MHz

seen as much worse than the other decoders. We further
compare the complexity and clock frequency of these CNPs
by implementing them as independent processors. Referringto
Table II, we observe that the ASPA CNP, despite having the
best BER performance, is much more complex than the others
in terms of the number of ALUTs. As a matter of fact, the min-
sum decoding can also be considered as LUT-based. Thus its
usage of combinational ALUTs is close to QSPA’s. This is also
the reason why the proposed parallel structure can work for the
min-sum decoder to achieve a possibly high clock rate7. More
importantly, the delay improvement of the parallel structure
from the cascade structure has been measured. By rearranging
the LUTs, the clock frequency of the proposed LUT-based
CNP has increased by over 140% without any degradations in
the complexity and computation accuracy. Although the adder-
based CNP (ASPA) has a parallel structure, its delay is still
significant mainly because the output of its mapping unit that
executes (7) has a larger width than the input. In summary,
if a slight error degradation is tolerable, our proposed parallel
LUT-based architecture is an optimal choice for implementing
a reduced-complexity check-node processor.

VI. CONCLUSION

A cyclically-coupled QC-LDPC (CC-QC-LDPC) code and
its decoder architecture are proposed and implemented using
a FPGA platform. The decoder for a rate 5/6 CC-QC-LDPC
code has been implemented. It achieves a throughput of 3.0
Gbps. The BER results show that CC-QC-LDPC codes have a
high potential to outperform LDPCCC in decoding capability
with lower complexities. Moreover, atEb/N0 = 3.50 dB, the
CC-QC-LDPC decoder can decode all the1.14×1016 received
bits correctly. The evidence suggests that error floor mightbe

7The maximum clock of the min-sum decoder appearing in Table II is
actually the result of using the traditional (cascaded) structure with min-sum
tables (comparators) in the CNP.

0

bounded by10−16, although a hundred times more bits would
be required to be simulated by the proposed system.

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,”IRE Trans. on IT, vol. 8,
pp. 21–28, 1962.

[2] M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from
circulant permutation matrices,”IEEE Trans. on IT, vol. 50, pp. 1788–
1793, 2004.

[3] Z. Li, L. Chen, L. Zeng, S. Lin, and W. H. Fong, “Efficient encoding of
quasi-cyclic low-density parity-check codes,”IEEE Trans. on Commun.,
vol. 54, pp. 71–81, 2006.

[4] W. M. Tam, F. C. M. Lau, and C. K. Tse, “A class of QC-LDPC
codes with low encoding complexity and good error performance,” IEEE
Commun. Lett., vol. 14, pp. 169–171, 2010.

[5] L. Chen, J. Xu, I. Djurdjevic, and S. Lin, “Near-Shannon-limit quasi-
cyclic low-density parity-check codes,”IEEE Trans. on Commun.,
vol. 52, pp. 1038–1042, 2004.

[6] A. Jimenez Felstrom and K. S. Zigangirov, “Time-varyingperiodic
convolutional codes with low-density parity-check matrix,” IEEE Trans.
on IT, vol. 45, pp. 2181–2191, 1999.

[7] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D.J. Costello,
“LDPC block and convolutional codes based on circulant matrices,”
IEEE Trans. on IT, vol. 50, pp. 2966–2984, 2004.

[8] E. Pisek, D. Rajan, and J. Cleveland, “Trellis-based QC-LDPC convolu-
tional codes enabling low power decoders,”IEEE Trans. on Commun.,
vol. 63, pp. 1939–1951, 2015.

[9] D. J. Costello Jr, A. E. Pusane, S. Bates, and K. S. Zigangirov, “A
comparison between LDPC block and convolutional codes,” inProc.
ITAW, 2006.

[10] S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Threshold saturation
via spatial coupling: why convolutional LDPC ensembles perform so
well over the BEC,”IEEE Trans. on IT, vol. 57, pp. 803–834, 2011.

[11] D. Mitchell, A. Pusane, K. Zigangirov, and D. Costello,“Asymptotically
good LDPC convolutional codes based on protographs,” inISIT, 2008,
pp. 1030–1034.

[12] C.-W. Sham, X. Chen, W. M. Tam, Y. Zhao, and F. C. M. Lau, “A
layered QC-LDPC decoder architecture for high speed communication
system,” inAPCCAS, Dec. 2012, pp. 475–478.

[13] S.-Y. Chung, G. D. Forney, Jr., T. J. Richardson, and R. Urbanke, “On
the design of low-density parity-check codes within 0.0045dB of the
Shannon limit,”IEEE Commun. Lett., vol. 5, pp. 58–60, 2001.

[14] T. J. Richardson and R. L. Urbanke, “The capacity of low-density
parity-check codes under message-passing decoding,”IEEE Trans. on
IT, vol. 47, pp. 599–618, 2001.

[15] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, “Reducedcomplexity
iterative decoding of low-density parity check codes basedon belief
propagation,”IEEE Trans. on Commun., vol. 47, pp. 673–680, 1999.

[16] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X.-Y.
Hu, “Reduced-complexity decoding of LDPC codes,”IEEE Trans. on
Commun., vol. 53, pp. 1288 – 1299, 2005.

[17] J. Zhao, F. Zarkeshvari, and A. H. Banihashemi, “On implementa-
tion of min-sum algorithm and its modifications for decodinglow-
density parity-check (LDPC) codes,”IEEE Trans. on Commun., vol. 53,
pp. 549–554, 2005.

[18] J. Chen and M. P. C. Fossorier, “Near optimum universal belief propa-
gation based decoding of low-density parity check codes,”IEEE Trans.
on Commun., vol. 50, pp. 406–414, 2002.

[19] E. Sharon, S. Litsyn, and J. Goldberger, “An efficient message-passing
schedule for LDPC decoding,” in23rd IEEE Convention of EEE in
Israel, 2004, pp. 223–226.

[20] D. E. Hocevar, “A reduced complexity decoder architecture via layered
decoding of LDPC codes,” inIEEE Workshop on SPS, 2004, pp. 107–
112.

[21] E. Sharon, S. Litsyn, and J. Goldberger, “Efficient serial message-passing
schedules for LDPC decoding,”IEEE Trans. on IT, vol. 53, pp. 4076–
4091, 2007.

[22] T. Zhang and K. K. Parhi, “A 54 Mbps (3,6)-regular FPGA LDPC
decoder,” inSIPS ’02, 2002, pp. 127–132.

[23] Z. Wang and Z. Cui, “Low-complexity high-speed decoderdesign for
quasi-cyclic LDPC codes,”IEEE Trans. on VLSI Systems, vol. 15,
pp. 104–114, 2007.

[24] L. Liu and C.-J. R. Shi, “Sliced message passing: high throughput
overlapped decoding of high-rate low-density parity-check codes,”IEEE
Trans. on Circ. and Syst. I, vol. 55, pp. 3697–3710, 2008.

[25] J. Jin and C. ying Tsui, “An energy efficient layered decoding archi-
tecture for LDPC decoder,”IEEE Trans. on VLSI Systems, vol. 18, pp.
1185–1195, 2010.

[26] D. Oh and K. K. Parhi, “Optimally quantized offset min-sum algorithm
for flexible LDPC decoder,” in42nd Asilomar Conf. on Signals, Systems
and Computers, 2008, pp. 1886–1891.

[27] X. Chen, J. Kang, S. Lin, and V. Akella, “Memory system optimization
for FPGA-based implementation of quasi-cyclic LDPC codes decoders,”
IEEE Trans. on Circ. and Syst. I, vol. 58, pp. 98–111, 2011.

[28] Z. Wang, Z. Cui, and J. Sha, “VLSI design for low-densityparity-check
code decoding,”IEEE Circuits and Systems Magazine, vol. 11, pp. 52–
69, 2011.

[29] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-
1/2 low-density parity-check code decoder,”IEEE Journal of Solid-State
Circuits, vol. 37, pp. 404–412, 2002.

[30] C.-W. Sham, X. Chen, F. C. M. Lau, Y. Zhao, and W. M. Tam, “A2.0
Gb/s throughput decoder for QC-LDPC convolutional codes,”IEEE on
Trans. Circ. and Syst. I, vol. 60, pp. 1857–1869, 2013.

[31] B. Xiang, R. Shen, A. Pan, D. Bao, and X. Zeng, “An area-efficient and
low-power multirate decoder for quasi-cyclic low-densityparity-check
codes,”IEEE Trans. on VLSI Systems, vol. 18, pp. 1447–1460, 2010.

[32] A. E. Pusane, R. Smarandache, P. O. Vontobel, and D. J. Costello,
“Deriving good LDPC convolutional codes from LDPC block codes,”
IEEE Trans. on IT, vol. 57, pp. 835–857, 2011.

Qing Lu received the B.E. degree from Dalian Uni-
versity of Technology, China, and M.Sc. degree from
The Hong Kong Polytechnic University (HKPolyU),
Hong Kong, respectively. He is currently a research
assistant at HKPolyU. His research interests include
digital implementation of communication systems,
VLSI design optimization and system development
based on FPGAs.

Jianfeng Fan received the B.E. degree from Hei-
longjiang University, China, and the M.Sc. degree
from HKPolyU. From 2013 to 2014, he was a
research assistant at HKPolyU. His research interests
include hardware design for coding.

Chiu-Wing Sham received the B.Eng., M.Phil. and
Ph.D. degrees from The Chinese University of Hong
Kong, Hong Kong. Before joining HKPolyU in
2006, he was a Research Engineer with Synopsys,
China, and an Electronic Engineer with ASM (HK).
He received the Best Paper Award in ISQED 2013.
His research interests include design automation of
VLSI, design optimization of digital VLSI systems
and embedded systems.

Wai M. Tam received B.Sc. degree from Jinan Uni-
versity, China, and M.Phil. and Ph.D. degrees from
HKPolyU, Hong Kong. She is currently a Research
Fellow at HKPolyU. Her research interests include
channel coding, mobile cellular systems, complex
networks and chaos-based digital communications.

Francis C. M. Lau (M’93–SM’03) received the
B.Eng. (Hons) degree and Ph.D. degree from King’s
College London, University of London, U.K. He is a
Professor and Associate Head at the Department of
Electronic and Information Engineering, HKPolyU,
Hong Kong. His main research interests include ap-
plications of complex network theories, channel cod-
ing, cooperative networks, wireless sensor networks,
chaos-based digital communications, and wireless
communications.

