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The knowledge-leverage based Takagi–Sugeno–Kang fuzzy system (KL-TSK-FS) modeling method has 

shown the promising performance for fuzzy modeling tasks where transfer learning is required. However, 

the knowledge-leverage mechanism of the KL-TSK-FS can be further improved. This is because available 

training data in a target domain are not utilized for the learning of antecedents and the knowledge 

transfer mechanism from a source domain to the target domain is still too simple for the learning of 

consequents when a Takagi–Sugeno–Kang fuzzy system (TSK FS) mode is trained in the target domain. 

The proposed method, i.e. the enhanced KL-TSK-FS (EKL-TSK-FS), has two knowledge-leverage 

strategies for enhancing the parameter learning of the TSK FS model for the target domain using 

available information from the source domain. One strategy is used for the learning of antecedent 

parameters while the other is for consequent parameters. It is demonstrated that the proposed EKL-TSK-

FS has higher transfer learning abilities than the KL-TSK-FS. In addition, the EKL-TSK-FS has been 

further extended for the multi-source scene. 
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1. INTRODUCTION 

Most modeling methods require sufficient data to be collected for model learning. On 

the one hand, in many real-world applications the available data may be insufficient 

since the data is scarce or very noisy. In this situation, many traditional modeling 

methods become unfeasible. On the other hand, for a current scene, there are usually 

some reference scenes along with a great deal of useful information. While the 

current and reference scenes are not the same, they are similar to each other. An 

interesting topic for research is how to utilize the available information from the 

reference scenes in the modeling for the current scene. Transfer learning is the 

technique used to address this topic [1-4, 49-51], where the current scene and the 

reference scene are usually called the target domain and the source domain, 

respectively.  

In Fig. 1, an illustration of transfer learning is given. For clarity, several terms 

relating to transfer learning used in this paper are described here [5, 6]. (1) Domain: 

A domain is a scene where a modeling task is to be accomplished. It is usually 

characterized by the data collected in this domain and the learning task to be 

performed in this domain. (2) Target domain: In transfer learning, a current scene is 
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called a target domain, where a modeling task is to be performed. It is usually 

assumed that the target domain does not have enough data or information for proper 

modeling. (3) Source domain: A reference scene is usually called a source domain, 

which has some similarities to the target domain in data distributions and/or 

learning tasks. While the source and target domains are different, it is assumed in 

transfer learning that the source domain can provide useful information for the 

modeling task of the target domain. 

 

 
Fig. 1 An illustration of transfer learning 

Transfer learning has recently been studied extensively for different learning 

tasks, including supervised learning [1, 3, 5-19, 41-46, 48] and unsupervised learning 

[4, 20-22, 47]. Various transfer learning methods have been developed for different 

intelligent models such as support vector machines [18, 23], neural networks [19], 

and fuzzy systems [5, 6]. In this study, our focus is transfer learning for fuzzy 

systems. 

Fuzzy systems have been extensively applied in many fields [24, 25]. However, in 

some fields, it is very difficult to obtain good fuzzy systems without transfer learning. 

For example, the modeling of the fermentation process [26] is one example where 

transfer learning is required. In the target domain of a microbiological fermentation 

process, the data collected may be insufficient or incomplete. A number of missing 

values are often included. Thus, we cannot effectively model the fermentation process 

for the target domain with the collected data using traditional fuzzy system modeling 

methods. However, data available from other similar microbiological fermentation 

processes could be sufficient. In this situation, the related processes can be 

considered the source domain for the target domain. Hence, transfer learning can be 

exploited to make use of the information from the source domain in the modeling for 

the target domain, which leads to a model with better generalization capability. In 

this case, transfer learning is an effective solution for the corresponding modeling 

task because it can enhance the model by leveraging the information available from 

the source domains, such as the data collected in other time frames or with other 

setups. 

In order to effectively implement the modeling tasks by using fuzzy systems in the 

abovementioned situation where transfer learning is needed, transfer learning-based 

fuzzy system modeling methods have been investigated. In [5], a kernel density 

estimation-based transfer learning mechanism was introduced to develop a modeling 

method with transfer learning abilities for the Mamdani-Larsen fuzzy system (ML-

FS). That is, the knowledge-leverage based ML-FS (KL-ML-FS) modeling method 

was proposed. In [6], a kind of transfer learning mechanism was proposed for the 

development of the transfer learning TSK FS modeling method, i.e., the knowledge-

leverage based TSK FS (KL-TSK-FS) modeling method. In both the KL-ML-FS and 

KL-TSK-FS modeling methods, novel objective functions are used to integrate the 

model knowledge of the source domain and the data of the target domain, and then 

the fuzzy rules of the model in the target domain are learned with the corresponding 

optimization techniques. For these knowledge-leveraged based fuzzy system 
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modeling methods, knowledge of the source domain can effectively complement the 

insufficient data in the target domain. Hence, these methods are very useful in 

situations where the data are insufficient in the target domain while some useful 

knowledge of the source domain is available. They can be also viewed as privacy 

preserving modeling methods since only the knowledge (e.g., the corresponding model 

parameters) rather than the data of the source domains is utilized. 

Between these two transfer learning fuzzy system modelling methods, the KL-

TSK-FS has shown a higher degree of flexibility than the KL-ML-FS [5, 6]. This is 

because the transfer learning mechanism of the KL-TSK-FS is much steadier than 

the kernel density estimation-based transfer learning mechanism of the KL-ML-FS. 

Although the KL-TSK-FS has demonstrated promising performance in some 

applications, there is room for improvement because of the following weaknesses: (1) 

The antecedent parameters of the TSK-FS model constructed by the KL-TSK-FS are 

directly inherited from the model obtained in the source domain, making the model 

that is obtained not particularly appropriate for the modeling task in the target 

domain. (2) The knowledge-leverage mechanism used for the learning of consequent 

parameters is still weak. Thus, it is expected that more advanced knowledge-leverage 

transfer learning mechanisms will be studied. 

In order to overcome the abovementioned shortcomings of the KL-TSK-FS 

modeling method, the enhanced KL-TSK-FS (EKL-TSK-FS) modeling method is 

investigated in this study. In particular, we proposed the EKL-TSK-FS modeling 

method from the following two aspects: (1) A transfer fuzzy c-means clustering 

technique is proposed to realize knowledge-leverage for the antecedents, which 

enables the antecedent parameter learning to take place simultaneously from the 

available data in the target domain and from the knowledge of the source domain. (2) 

An enhanced knowledge-leverage mechanism is introduced for the consequent 

parameter learning. In addition to the knowledge-leverage term in the original KL-

TSK-FS modeling method, another knowledge-leverage term is introduced, which 

will help the consequent parameters to more efficiently utilize the knowledge from 

the source domain in the learning procedure. The EKL-TSK-FS has also been 

extended to a multi-source version for applications where multiple source domains 

are available. 

The remainder of this paper is organized as follows. In Section 2, we briefly 

explain the concept and principle of classical TSK FS systems and the transfer 

learning based TSK FS modeling method KL-TSK-FS. In Section 3, the weaknesses 

of the KL-TSK-FS modeling method are discussed. In Section 4, an enhanced KL-

TSK-FS modeling method, i.e. the EKL-TSKFS, is proposed. In Section 5, the EKL-

TSKFS is extended for applications in the multi-source scene. The proposed methods 

are evaluated through computational experiments in Section 6. The conclusions are 

given in the final section. The initial study for this research on the transfer learning 

of the TSK FS for the antecedent parameters (i.e., section 5.2) was reported in the 

Fuzz-IEEE 2014 conference [27]. 

2. CLASSICAL TSK-TYPE FUZZY SYSTEMS AND THE TRANSFER LEARNING BASED 
MODELING METHOD 

Due to its effectiveness among the classical fuzzy system models, the TSK FS model 

is the most popular model [28-30]. In this section, the concept and principle of the 

classical TSK FS and the transfer learning based TSK FS modeling method KL-TSK-

FS are described briefly. 
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2.1 TSK FS 

The most commonly used fuzzy inference rules for TSK FSs are defined as follows. 

TSK Fuzzy Rule :kR  

1 1 2 2IF  is   is   is  k k k

d dx A x A x A   , (1) 

  0 1 1then  k k k k

d df p p x p x   x , 1, ,k K . 

In the above fuzzy rule, k

iA  is a fuzzy subset specified by a membership function on 

the input variable 
ix  for the k th rule; K is the number of fuzzy rules, and   is a 

fuzzy conjunction operator. For TSK FSs, each rule is premised on the input vector 

1 2[ , , , ]T

dx x xx , and maps the fuzzy vector 1 2( , , , )k k k k T

dA A AA  in the input space 
k dRA  to a varying singleton denoted by  kf x . The output of the TSK FS can be 

calculated as follows when we use a multiplicative conjunction, a multiplicative 

implication, and an additive combination: 

 0

1 1

1
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, (2.a) 

with ( )k x  and ( )k x  being respectively the fuzzy membership function and the 

normalized fuzzy membership function associated with the fuzzy vector k
A . The 

output of the TSK fuzzy model in (2.a) can be rewritten as the following linear regression model 

[32]: 

 o T

g gy  p x , (3.a) 

where 

 
1(1, )T T d

e R  x x ,  (3.b) 

   1k k d

e R  x x x ,  (3.c) 

 
1 2 ( 1)(( ) , ( ) , , ( ) )T T K T T K d

g R  x x x x , (3.d) 

 
( 1)

0 1( , , , )k k k k T K d

dp p p R  p , (3.e) 

 
1 2 ( 1)(( ) , ( ) , , ( ) )T T K T T K d

g R  p p p p . (3.f) 

This reformulation shows that the consequent parameter learning in the TSK FS can 

be viewed as parameter learning in the corresponding linear regression model in the 

mapping new feature space [6, 26, 32]. 
2.2 KL-TSK-FS 

The KL-TSK-FS modeling method has been proposed in order to implement effective 
learning of a TSK FS for a situation where transfer learning is required [6]. For the 
KL-TSK-FS, there are two major sources of information for the learning of a TSK FS 
model: One is the training data in the target domain, and the other is the knowledge 
from the source domain. By using these two types of information, the parameter 
learning of the fuzzy model in the target domain is carried out for the corresponding 
modeling task. 

The use of the following objective function was proposed in the KL-TSK-FS [6]: 
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.  (4) 

where 0gp  is the knowledge from the source domain. The optimization criterion of 

the KL-TSK-FS in (4) contains two terms. The first term attempts to learn from the 
data of the target domain, which is directly inherited from the L2-TSK-FS [26]. The 
second term intends to learn from the knowledge of the source domains. The 
parameter   in Eq. (4) is used to balance the influence of these two terms. Its 

appropriate value can be determined by using the commonly used cross-validation 
strategy in machine learning. For more details of the KL-TSK-FS, please refer to [6]. 

3. WEAKNESSES OF KL-TSK-FS 

In this section, we discuss the weaknesses of the KL-TSK-FS modeling method. First, 

the antecedent parameters of the TSK FS constructed in the target domain have 

been directly inherited from the model obtained in the source domain in this method. 

This strategy results in the antecedent parameters being not particularly appropriate 

for the modeling task in the target domain, since any other information such as the 

training data in the source domain cannot be used in their learning. Second, only the 

knowledge from the source domain is utilized in the learning of the consequent 

parameters through the introduced tem 0 0
( ) ( )

T

g g g g
 p p p p  for the target domain in the 

KL-TSK-FS. Thus, it seems that the knowledge-leverage learning from the source 

domain is still insufficient. More knowledge-leveraged terms can be introduced to 

enhance the learning abilities for the consequent parameters of the target domain. 
The above discussions suggest that the KL-TSK-FS modeling method [6] can be 

further improved. In the next section, an enhanced KL-TSK-FS modeling method, i.e. 
the EKL-TSK-FS, will be proposed for this purpose. 

 
Fig. 2 Knowledge-leverage mechanisms in the proposed EKL-TSK-FS modeling method. 

4. EKL-TSK-FS 

4.1 Framework of the EKL-TSK-FS 

The frameworks of the EKL-TSK-FS are illustrated in Fig. 2. As shown in this 

framework two issues are to be discussed in the proposed EKL-TSK-FS modeling 

method: One is the learning of the antecedent parameters based on transfer 

clustering, and the other is the learning of the consequent parameters based on 

enhanced knowledge-leverage terms. In the following subsections, the proposed 
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knowledge-leverage mechanisms for the learning of antecedents and consequents are 

described in detail. 
4.2 Enhanced Learning for the Antecedents with Transfer Clustering 

In the KL-TSK-FS, the commonly used Gaussian membership functions in the 

antecedents of the TSK FS include two types of parameters, i.e., the centers k

ic  and 

the widths k

i , 1, ,k K , and 1, ,i d . The parameter vectors 1[ , , ]k k k

dc cc , 

1, ,k K  are obtained as the cluster centers by a fuzzy c-means (FCM) clustering 

method on the input part of the training dataset [6]. In the KL-TSK-FS, the 

parameter values of those parameters k

ic  ( 1, ,k K ; 1, ,i d ) are assumed to be 

the knowledge available from the source domain and used directly in the TSK FS for 
the target domain. Thus, these parameter values are not particularly suitable for the 
target domain since no information in the target domain is used for their learning. In 
order to overcome this weakness, we propose the following transfer fuzzy c-means 
(TFCM) clustering technique for the learning of the antecedent parameters of the 
TSK FS in the target domain. 

First, we take the parameter vectors s

k
c , 1, ,k K  as the knowledge available 

from the source domain, which represent the K  centers of the fuzzy clusters in the 
input space of the source domain. Then, we propose a TFCM clustering method to 
obtain the K  centers of the fuzzy partitions in the input space of the target domain 
using the following objective function: 

  
2 2

1 1 1 1,
min  

c

K N K Nm k m k k
jTFCM kj t a kj t sk j k j

J u u
   

       
U C

c c cx , 

 . . [0,1]kjs t u  , 
1

1
K

kjk
u


 , 1 j N  .  (5) 

In Eq. (5), jx  is the jth input vector in the training data in the target domain; k

cc  

represents the center of the kth fuzzy cluster in the input space of the target domain; 

kju  denotes the membership value of the jth input vector jx  belonging to the kth 

cluster; [ ]kj K Nu U  and 1[ , , ]K

t t tC c c  denote the fuzzy partition matrix and the 

center matrix, respectively; and a  is a balance parameter to control the influence of  

the two terms in the objective function. The parameter a  can be determined by 

using the commonly used cross-validation strategy. 
In particular, we can see that the first term in Eq. (5) is directly inherited from the 

classical FCM algorithm, which is used to learn the fuzzy partition matrix and the 
cluster center matrix based on the available data jx  in the target domain. The 

second term in Eq. (5) is a knowledge-leverage term, which can be used to learn the 
cluster centers of the target domain from the knowledge of the source domain. 

With Eq. (5) and the optimization technique used in FCM, we can easily obtain the 
following learning rules for the fuzzy partition matrix and the cluster center matrix: 

 
1 1 1
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From Eq. (6), we can see that the cluster center k

tc  that was obtained is written as 
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the sum of the two terms: 
1 1

1( ) /
1

N Nm m
jkj kjj j

a

u u
    x  and ( /1 ) k

a a s  c . The first 

term can be viewed as the influence of the training data in the target domain, while 
the second term is the knowledge from the source domain. We can also observe from 
(7) that the partition matrix is calculated from jx  in the training data from the 

target domain and k

sc  in the knowledge from the source domain. 

Once the clustering results are obtained by TFCM in (6) and (7), we can easily 

calculate the parameter k

i  in the antecedent part of the TSK FS accordingly [6]. 

4.3 Enhanced Learning for the Consequents 

In this subsection, we propose an enhanced learning mechanism to improve the 

knowledge-leverage abilities of the KL-TSK-FS method [6] for the learning of the 

consequent parameters. 

1) Distribution Distance and Maximum Mean Discrepancy (MMD): MMD is a 

convenient and effective method for measuring the distribution distance. It is a 

method that has been used in transfer learning for developing some algorithms such 

as the large-margin projection algorithm (LMPROJ) [35] and the domain adaptation 

kernelized support vector machine (DAKSVM) [7]. Given a set of M  input-output 

pairs 1 1 1{{ , }, ,{ , }}n nD y y x x  and a set of m  input vectors 
2 1{ , , }ND  z z , the 

squared MMD distance between the two distributions associated with the two 

datasets is defined as follows [7, 35]: 

 

2

2

1 1

1
MMD

1
( ) ( )

n m

j jj jM N
 

 
  x z ,  (6) 

where ( )
j

 x  is a mapping function. 

In this study, it is used to enhance the inductive KL-TSK-FS modeling method. 

The goal of a transfer learning method with an MMD mechanism is usually to find a 

projected vector that minimizes the distance between two distributions in the 

projected space, while at the same time optimizing the performance of the model for 

the training data. Given a dataset 1, 1, , ,{{ , }, ,{ , }}s r r M r M rD y y x x  in the source 

domain and a training data set in the target domain 1 1{{ , }, ,{ , }}t N ND y y x x for our 

TSK FS modeling task, we can obtain the following two datasets by using the 

mapping in Eqs. (3.b)-(3.d) with the fixed antecedents of the TKS-FS learned by the 

TFCM clustering in Eq. (5): 

  , 1, 1, , ,( , ), ,( , )s map g r r gM r M rD y y x x   (7.a) 

 , 1 1{{ , }, ,{ , }}t map g g N ND y y x x .  (7.b) 

Then, MMD in (6) can be defined as follows to estimate the distribution distance 

between the source domain and the target domain under an expected projection p
g  

for the TSK FS model in the target domain: 

 

2

2

, , ,1 1

, , ,2 21 1 1 1 1 1

( , )
1 1

MMD

1 1 2

N MT T

s map t map g gi g gi ri i

N N M M N MT T T T T T

g gi gj g g gi r gj r g g gi gj r gi j i j i j

d P P
N M

NMN M

 

     

  

  

 

     

p x p x

p x x p p x x p p x x p

. (8) 

where ,s mapP  and ,t mapP  denote the two distributions of mapping data in the new feature space, 

for the source domain and the target domain, respectively. Let 
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0 , , ,2 21 1 1 1 1 1

1 1 2N N M M N MT T T

gi gj gi r gj r gi gj ri j i j i jNMN M     
       Ω x x x x x x ,  (9.a) 

  0 0 / 2T Ω Ω Ω .  (9.b) 

Then (8) can be expressed as 

 2

, ,( , ) MMD T

s map t map g gd P P   p Ωp .  (10) 

2) Enhanced Objective Function: We propose the following objective function by 

introducing the projected squared MMD distance in Eq. (15) to enhance the 

knowledge-leverage abilities of the KL-TKS-FS [6]: 
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where 
, ,( , )s map t mapd P P  is defined in Eq. (8) or (10). From Eq. (11), the following 

observations can be made. 

(1) The first and second terms are inherited directly from the KL-TSL-FS and used 

to learn from the data in the target domain and the model parameters in the source 

domain simultaneously.  

(2) The third term is introduced to measure the distribution distance between the 

source domain and the target domain, which is expected to enhance the ability of the 

KL-TSK-FS to learn from the source domain. 

3) Optimization of the Enhanced Objective Function: It is no trivial matter to solve 

Eq. (11) directly. This optimization problem is often transformed into a more easily 

solved dual problem. The dual problem of Eq. (11) can be formulated as the following 

QP problem: 

       
2 2

1 1 1, 1

1
min  ) ( )( ) ( )

2 2

NN N N
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N
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     1 1 1 1 1

g 1 2 g2 (1 2 )( ) ( ) 2
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ij i jh         x R R R R ΩR x ,  (12.b) 

                   1 1 2 1 1 1 1 1 1

1 0 1 0 1 0 1 2 0 1 0 g2 ( ) ( ) 4 2 2 2
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T T

i g g g g g ib                  p R R p R R p R p R Ω Ω R p R x  

   (12.c) 

 ( 1) ( 1)

1 ( 1) ( 1) 2((1 2 ) 2 )T K d K d
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     R I Ω .  (12.d) 

In (12.a), ,
 

α α  are the Lagrangian multiplier vectors, i.e., the solution variables of 

the dual problem of (11). The derivation of (12.a) can be seen in Appendix 1. 

According to the KTT optimal theory, the optimal consequent parameters of the 

trained TSK FS in the target domain, i.e. ( )g


p  in (11), can finally be given by 

  1

1 0 g
1

2 ( )
N

g g i i i
i

    



  p R p x   (13) 
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where ( ) , ( )i i      are the optimal solutions of the dual problem in (12.a). The 

derivation of (13) can also be seen in Appendix 1. 

For (12.a), we can give a more compact form, as follows: 

 
T T1

max   -
2


υ

υ Hυ υ γ  

 
T 2

. .  ,   0  is t i


  υ 1 υ , (14) 
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.  (15.f) 

4.4 Algorithm of EKL-TSK-FS 

Based on the abovementioned two learning mechanisms of the EKL-TSK-FS in 

Subsections 4.2 and 4.3, the overall learning algorithm of the proposed EKL-TSK-FS 

modeling method can be written as follows. 

Algorithm for the EKL-TSK-FS 

Step 1 Introduce the knowledge of the source domain, i.e., the model 

parameters. 

Step 2 Set the balance parameters a  in (5) and 1 2, ,    in (11). 

Step 3  Use (5)-(7) to learn the antecedent parameters of the TSK FS in the 

target domain. 

Step 4 Use (3.b)-(3.d) and the antecedent parameters of the TSK FS of the 

target domain to construct the datasets ,s mapD  and ,t mapD  in (7.a) and 

(7.b), respectively. 

Step 5 Use (12.a) or (14) to obtain the consequent parameters of the TSK FS 

in the target domain. 

Remarks: Compared with the KL-TSK-FS algorithm, the advantage of the EKL-

TSK-FS is that the enhanced transfer learning mechanism is used. However, a 

disadvantage is also introduced due to the learning mechanism that was adopted. We 

know that only the model parameters in the source domain are used in the KL-TSK-

FS algorithm, giving it better privacy protection performance. Since the mapping 

dataset, i.e. ,s mapD  in (7.a), is required in the EKL-TSK-FS algorithm, the privacy 

protection performance of the EKL-TSK-FS is weaker than that of the KL-TSK-FS. 

The computational complexity of the EKL-TSK-FS algorithm is analyzed briefly 

here. It has the following two main parts: 1) the learning of the antecedent 

parameters; and 2) the learning of the consequent parameters. For the first part, 

since the antecedent parameters are obtained by the TFCM clustering technique, its 

computational complexity is equal to that of the classical FCM clustering algorithm, 
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i.e. O( KNT ), where ,K N  and T  denote the number of clusters, the number of 

training data, and the number of iterations, respectively. For the second part, the 

consequent parameters are obtained by solving the QP problem in Eq. (12.a); thus, its 

complexity is usually O( 2N ) of typical QP problems. However, if some sophisticated 

QP algorithms are adopted, such as the working set-based algorithm [36], the 

computational complexity can be reduced to between O( N ) and O( 2N ), depending on 

the QP solutions used. In this study, we have adopted the working set-based QP 

solution [36] for solving the QP problem in the experimental studies. 

5. EXTENDED EKL-TSK-FS FOR MULTI-SOURCE DOMAINS 

Although the proposed EKL-TSK-FS can improve the performance of the KL-TSK-

FS [6], like the KL-TSK-FS it is only applicable for the scene of a single source 

domain. In the real world, it is common for several sources domains to be available 

for a target domain. In this section, the EKL-TSK-FS is extended for the above 

situation, and a multi-source domain based EKL-TSK-FS method (MS-EKL-TSK-FS) 

is proposed. 
5.1 Framework of the MS-EKL-TSK-FS 

For a multi-source domain scene, the expectation is that through collaborative 

learning and adaptive learning multiple source domains can improve the 

performance of the TSK FS that was obtained for the target domain. Through 

collaborative learning, multi-source domains can benefit from each other, which will 

be useful for the learning in the target domain. With adaptive learning, the influence 

of different source domains can be adjusted adaptively. Based on the above idea, a 

learning framework for the MS-EKL-TSK-FS is presented in Fig. 3. Based on this 

framework, an ensemble TSK FS will be obtained for the modeling task in the target 

domain. 
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Fig. 3 The framework of the MS-EKL-TSK-FS. 

5.2 Two learning mechanisms and the objective function for multi-source domain scene 

Based on the above framework, the following two learning mechanisms are 

introduced for the proposed MS-EKL-TSK-FS: (1) Multi-source adaptive learning, 

and (2) Multi-source collaborative learning. The former is used to adaptively adjust 

the influence of different source domains on the target domain, while the latter is 

used to realize the collaborative learning of different source domains and further 

boost the learning effect for the target domain. Details of the two mechanisms are 

given below. 

1) Multi-source adaptive learning: In order to realize multi-source adaptive 

learning, the following objective is proposed: 
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In (16), the first term is the weighted least-squares (LS) penalty terms for 

measuring the errors of the trained L  TSK FSs by transferring knowledge from 

different source domains. To easily solve the objective, the LS penalty terms in (16) 

have been used instead of the  -insensitive loss penalty terms used in the EKL-
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TSK-FS for single source learning. The second term is the negative Shannon entropy, 

which has been extensively used for the adaptive learning in many algorithms [52, 

53]. By integrating the first and second terms, the importance of different source 

domains to the target domain can be adjusted by learning the weights involved in the 

first two terms of (16). In (16), the last three terms are directly inherited from the 

single source learning method, i.e., the EKL-TSK-FS. 

2) Multi-source collaborative learning: Since several source domains are available, 

we hope that these source domains may realize collaborative learning to further 

improve the learning effect of the target domain. For this purpose, the following 

objective function is proposed: 
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In (17), when ,g lp , which stands for the consequent parameters that have been 

transferred from the l th source domain, is to be optimized for the target domain, 

,g hp  ( h l ), which denotes the consequent parameters that have been transferred 

from the other source domains, will be used to instruct the learning from the l th 

source domain. By using (17), the intention is for different source domains to help the 

target domain obtain consistent prediction results by learning from different source 

domains as far as possible. 

3) Objective function for multi-source domain scene: Based on the above two multi-

source transfer learning mechanisms, a final objective function for the MS-EKL-TSK-

FS is designed as follows:  
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By optimizing (18), the parameters ,g lp  ( 1, ,l L ), which correspond to the L  

TSK FS that are transferred from L  source domains, will be obtained along with the 

their weights kw . The final decision can then be given in an ensemble learning way, 

as follows: 
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Since the objective function in (18) is a non-convex problem, solving it is no trivial 

matter. Here, an alternate learning strategy is used to optimize (18). The main 

learning rules are given as follows: 

 

 

 

, ,

1

, 5 g , g , 2 3 4

1

5
g , g , , g , 3 0,

1 1, 1

( ) ( 2 ) 2

         2
1

g l g l

N
T

T
g l l i l i l d d l

i

N L N
T

l i l i i h g h i h g l

i h h l i

w

w y
L

   










   

 
     
 
 

 
   
 
 



  

p x x I Ω

x x p x p

.   (20) 

 

 

 

2

, g , 1

1

2

, g , 1

1 1

1
exp( )

2

1
exp( )

2

N
T

g l i l i

i
l L N

T

g h i h i

h i

y

w

y







 

 



 



 

p x

p x

.     (21) 



Enhanced Knowledge-Leverage Based TSK Fuzzy System Modeling for Inductive Transfer Learning           
39:13  
                                                                                                                                         

 

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 

In (20), 
, ,g l g ld dI  is an identity matrix of 

, ,g l g l
d d  where 

,g l
d  is the dimensionality of 

g ,i lx , and lΩ  is defined as in (9.b) for solving ,g lp . For detailed derivations of (20) 

and (21), please see Appendix 2. Based on the above analyses, the algorithm of the 

MS-EKL-TSK-FS can be obtained. Details of the algorithms are given in Appendix 3. 

6. EXPERIMENTAL STUDIES 

6.1 Experimental Settings 

The proposed EKL-TSK-FS is evaluated on both synthetic and real-world datasets by 

comparing it with the related methods. For clarity, the notations of the adopted 

datasets and their definitions are listed in Table 1, and the adopted algorithms for 

comparison are delineated in Table 2. The generalization performance index J in (22) 

is used in our experiments [33], 
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where N is the number of test data; iy  is the output for the ith test input; iy   is the 

fuzzy model output for the ith test input; and 
1

N

ii
y y N


 . The smaller the value of 

J, the better the generalization performance. 

In our experiments, a five-fold cross-validation strategy was used to determine the 

hyper parameters for all of the algorithms that were adopted based on the training 

datasets. All of the algorithms are implemented using MATLAB on a computer with 

an Intel Core 2 Duo P8600 2.4 GHz CPU and 2GB of RAM. 
Table 1 Notations of the adopted datasets with their definitions 

Notation Definitions 

D1 Dataset generated in the source domain. 

D2 Dataset generated in the target domain for training. 

D2_test Dataset generated in the target domain for testing. 
r  Relation parameter between the source domain and the target domain used to construct 

the synthetic datasets. 

http://www.baidu.com/link?url=X05xMrYbP4w_xQ2NJWqwh6166bhBA-PzEx4wJW-pSl_7iCSjzNsK6f5UEmJRgYkNwCbV8XwlSokplKngnTo7pk5gSDJ5qCWbwndeQ9ZWIP14pMyZD8b8KqMeR6_NwzjJ&wd=&eqid=e62b94460000103800000005565d73ca
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Table 2 The methods used for performance comparisons 

Algorithm Descriptions 

L2-TSK-FS (D1) [26] L2-TSK-FS trained by the data in the source domain. 
L2-TSK-FS (D2) [26] L2-TSK-FS trained by the data in the target domain. 

L2-TSK-FS (D1+D2) [26] 
L2-TSK-FS trained by the data in both the target domain and the 
source domain. 

ANFIS(D2) [37] 
An adaptive neuro-fuzzy inference systems training method of the 
Sugeno-type fuzzy system in the target domain. 

GENFIS2(D2) [37] 
A Sugeno-type fuzzy inference systems training method using 
subtractive clustering in the target domain. 

TSFS-SVR(D2) [38] 
TS-fuzzy system-based support vector regression in the target 
domain. 

FS-FCSVM (D2) [39] 
Fuzzy system learned through fuzzy clustering and a support vector 
machine in the target domain. 

TrAdaBoost (D1+D2) [40] 
Transfer AdaBoost based on the LS-SVR learner with the RBF-type 
kernel function for regression by the data in both the target domain 
and the source domain. 

HiRBF (D1+D2) [19] 
Bayesian task-level transfer learning for the non-linear regression 
method using the data in both the target domain and the source 
domain. 

KL-TSK-FS (D2+Knowledge) [6] Knowledge-leverage based TSK fuzzy system. 
EKL-TSK-FS (D2+Knowledge) The proposed enhanced KL-TSK-FS. 
MS-EKL-TSK-FS (D2+Knowledge) The proposed enhanced KL-TSK-FS for multiple source domains. 

 
6.2 Synthetic Datasets 

1) Generation of Synthetic Datasets: Synthetic datasets are constructed to cater to 

the scene studied in this paper with the following procedure: First, the function 

sin( ),Y x x  [ 10,10]x   is adopted to represent the source domain and to generate 

dataset D1. Second, the function sin( ) ,y x x r x     [ 10,10]x  is used to describe 

the target domain and to generate dataset D2 and D2_test as the training and 

testing datasets in the target domain. We use r  as a relation parameter between 

the source domain and the target domain to control the degree of similarity/difference 

between these two domains. When r =0, the two domains are identical. In particular, 

the lack of information (data insufficiency) is simulated by introducing intervals with 

missing data into the training set for the target domain. The settings to generate the 

synthetic datasets have been given in Table 3. 

The two related domains that were simulated, using the relation parameter 

0.7r  , are shown in Fig. 4(a). Meanwhile, based on the scene in Fig. 4(a), the data in 

the source domain and the training data in the target domain are shown in Fig. 4(b), 

along with the two intervals that are missing data, [-7, -4] and [3, 6], introduced in 

the target domain. 
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Fig. 4 Functions representing two different domains with the relation parameter 0.7r   and the 

corresponding sampling data from these domains: (a) functions representing the source domain (Y) and the 

target domain (y); (b) data in the source domain and the training data in the target domain with missing 

data in the intervals [-7,-4] and [3,6]. 
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Table 3 Details of the synthetic datasets 

Source domain Target domain 

Dataset Training set Testing set 

Size of dataset Interval with missing data Size of dataset Size of dataset 

400 [-7,-4] and[0,3] 140 200 

Relation parameter between the two domains: r =0.3, 0.5, 0.7and 0.9. 

 

2) Performance Comparison: In order to make a statistically meaningful 

comparison, experiments were conducted by taking samples from the source domain 

and the target domain, 80% of which were random. Each experiment was repeated 10 

times, and the statistical results with means and standard deviations were reported. 

To conduct an in-depth evaluation of the effectiveness of the proposed EKL-TSK-FS 

and the corresponding enhanced knowledge-leverage mechanisms, comparisons from 

four aspects were designed as follows: 

(i) The performance of the existing L2-TKS-FS-based methods and the proposed 

EKL-TSK-FS was compared. 

(ii) The effectiveness of the enhanced knowledge-leverage mechanisms was 

compared, i.e., enhanced learning for antecedents with transfer clustering and 

enhanced learning for consequents with MMD technology. 

(iii) The performance of the related non-transfer learning and transfer learning 

methods were compared. 

(iv) To evaluate the influence of the size of the training data in the target domain, 

the corresponding results that were obtained based on different percentages of data 

in D2 were compared. 

The results of different methods on the synthetic datasets are compared in Tables 

A1-A4 in Appendix 4. Detailed analyses of the above four aspects are presented below. 

(1) In Table A1, the generalization performance of the proposed EKL-TSK-FS 

method is obviously better than that of the two non-transfer L2-TSK-FS methods, i.e., 

L2-TSK-FS(D1) and L2-TSK-TSK(D2). In addition, compared with the L2-TSK-

FS(D1+D2), although the L2-TSK-FS was trained using both the data D2 in the 

target domain and the data D1 in the source domain, it was still unable to achieve 

better performance than the proposed EKL-TSK-FS. The above results tell us that 

the traditional L2-TSK-FS modeling method using incomplete datasets will suffer 

from weak generalization due to the absence of transfer learning abilities. Although 

the existing KL-TSK-FS has the ability to carry out transfer learning, its 

performance is weaker than the proposed EKL-TSK-FS method. The results reveal 

that the proposed EKL-TSK-FS with two enhanced knowledge-leverage mechanisms 

can further enhance the ability to carry out transfer learning when training a TSK 

FS model. 

(2) In order to evaluate the effectiveness of the two enhanced knowledge-leverage 

mechanisms of EKL-TSK-FS that were introduced, different combinations of 

strategies have been adopted to develop the TSK FS training methods. As shown in 

Table A2 in Appendix 4, FCM+KL-TSK-FS is the TSK FS knowledge-leverage 

transfer learning method in [6]; TFCM+KL-TSK-FS denotes the TSK FS transfer 

learning method using TFCM for the antecedents and the knowledge-leverage 

transfer learning mechanism in [6] for the consequents; FCM+MMD-KL-TSK-FS 

denotes the TSK FS transfer learning method using FCM for the antecedents in [6] 

and the proposed MMD based knowledge-leverage transfer learning mechanism for 

the consequents; EKL-TSK-FS used the proposed TFCM and the MMD based 

knowledge-leverage transfer learning mechanisms for the antecedents and the 
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consequents, respectively. Through the results in Table A2 in Appendix 4, we can 

clearly evaluate the effectiveness of the two knowledge-leverage mechanisms that 

were introduced. First, comparing the results between the third column and the 

fourth column in Table A2, we can see that the transfer clustering mechanism can 

cause the antecedents to have transfer learning abilities, accordingly improving the 

performance of the KL-TSK-FS. Similar results can be found by comparing the 

results of the third and fifth columns in Table A2. The corresponding results reveal 

that the MMD technology that was introduced enhanced the transfer learning 

abilities of the consequents in [6], compared with the previous knowledge-leverage 

mechanism. Finally, we can see that the best generalization performance appeared in 

the sixth column of Table A2, indicating that a TSK FS trained by simultaneously 

using the two knowledge-leverage mechanisms that were introduced can further 

improve the ability of transfer learning. 

(3) Comparing the results between the several non-transfer learning and transfer 

learning methods in Table A3 in Appendix 4, we find that in most cases the 

generalization performance of the transfer learning methods was better than that of 

the non-transfer learning methods. In particular, when the two knowledge-leverage 

based transfer learning methods, i.e. the KL-TSK-FS and the EKL-TSK-FS, are 

compared with other transfer learning methods, they demonstrated better 

generalization capability in the data-missing scene due to their knowledge-leveraged 

abilities. In addition, by further comparing the KL-TSK-FS with the EKL-TSK-FS, 

we can see from the performance index reported in Table A3 that the EKL-TSK-FS 

demonstrated stronger knowledge-leverage abilities than the KL-TSK-FS. The above 

observations also confirm that the proposed enhanced knowledge-leverage 

mechanism in the EKL-TSK-FS is better than that used in the KL-TSK-FS. 

(4) The corresponding results obtained with different percentages of data in D2 

( r =0.5) used for model training are listed in Table A4 in Appendix 4. In this 

experiment, the other settings are the same as in the other experiments analyzed 

above. The results show that as the size of the training data used in D2 increased, 

the performance of the proposed method improved accordingly. Compared with other 

existing related methods, the proposed method also demonstrates better or 

competitive performance. When the size of the training data used in D2 is small, the 

negative influence of the source domain is still avoided since the cross-validation 

strategy that was adopted can determine the appropriate balance parameters to 

effectively weaken the negative influence of the source domain. 

 
6.3 Real-world Datasets: Fermentation Process modeling Datasets 

1) Glutamic Acid Fermentation Process Modeling: The proposed method is further 

evaluated with a real-world dataset [5, 6, 26], by using it to model a biochemical 

process. The dataset that was adopted was collected from the glutamic acid 

fermentation process. This dataset includes six input variables, i.e., the fermentation 

time h, the glucose concentration S(h), the thalli concentration X(h), the glutamic 

acid concentration P(h), the stirring speed R(h), and the ventilation Q(h), with 

h 0,  2,  , 28  . The output variables of this data contain the glucose concentration 

S(h+2), the thalli concentration X(h+2), and the glutamic acid concentration P(h+2) 

at a future time h+2. The TSK FS model based on the biochemical process prediction 

model is illustrated in Fig. 5. All of the data in this dataset were collected from 21 

batches of fermentation processes, where each batch contained 14 effective input-

output data samples. In our experiment, in order to match the situation discussed in 
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this study, the data are divided into two domains, i.e. the source domain and the 

target domain, as described in Table 4. 
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Fig. 5 Illustration of the glutamic acid fermentation process prediction model based on the TSK FSs. 
 

Table 4 The fermentation process modeling dataset 

 
Data of the source domain 

(D1) 

Data of the target domain 

Training set (D2)* Testing set (D2_test) 

Number of batches 16 3 2 

Size of the dataset 224 30 28 

*For training set of the target domain, information is missing at time h = 6, 8, 10, 12. 

 
Table 5 Generalization performance (J) of the non-transfer and transfer learning methods in fermentation 

process modeling 
Part A: Non-transfer Learning Methods 

Output Index 
ANFIS 
(D2) 

GENFIS2 
 (D2) 

TSFS-
SVR (D2) 

FS-FCSVM 
(D2) 

L2-TSK-FS 
(D1) 

L2-TSK-FS 
(D2) 

S(h+2) 
mean 0.7129 0.5593 0.5536 0.5308 0.3068 0.5036 

std 0.1525 0.0706 0.0445 0.0578 0.0350 0.0669 

X(h+2) 
mean 3.9366 1.2386 1.3084 1.1637 0.7323 1.3718 

std 1.2685 0.1326 0.2632 0.1245 0.0746 0.2607 

P(h+2) 
mean 0.6451 0.4096 0.3806 0.3493 0.2563 0.3667 

std 0.2482 0.1063 0.0793 0.0537 0.0567 0.0511 

Part B: Transfer Learning Methods 

Output Index 
L2-TSK-

FS 

(D1+D2) 

TrAdBoos t 

(D1+D2) 

HiRBF 

(D1+D2) 

KL-TSK-FS 

(D2+Knowledge) 

EKL-TSK-FS 

(D2+Knowledge) 
 

S(h+2) 
mean 0.3898 0.3436 0.3171 0.1488 0.0824  

std 0.0368 0.0534 0.0424 0.0495 0.0142  

X(h+2) 
mean 0.9077 0.7703 0.7593 0.4891 0.3413  

std 0.0977 0.0247 0.0302 0.0129 0.0321  

P(h+2) 
mean 0.3088 0.2989 0.3276 0.1626 0.1206  

std 0.0476 0.0246 0.0472 0.0243 0.0136  

 
 

2) Performance Comparison: In order to make a statistically meaningful 

comparison, experiments based on the random partitioning of 21 batches of data with 

a ratio of 16:3:2 for the source domain, the target domain (training), and the target 

domain (test) were implemented. The statistical results are reported in Table 5.  

Table 5 shows that the results of the modeling of the EKL-TSK-FS method are 

better than those of the other methods. Again, this can be explained by the fact that 

the proposed method can effectively exploit not only the data in the target domain 

but also useful knowledge from the source domain in the training procedure for the 

modeling task in the target domain. Even if the data in the target domain are 

insufficient for training, the generalization capability of the TSK FS model obtained 

by the proposed EKL-TSK-FS method is not significantly degraded. Since a lack of 

data is becoming increasingly common due to the poor sensitivity of sensors in noisy 

environments, the above remarkable capacity of the EKL-TSK-FS is very valuable for 

biochemical process modeling. From the results in Table 5, we can see that although 
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the KL-TSK-FS method also has knowledge-leverage abilities, its generalization 

abilities are weaker than those of the proposed EKL-TSK-FS method due to its 

insufficient knowledge-leverage learning. Thus, the EKL-TSK-FS is more promising 

than the KL-TSK-FS for the practical application of fermentation process modeling. 

In Fig. A1 of Appendix 5, we also show the modeling effect of different methods in a 

certain run for a batch of test data. In particular, for the same batch of test data, the 

modeling effect of the adopted algorithms is shown in two subfigures, so as to make 

the modeling effect more visible. As shown in Fig. A1, the modeling effect for the 

output of S(h+2) on a certain batch of data in the test dataset was demonstrated 

using both Fig. A1(a) and Fig. A1(b). From Fig. A1 in Appendix 5 it seems that the 

performance of the proposed method is close to that of some existing methods. This 

may be due to the fact that the practical application is more complicated and, thus, 

the visual evaluation may not be objective. Indeed, from the objective quantitative 

indices in Table 5 we find that the proposed method achieved better performance. 

 
6.4 High Dimensional Mortgage Dataset 

A real-world mortgage dataset (http://funapp.cs.bilkent.edu.tr/DataSets/) was 

adopted to evaluate the performance of the proposed EKL-TSK-FS in the high 

dimensional dataset. Details of this experiment, and its results, can be found in 

Appendix 6. From the results reported in Table A5 in Appendix 6, we find that for 

high dimensional datasets, the proposed method still achieves a promising 

performance. For this observation, we want to give the following explanations: 

although many classical TSK FS modeling algorithms, such as ANFIS, are not 

suitable for high dimensional datasets, the challenge has to some extent been 

overcome in many recently developed TSK FS modeling methods. For example, in 

many methods the structural risk minimization technique has been introduced to 

improve the generalization ability of the trained TSK FS. In this study, the proposed 

EKL-TSK-FS also inherited this ability, and thus demonstrated promising 

performance in the high mortgage dataset. 
 

6.5 Comparison of Computation Cost 

In this subsection, the computational cost of the adopted methods is compared in 

several datasets. The experimental results are listed in Table A6 of Appendix 7. The 

experimental results show that the computation cost of the proposed EKL-TSK-FS 

falls in the middle of the ten adopted methods. 
 

6.6 Performance Evaluation in Multi-source Domain Scenes 

In this subsection, the performance of the MS-EKL-TSK-FS, which is an extended 

version of the EKL-TSK-FS for multi-source scenes, is evaluated on several multi-

source domain datasets. Here, only the results in the fermentation process modeling 

multi-source domain dataset are reported. More experimental results on other multi-

source datasets can be seen in Appendix 8. Details of the multi-source fermentation 

process modeling dataset are given in Table 6. 

 
Table 6 Constructed multi-source domain fermentation process modeling dataset 

 
Data of two source domains Data of the target domain 

D1-1 D2-2 Training set (D2)* Testing set (D2_test) 

Number of batches 8 8 3 2 

Size of the dataset 112 112 30 28 

*For the training set of the target domain, information is missing at time h = 6, 8, 10, 12. 
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To make a statistically meaningful comparison, the 21 batches of data were 

randomly partitioned with a ratio of 8:8:3:2 for the first source domain, the second 

source domain, the target domain (training), and the target domain (test), 

respectively. Each experiment was repeated 10 times. The statistical results with 

means and standard deviations are reported in Table 7. For single source based 

transfer learning methods, the results that were obtained based on different sources 

have been reported. The results in Table 7 show that although more promising 

results were obtained with the EKL-TSK-FS, a further improvement in performance 

can be achieved with its extended version, the MS-EKL-TSK-FS, or a competitive 

performance can at least be realized in comparison to that obtained by the single 

source based method when the best source domain is adopted. 
 
Table 7 Generalization performance (J) of the EKL-TSK-FS and the MS-EKL-TSK-FS in the multi-source 

fermentation process modeling dataset 

Dataset Source 
EKL-TSK-FS 

(D2+Knowledge) 

MS-EKL-TSK-FS 

(D2+Knowledge) 

S(h+2) 
D1-1 0.1241(0.0226)* 

0.1169(0.0109) 
D1-2 0.1260(0.0149) 

X(h+2) 
D1-1 0.3916(0.0356) 

0.3090(0.0174) 
D1-2 0.3605(0.0244) 

P(h+2) 
D1-1 0.1485(0.0213) 

0.1397(0.0157) 
D1-2 0.1579(0.0160) 

* In a(b), a and b denote the mean and standard deviation, respectively.  

7. CONCLUSIONS 

In this study, an enhanced knowledge-leverage based TSK fuzzy system modeling 

method was proposed in order to overcome the weaknesses of the knowledge-leverage 

based TSK fuzzy system modeling method. Two enhanced knowledge-leverage 

strategies were introduced to improve the transfer learning abilities for the learning 

of the antecedent parameters and consequent parameters, respectively. With these 

enhanced knowledge-leverage learning abilities, the proposed method showed a 

better modeling effect than existing knowledge-leverage based TSK fuzzy modeling 

methods and other related methods on synthetic and real-world datasets. 

Furthermore, the proposed method was extended to the multi-source domain scene. 

Despite the promising performance of the proposed method, there is still room for 

improvement. For example, more advanced transfer learning mechanisms are still 

needed for the development of more adaptive TSK fuzzy system modeling methods. 

The development of more advanced transfer learning mechanisms for other types of 

fuzzy systems such as ML-type fuzzy systems and type-2 fuzzy systems, is also very 

significant. Future work will focus on these issues. 
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