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Abstract

We consider a continuous-time Markowitz’s model with bankruptcy prohibition and convex cone portfolio constraints. The problem
is long-standing and difficult not only because of its theoretical significance, but also for its practical importance. We first transform
the problem into an equivalent one with bankruptcy prohibition but without portfolio constraints. The latter is then treated by
martingale theory. This approach allows one to directly present the semi-analytical expressions of the pre-committed efficient
mean-variance policy without using the viscosity solution technique but within the framework of cone portfolio constraints. The
numerical simulation also sheds light on results established in this paper.
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1. Introduction

Since Markowitz [14] published his seminal work on the mean-
variance portfolio selection nearly sixty years ago, the mean-
risk portfolio selection framework has become one of the most
prominent topics in quantitative finance. Recently, there has
been increasing interest in studying the dynamic mean-variance
portfolio problem with various constraints, as well as address-
ing their financial applications. Typical contributions include
[1], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13] and
[18]. The dynamic mean-variance problem can be treated in a
forward-looking way by starting with the initial state. In some
financial engineering problems, however, one needs to study
stochastic systems with constrained conditions, such as cone-
constrained policies. This naturally results in a continuous-time
mean-variance portfolio selection problem with constraints for
the wealth process (see [1]), and/or constraints for the policies
(see [10] and [13]). To the best of our knowledge, despite active
research efforts put in this direction in recent years, there has
barely any progress in the study of the continuous-time mean-
variance problem with the mixed restriction of bankruptcy pro-
hibition and convex cone portfolio constraints. In this paper,
we aim to address this long-standing and notoriously difficult
problem, not only for its theoretical significance, but also for its
practical importance. Our new approach, significantly different
from those developed in the existing literature, will establish a
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general theory for stochastic control problems with mixed con-
straints for both state and control variables.

Li, Zhou and Lim [13] considered a continuous-time mean-
variance problem with no-shorting constraints, while Cui, Gao,
Li and Li [3] developed its counterpart in discrete-time. Bi-
elecki, Jin, Pliska and Zhou [1] paved the way for investigat-
ing continuous-time mean-variance with bankruptcy prohibi-
tion using the martingale approach. Labbe and Heunis [11]
employed a duality method to analyze both the mean-variance
portfolio selection and mean-variance hedging problems with
general convex constraints. Czichowsky and Schweizer [5] fur-
ther studied cone-constrained continuous-time mean-variance
portfolio selection problem with the price processes being semi-
martingales. Meanwhile, Pham and Touzi [15] showed that in
a constrained market, no arbitrage opportunity is equivalent to
the existence of a supermartingale measure, under which the
discounted wealth process of any admissible policy is a super-
martingale (see [2] for a situation with upper bounds on pro-
portion positions). In particular, Xu and Shreve [16, 17] inves-
tigated a utility maximization problem with no-shorting con-
straints using the duality analysis. Recently, Heunis [8] consid-
ered the expected value of a general quadratic loss function of
the wealth in a more general constraint setting.

The existing theories and methods cannot easily handle the
continuous-time mean-variance problem with the mixed restric-
tion of bankruptcy prohibition and convex cone portfolio con-
straints. Based on our analysis, we find out that the market price
of risk in policy is actually independent of the wealth process.
This important finding allows us to overcome the difficulty of
the original problem and also makes the similar continuous-
time financial investment problem both interesting and practi-
cal. In fact, we first show that the problem with the mixed re-
striction is equivalent to one only with bankruptcy prohibition
via studying the Hamilton-Jacobi-Bellman (HJB) equations of
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the two problems. We then discuss the equivalent problem us-
ing the results obtained in [1].

The reminder of the paper is organized as follows. In Sec-
tion 2, we formulate a mean-variance problem with bankruptcy
prohibition and convex cone portfolio constraints. In Section
3, we transform our problem into an equivalent mean-variance
problem with bankruptcy prohibition but without convex cone
portfolio constraints. Then, in Section 4, we further derive the
pre-committed policy for the problem using the results derived
in [1]. In Section 5, we discuss properties of mean-variance
problems with different constraints. In Section 6, we present a
numerical simulation to illustrate results established in the pre-
vious sections. Finally, we summarize the paper in Section 7.

2. Problem Formulation and Preliminaries

2.1. Notation

We use the following notation throughout the paper:
M′ : the transpose of any matrix or vector M;

|a| : =

√∑
i a2

i for any vector a = (ai);

‖M‖ : =
√∑

i, j m2
i j for any matrix M = (mi j);

Rm : m dimensional real Euclidean space;
Rm

+ : the subset of Rm consisting of elements with
nonnegative components;

1A: the indicator function for an event A that is equal to 1
if A happens, and 0 otherwise.

The underlying uncertainty is generated on a fixed filtered
complete probability space (Ω,F,P, {F t}t>0) on which is de-
fined a standard {F t}t>0-adapted m-dimensional Brownian mo-
tion W(·) ≡ (W1(·), · · · ,Wm(·))′. Given a Hilbert spaceH with
the norm ‖ · ‖H , we can define a Banach space

L2
F

(a, b;H)=

{
ϕ(·)

∣∣∣∣∣ϕ(·) is an Ft-adapted,H-valued measurable
process on [a, b] and ‖ϕ(·)‖F < +∞

}
with the norm

‖ϕ(·)‖F =

(
E

[∫ b

a
‖ϕ(t, ω)‖2

H
dt

]) 1
2

.

2.2. Problem Formulation

Consider an arbitrage-free financial market where m+1 assets
are traded continuously on a finite horizon [0,T ]. One asset is
a bond, whose price S 0(t) evolves according to the ordinary
differential equationdS 0(t) = r(t)S 0(t) dt, t ∈ [0,T ],

S 0(0) = s0 > 0,

where r(t) is the interest rate of the bond at time t. The re-
maining m assets are stocks, and their prices are modeled by
the system of stochastic differential equationsdS i(t) = S i(t){bi(t) dt +

∑m
j=1 σi j(t) dW j(t)}, t ∈ [0,T ],

S i(0) = si > 0,

where bi(t) is the appreciation rate of the ith stock and
σi j(t) is the volatility coefficient at time t. Denote b(t) :=
(b1(t), · · · , bm(t))′ and σ(t) := (σi j(t)). We assume throughout
that r(t), b(t) and σ(t) are given deterministic, measurable, and
uniformly bounded functions on [0,T ]. In addition, we assume
that the non-degeneracy condition on σ(·), that is,

y′σ(t)σ(t)′y > δy′y, ∀ (t, y) ∈ [0,T ] × Rm, (1)

is satisfied for some scalar δ > 0. Also, we define the excess
return vector B(t) = (b1(t) − r(t), · · · , bm(t) − r(t)).

Suppose an agent has an initial wealth x0 > 0 and the to-
tal wealth of his position at time t is X(t). Denote by πi(t),
i = 1, · · · ,m, the total market value of the agent’s wealth in
the ith stock at time t. We call π(·) := (π1(·), · · · , πm(·))′ ∈
L2
F

(0,T ;Rm) a portfolio. We will consider self-financing port-
folios here. Then it is well-known that X(·) follows (see [18])dX(t) = [r(t)X(t) + π(t)′B(t)] dt + π(t)′σ(t) dW(t),

X(0) = x0.
(2)

An important restriction considered in this paper is the con-
vex cone portfolio constraints, that is π(·) ∈ C, where

C =
{
π(·) ∈ L2

F
(0,T ;Rm) : C(t)′π(t) ∈ Rk

+,∀ t ∈ [0,T ]
}
,

and C : [0,T ] 7→ Rm×k is a given deterministic and measurable
function. Another important restriction considered in this paper
is the prohibition of bankruptcy, namely

X(t) > 0, ∀ t ∈ [0,T ]. (3)

Meanwhile, borrowing from the money market (at the interest
rate r(·)) is still allowed; that is, the money invested in the bond
π0(·) = X(·) −

∑m
i=1 πi(·) has no constraint.

Definition 1. A portfolio π(·) is called an admissible control
(or portfolio) if π(·) ∈ C and the corresponding wealth process
X(·) defined in (2) satisfies (3). In this case, the process X(·)
is called an admissible wealth process, and (X(·), π(·)) is called
an admissible pair.

Remark 1. In view of the boundedness of σ(·) and the non-
degeneracy condition (1), we have that π(·) ∈ L2

F
(a, b;Rm) if

and only if σ(·)′π(·) ∈ L2
F

(a, b;Rm). The latter is often used to
define the admissible process in the literature, for instance, [1].

Remark 2. It is easy to show that both the set of all admissible
controls and the set of all admissible wealth processes are con-
vex. As a consequence, the set of all expected terminal wealths{
E[X(T )] : X(·) is an admissible process

}
is an interval.

Mean-variance portfolio selection refers to the problem of,
given a favorable mean level d, finding an allowable investment
policy (i.e., a dynamic portfolio satisfying all the constraints),
such that the expected terminal wealth E[X(T )] is d while the
risk measured by the variance of the terminal wealth

Var(X(T )) = E[X(T ) − E[X(T )]]2 = E[X(T ) − d]2

is minimized.
The following assumption is standard in the mean-risk port-

folio selection literature (see, e.g., Assumption 2.1 in [13]).
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Assumption 1. The value of the expected terminal wealth d
satisfies d > x0e

∫ T
0 r(s) ds.

Definition 2. The mean-variance portfolio selection problem is
formulated as the following optimization problem parameter-
ized by d:

min
π(·)

Var(X(T )) = E[X(T ) − d]2,

subject to


E[X(T )] = d,
π(·) ∈ C and X(·) > 0,
(X(·), π(·)) satisfies the equation (2).

(4)

An optimal control satisfying (4) is called an efficient strategy,
and (

√
Var(X(T )), d), where Var(X(T )) is the optimal value of

(4) corresponding to d, is called an efficient point. The set of
all efficient points, when the parameter d runs over all possible
values, is called the efficient frontier.

In the current setting, the admissible controls belong to a con-
vex cone, so the value of the expected terminal wealth may not
be arbitrary. Denote by V(d) the optimal value of the problem
(4). Denote

d̂ = sup
{
E[X(T )] : X(·) is an admissible process

}
.

Taking π(·) ≡ 0, we see that X(t) ≡ x0e
∫ t

0 r(s) ds is an admissible
process, so d̂ > E[X(T )] = x0e

∫ T
0 r(s) ds. The following nontriv-

ial example shows that it is possible that d̂ = x0e
∫ T

0 r(s) ds.

Example 1. Let B(·)=−C(·)χ, where χ is any positive vector of
appropriate dimension. Then for any admissible control π(·) ∈
C, we have π(·)′B(·) = −π(·)′C(·)χ 6 0. Therefore, by (2),

d(E[X(t)]) = (r(t) E[X(t)] + E[π(t)′B(t)]) dt 6 r(t) E[X(t)] dt,

which implies E[X(T )] 6 x0e
∫ T

0 r(s) ds. Hence d̂ = x0e
∫ T

0 r(s) ds.

Theorem 1. Assume that d̂ = x0e
∫ T

0 r(s) ds. Then the optimal
value of the problem (4) is 0.
Proof. From Assumption 1 and with d̂ = x0e

∫ T
0 r(s) ds, we ob-

tain that the only possible value of d is x0e
∫ T

0 r(s) ds. Note that
(X(t), π(t)) ≡ (x0e

∫ t
0 r(s) ds, 0) is an admissible pair satisfying

the constraint of the problem (4), so V(d) 6 E[X(T ) − d]2 =

E[x0e
∫ T

0 r(s) ds − d]2 = 0. The claim follows immediately. �

From now on we assume d̂ > x0e
∫ T

0 r(s) ds. Denote D = (0, d̂ )
and D+ =

[
x0e

∫ T
0 r(s) ds, d̂

)
.

Lemma 1. The value function V(·) is convex on D and strictly
increasing on D+.

Proof. Let (X(·), π(·)) and (X̃(·), π̃(·)) be any two admissible
pairs such that d1 = E[X(T )] and d2 = E[X̃(T )] are different
and both in D. For any 0 < α < 1, define (X̂(·), π̂(·)) =

(
αX(·) +

(1 − α)X̃(·), απ(·) + (1 − α)̃π(·)
)
. Then (X̂(·), π̂(·)) satisfies (2).

Moreover, π̂(·) ∈ C, X̂(·) > 0 and E[X̂(T )] = αd1 + (1 − α)d2 ∈

D, so (X̂(·), π̂(·)) is an admissible pair. Hence,

V (αd1 + (1 − α)d2) 6 Var(X̂(T )) = Var(αX(·) + (1 − α)X̃(·))

6 αVar(X(T )) + (1 − α) Var(X̃(T )),

by the convexity of square function. Because (X(·), π(·)) and
(X̃(·), π̃(·)) are arbitrary chosen, we conclude that

V (αd1 + (1 − α)d2) 6 αV(d1) + (1 − α)V(d2).

This establishes the convexity of V(·).
If π(·) ≡ 0, then X(T ) = x0e

∫ T
0 r(s) ds. This clearly implies that

V
(
x0e

∫ T
0 r(s) ds

)
= 0. It is known that if there are no portfolio

constraints (i.e. C(t) ≡ 0), then the optimal value is positive on
D+ (see [1]), so V(·) must be positive in the interior of D+. The
convexity of V(·) implies that it is strictly increasing on D+. �

Corollary 1. The value function V(·) is finite and continuous
on D.

Since the problem (4) is a convex optimization problem, the
mean constraint E[X(T )] = d can be dealt with by introducing
a Lagrange multiplier. As is well-known, the mean-variance
portfolio selection problem (4) is meaningful only when d ∈
D+. We will focus on this case from now on.

Because V(·) is convex on D and strictly increasing at any
d ∈

(
x0e

∫ T
0 r(s) ds, d̂

)
, there is a constant λ > 0 such that V(x) −

2λx > V(d) − 2λd for all x ∈ D. In this way the portfolio
selection problem (4) is equivalent to the following problem

min
π(·)

E[X(T ) − d]2 − 2λ(E[X(T )] − d),

subject to
{
π(·) ∈ C and X(·) > 0,
(X(·), π(·)) satisfies the equation (2),

or equivalently,

min
π(·)

E[X(T ) − (d + λ)]2,

subject to
{
π(·) ∈ C and X(·) > 0,
(X(·), π(·)) satisfies the equation (2)

in the sense that these problems have exactly the same optimal
pair if one of them admits one.

We plan to use dynamic programming to study the aforemen-
tioned problems, so we denote by V̂(t, x) the optimal value of
problem

min
π(·)

E[(X(T ) − (d + λ))2| F t, X(t) = x],

subject to
{
π(·) ∈ C and X(·) > 0,
(X(·), π(·)) satisfies the equation (2).

(5)

Lemma 2. The function V̂(t, ·) is strictly decreasing and con-
vex on

(
0, (d + λ)e−

∫ T
t r(s) ds] for every fixed t ∈ [0,T ].

Proof. The proof is similar to that of Lemma 1. We leave the
proof for the interested readers. �

Remark 3. As is well-known, if the initial wealth X(t) = x is
too big compared to the target d + λ, then the mean-variance
portfolio selection problem (5) is not meaningful. This makes
us focus on the small initials in

(
0, (d + λ)e−

∫ T
t r(s) ds].

Lemma 3. If X(·) is a feasible wealth process with X(t) = 0 for
some t ∈ [0,T ], then X(s) = 0 for all s ∈ [t,T ].
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Proof. Since X(·) is a feasible wealth process, we have X(s) >
0, for all s ∈ [t,T ]. If P(X(s) > 0) is positive for some s ∈ [t,T ],
then this leads to an arbitrage opportunity. �

Lemma 4. We have that V̂(t, 0) = (d + λ)2 and

V̂
(
t, (d + λ)e−

∫ T
t r(s) ds

)
= 0 for all t ∈ [0,T ].

Proof. If X(t) = 0, then X(T ) = 0 by Lemma 3. Hence,
V̂(t, 0) = (d + λ)2.

Suppose X(t) = (d + λ)e−
∫ T

t r(s) ds. Then taking π(·) ≡ 0, we

obtain that X(T ) = d +λ, so V̂
(
t, (d + λ)e−

∫ T
t r(s) ds

)
6 E[X(T )−

(d + λ)]2 = 0. The proof is complete. �

3. An Equivalent Stochastic Problem

Since the Riccati equation approach to solve the problem (5)
is not applicable in this case, we consider the corresponding
Hamilton-Jacobi-Bellman (HJB) equation. This is the follow-
ing partial differential equation:
Lv = 0, (t, x) ∈ S,

v
(
t, (d + λ)e−

∫ T
t r(s) ds

)
= 0, v(t, 0) = (d + λ)2, 0 6 t 6 T,

v(T, x) =
(
x − (d + λ)

)2
, 0 < x < d + λ,

(6)
where

Lv = vt(t, x)+ inf
π∈Ct

{
vx(t, x)[r(t)x + π′B(t)]+

1
2

vxx(t, x)π′σ(t)σ(t)′π
}
,

S =

{
(t, x) : 0 6 t < T, 0 < x < (d + λ)e−

∫ T
t r(s) ds

}
,

and Ct = {z ∈ Rm : C(t)′z ∈ Rk
+}.

We need the following technical result.

Lemma 5. Suppose the problem (6) admits a solution v ∈
C1,2(S) which is convex in the second argument. Then v 6
(d + λ)2 on S.
Proof. By the convexity of v in the second argument, we have,
for each (t, x) ∈ S,

v(t, x) 6 max
{
v(t, 0), v

(
t, (d + λ)e−

∫ T
t r(s) ds

)}
= (d + λ)2.

The proof is complete. �
Now we are ready to establish the following verification the-

orem:

Theorem 2. Suppose the problem (6) admits a solution v ∈
C1,2(S) which is convex in the second argument. Then V̂ = v
on S.
Proof. Without loss of generality, we shall show V̂(0, x0) =

v(0, x0). Let (X(·), π(·)) be an admissible pair. Define

τ = inf
{
t ∈ [0,T ] : X(t) = 0 or X(t) = (d + λ)e−

∫ T
t r(s) ds

}
∧ T,

τN = sup
{

t ∈ [0,T ] :
∫ t

0
‖vx(s, X(s))π(s)′σ(s)‖2 ds 6 N

}
∧ T.

Applying Itô’s Lemma to v(t, Xt) yields

v(τ ∧ τN , X(τ ∧ τN))

=

∫ τ∧τN

0

(
vt(t, X(t)) + vx(t, X(t))[r(t)X(t) + π(t)′B(t)]

+
1
2

vxx(t, X(t))π(t)′σ(t)σ(t)′π(t)
)

dt

+

∫ τ∧τN

0
vx(t, X(t))π(t)′σ(t) dW(t) + v(0, x0)

>
∫ τ∧τN

0
Lv(t, X(t)) dt +

∫ τ∧τN

0
vx(t, X(t))π(t)′σ(t) dW(t)+v(0, x0)

>
∫ τ∧τN

0
vx(t, X(t))π(t)′σ(t) dW(t) + v(0, x0).

By taking expectation on both sides, we obtain

E[v(τ ∧ τN , X(τ ∧ τN))]

> E
[∫ τ∧τN

0
vx(t, X(t))π(t)′σ(t) dW(t) + v(0, x0)

]
= v(0, x0).

Because v is continuous, and τ∧ τN and X(τ∧ τN) are both uni-
formly bounded, by letting N → ∞ and applying the dominated
convergence theorem, we get

E[v(τ, X(τ))] > v(0, x0). (7)

If X(τ) = 0, then X(T ) = 0 by Lemma 3. Applying Lemma 5
yields

E[v(T, X(T ))|Fτ]1{X(τ)=0} = (d + λ)21{X(τ)=0}

> v(τ, X(τ))1{X(τ)=0}. (8)

If X(τ) = (d + λ)e−
∫ T
τ

r(s) ds, then v(τ, X(τ)) = 0. This trivially
leads to

E[v(T, X(T ))|Fτ]1
{X(τ)=(d+λ)e−

∫ T
τ r(s) ds

}

> v(τ, X(τ))1
{X(τ)=(d+λ)e−

∫ T
τ r(s) ds

}
. (9)

If 0 < X(τ) < (d + λ)e−
∫ T
τ

r(s) ds, then τ = T by its definition.
Hence,

E[v(T, X(T ))|Fτ]1
{0<X(τ)<(d+λ)e−

∫ T
τ r(s) ds

}

= E[v(τ, X(τ))|Fτ]1
{0<X(τ)<(d+λ)e−

∫ T
τ r(s) ds

}

= v(τ, X(τ))1
{0<X(τ)<(d+λ)e−

∫ T
τ r(s) ds

}
. (10)

From (8), (9) and (10), we obtain

E[v(T, X(T ))|Fτ] > v(τ, X(τ)).

Together with (7), it leads to

E[v(T, X(T ))] > E[v(τ, X(τ))] > v(0, x0).

Note v(T, X(T )) = (X(T ) − (d + λ))2, so V̂(0, x0) > v(0, x0).
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On the other hand, define a portfolio

π(t) =



0, if X(t) = 0;

0, if X(t) = (d + λ)e−
∫ T

t r(s) ds;
argmin
π∈Ct

{
vx(t, X(t))π′B(t) + 1

2 vxx(t, X(t))π′σ(t)σ(t)′π
}
,

otherwise.

It is not hard to see that (X(·), π(·)) is an admissible pair. Then
we see that (7), (8), (9) and (10) become identities, so

E[X(T ) − (d + λ)]2 = E[v(T, X(T ))] = E[v(τ, X(τ))] = v(0, x0).

This implies that V̂(0, x0) 6 v(0, x0). The proof is complete. �
Before going further, we need the following key result.

Lemma 6. Suppose A ∈ Rm×k, B ∈ Rm, C = {z ∈ Rm : A′ z ∈
Rk

+}, and D ∈ Rm×m is invertible. Then, for α > 0, the following
two convex optimization problems

min
z∈C

1
2 z′ D D′ z − αB′ z

and

min
z∈Rm

1
2 z′ D D′ z − αz̄′ D D′ z (11)

have the same optimal solution αz̄ and the same optimal value
− 1

2α
2z̄ D′ D z̄, where

z̄ = argmin
z∈C

‖D′ z − D−1 B ‖.

Proof. Because C is a cone, it is sufficient to study the case
α = 1. From the definition, z̄ solves

min
z∈C

1
2 z′ D D′ z − B′ z = min

z∈Rm, A′z∈Rk
+

1
2 z′ D D′ z − B′ z,

which is equivalent to

min
z∈Rm

1
2 z′ D D′ z − B′ z − ν′ A′ z, (12)

for some Lagrangian multiplier ν ∈ Rk. This problem clearly
admits another solution (D D′)−1(B + A ν). Due to the unique-
ness of its solution, we conclude z̄ = (D D′)−1(B + A ν), and
hence D D′ z̄ = B + A ν. This implies that

1
2 z′ D D′ z − B′ z − ν′ A′ z = 1

2 z′ D D′ z − z̄′ D D′ z.

Hence the problem (12) is just the problem (11) with α = 1.
This completes proof. �

Remark 4. By Lemma 2, we know that the solution V̂(t, ·) to
the problem (6) is strictly decreasing and convex on

(
0, (d +

λ)e−
∫ T

t r(s) ds] for every t ∈ [0,T ]. Therefore, vx(t, x) < 0 and
vxx(t, x) > 0 for every t ∈ [0,T ].

We now return to the HJB equation (6). Let

z̄(t) := argmin
z∈Ct

‖σ(t)′z − σ(t)−1B(t)‖. (13)

By Lemma 6 with α = −
vx(t,x)
vxx(t,x) > 0, the infimum in the HJB

equation (6) is attained at

π = −
vx(t, x)
vxx(t, x)

z̄(t) ∈ Ct .

Again by Lemma 6, the HJB equation (6) is equivalent to
vt(t, x) + inf

π∈Rm

{
vx(t, x)[r(t)x + π′B̂(t)]

+ 1
2 vxx(t, x)π′σ(t)σ(t)′π

}
= 0, (t, x) ∈ S,

v
(
t, (d + λ)e−

∫ T
t r(s) ds

)
= 0, v(t, 0) = (d + λ)2, 0 6 t 6 T,

v(T, x) =
(
x − (d + λ)

)2
, 0 < x < d + λ,

where B̂(t) = σ(t)σ(t)′z̄(t).
On the other hand, the above equation is the HJB equation

associated with the following problem

min
π(·)

E[(X(T ) − (d + λ))2],

subject to
{
π(·) ∈ Ĉ and X(·) > 0,
(X(·), π(·)) satisfies the equation (14),

where Ĉ =
{
π(·) : π(·) ∈ L2

F
(0,T ;Rm)

}
, anddX(t) = [r(t)X(t) + π(t)′B̂(t)] dt + π(t)′σ(t) dW(t),

X(0) = x0.
(14)

Removing the Lagrange multiplier, the above problem has the
same optimal control as the following mean-variance problem
without constraints on the portfolio:

min
π(·)

Var(X(T )) = E[X(T ) − d̃]2,

subject to


E[X(T )] = d̃,
π(·) ∈ Ĉ and X(·) > 0,
(X(·), π(·)) satisfies the equation (14),

for some d̃. Because the optimal solution to the above problem
is also optimal to the problem (4), their means of the optimal
terminal wealths should be the same, namely d̃ = d. Therefore,
we conclude that the problem (4) and the following problem

min
π(·)

Var(X(T )) = E[X(T ) − d]2,

subject to


E[X(T )] = d,
π(·) ∈ Ĉ and X(·) > 0,
(X(·), π(·)) satisfies the equation (14),

(15)

have the same optimal solution.
The above mean-variance with bankruptcy prohibition prob-

lem was fully solved in [1], so is our problem (4). Moreover,
these two problems have the same efficient frontier.

4. Optimal Portfolio

The result of the martingale pricing theory states that the set of
random terminal payoffs that can be generated by the admis-
sible trading strategies corresponds to the set of nonnegative
FT -measurable random payoffs X(T ) which satisfy the budget
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constraint E[φ(T )X(T )] 6 x0. Therefore, the dynamic problem
(15), of choosing an optimal trading strategy π(·), is equivalent
to the static problem of choosing an optimal payoff X(T ):

min Var(X(T )) = E[X(T ) − d]2,

subject to


E[X(T )] = d,
E[φ(T )X(T )] = x0,
X(T ) > 0,

(16)

where φ(·) is the state price density, or stochastic discount fac-
tor, defined by{

dφ(t) = φ(t){−r(t) dt − θ̂(t)′ dW(t)},
φ(0) = 1,

and θ̂(t) = σ(t)−1B̂(t) = σ(t)′z̄(t).
The above static optimization problem (16) was solved in [1].

The optimal random terminal payoff is X∗(T ) = (µ − γφ(T ))+,
where x+ = max{x, 0}, and (µ, γ) ∈ R2 solves the system of
equations E[(µ − γφ(T ))+] = d, E[φ(T )(µ − γφ(T ))+] = x0.
That is,

µN
( ln

(
µ
γ

)
+
∫ T

0 [r(s)+ 1
2 |̂θ(s)|2] ds√∫ T

0 |̂θ(s)|2ds

)
−γe−

∫ T
0 r(s) dsN

( ln
(
µ
γ

)
+
∫ T

0 [r(s)− 1
2 |̂θ(s)|2] ds√∫ T

0 |̂θ(s)|2ds

)
= d,

µN
( ln

(
µ
γ

)
+
∫ T

0 [r(s)− 1
2 |̂θ(s)|2] ds√∫ T

0 |̂θ(s)|2ds

)
−γe−

∫ T
0 [r(s)−|̂θ(s)|2] dsN

( ln
(
µ
γ

)
+
∫ T

0 [r(s)− 3
2 |̂θ(s)|2] ds√∫ T

0 |̂θ(s)|2ds

)
= x0e

∫ T
0 r(s) ds,

(17)

where N(y) = 1
√

2π

∫ y
−∞

e−
t2
2 dt is the cumulative distribution

function of the standard normal distribution.
The investor’s optimal wealth is given by

X∗(t) = E
[
φ(T )
φ(t)

X∗(T )
∣∣∣∣∣Ft

]
= f (t, φ(t)), (18)

where

f (t, y) = µN
(
−d2(t, y)

)
e−

∫ T
t r(s) ds−γN

(
−d1(t, y)

)
ye−

∫ T
t [2r(s)−|̂θ(s)|2] ds,

and

d1(t, y) :=
ln

( γ
µ
y
)

+
∫ T

t [−r(s) + 3
2 |̂θ(s)|2] ds√∫ T

t |̂θ(s)|2ds
,

d2(t, y) := d1(t, y) −

√∫ T

t
|̂θ(s)|2 ds.

Applying Itô’s lemma to f (·, φ(·)) yields

dX∗(t) = d f (t, φ(t))

= {· · · } dt + γθ̂(t)N
(
− d1(t, φ(t))

)
φ(t)e−

∫ T
t [2r(s)−|̂θ(s)|2]ds dW(t).

Comparing this to the wealth evolution equation (14), we obtain
the efficient portfolio

π∗(t) = γ(σ(t)σ(t)′)−1B̂(t)N
(
− d1(t, φ(t))

)
φ(t)e−

∫ T
t [2r(s)−|̂θ(s)|2] ds.

(19)

Remark 5. The above results for the efficient portfolio and the
associated wealth process were first derived in [1].

Based on the above analysis, we have the following result.

Theorem 3. Assume that
∫ T

0 |̂θ(s)|2 ds > 0. Then there exists
a unique efficient portfolio for (4) corresponding to any given
d > x0e

∫ T
0 r(s) ds. Moreover, the efficient portfolio is given by

(19) and the associated wealth process is expressed by (18).

5. Special Models

The mean-variance portfolio selection model, like many
other stochastic optimization models, is based on averaging
over all the possible random scenarios. We now discuss how
the model (with different constraints) could guide the real in-
vestment in practice.

5.1. Bankruptcy Prohibition with Unconstrained Portfolio
The mean-variance unconstrained portfolio problem with

bankruptcy prohibition is an interesting but practically relevant
model. In this case, k = m and π(·) ∈ L2

F
(0,T ;Rm). It follows

from (13) that

z̄(t) = argmin
z∈Rm

‖σ(t)′z − σ(t)−1B(t)′‖ = (σ(t)σ(t)′)−1B(t)′.

Therefore, B̂(t) = σ(t)σ(t)′z̄(t) = B(t).

Proposition 1. Assume that
∫ T

0 |̂θ(s)|2 ds > 0. Then there exists
a unique efficient portfolio for this mean-variance model corre-
sponding to any given d > x0e

∫ T
0 r(s) ds. Moreover, the efficient

portfolio is given by (19) and the associated wealth process is
expressed by (18), where B̂(t) = B(t) and θ̂(t) = σ(t)−1B(t).

The proof of Proposition 1 can be found in [1].

5.2. Bankruptcy Prohibition with No-shorting Constraint
The mean-variance portfolio problem with mixed no-

bankruptcy and no-shorting constraints is another interesting
and challenging model. In this case, k = m and π(·) ∈
L2
F

(0,T ;Rm
+ ). It follows from (13) that

z̄(t) = argmin
z∈Rm

+

‖σ(t)′z − σ(t)−1B(t)′‖ = (σ(t)σ(t)′)−1(B(t) + λ(t))′,

where

λ(t) := argmin
y∈Rm

+

‖σ(t)−1y + σ(t)−1B(t)′‖. (20)

Therefore, B̂(t) = σ(t)σ(t)′z̄(t) = B(t) + λ(t).

Proposition 2. Assume that
∫ T

0 |̂θ(s)|2 ds > 0. Then there ex-
ists a unique efficient portfolio for this mean-variance model
corresponding to any given d > x0e

∫ T
0 r(s) ds. Moreover, the

efficient portfolio is given by (19) and the associated wealth
process is expressed by (18), where B̂(t) = B(t) + λ(t) and
θ̂(t) = σ(t)−1(B(t) + λ(t)).
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5.3. No-shorting Constraint without Bankruptcy Prohibition
The mean-variance portfolio problem with no-shorting con-

straints is also an important model in financial investment. In
this case, k = m and π(·) ∈ L2

F
(0,T ;Rm

+ ). We again have
B̂(t) = B(t) + λ(t), where λ(t) is determined by (20).

In particular, d1(t, φ(t)) = −∞ and d2(t, φ(t)) = −∞, that is,
N
(
− d1(t, φ(t))

)
= N

(
− d2(t, φ(t))

)
= 1. The investor’s optimal

wealth is the stochastic process

X∗(t) = µe−
∫ T

t r(s) ds − γφ(t)e−
∫ T

t [2r(s)−|̂θ(s)|2] ds (21)

and

π∗(t) = γ(σ(t)σ(t)′)−1B̂(t)φ(t)e−
∫ T

t [2r(s)−|̂θ(s)|2] ds (22)

where µ=
E[φ(T )2]d−x0 E[φ(T )]

Var(φ(T )) =
d−x0e

∫ T
0 [r(s)−|̂θ(s)|2] ds

1−e−
∫ T
0 |̂θ(s)|2 ds

, γ =
E[φ(T )]d−x0

Var(φ(T )) =(
d−x0e

∫ T
0 r(s) ds

)
e
∫ T
0 [r(s)−|̂θ(s)|2] ds

1−e−
∫ T
0 |̂θ(s)|2 ds

and θ̂(t) = σ(t)−1(B(t) + λ(t)).

Proposition 3. Assume that
∫ T

0 |̂θ(s)|2 ds > 0. Then there exists
a unique efficient portfolio for this mean-variance model corre-
sponding to any given d > x0e

∫ T
0 r(s) ds. Moreover, the efficient

portfolio is given by (22) and the associated wealth process is
expressed by (21).

The same result can be found in [13].

6. A Numerical Example

In this section, a numerical example with constant coeffi-
cients is presented to demonstrate the results in the previous
sections. Let m = 3. The interest rate of the bond and the ap-
preciation rate of the m stocks are r = 0.03 and (b1, b2, b3)′ =

(0.12, 0.15, 0.18)′, respectively, and the volatility matrix is

σ =

 0.2500 0 0
0.1500 0.2598 0
−0.2500 0.2887 0.3227

 .
Then θ=σ−1B= (0.3600, 0.2540, 0.5164)′. In addition, we sup-
pose that the initial prices of stocks are (S 1(0), S 2(0), S 3(0)) =

(1, 1, 1)′ and the initial wealth is X(0) = 1.

6.1. Bankruptcy Prohibition with Unconstrained Portfolio
In this subsection, we determine the optimal portfolio and the

corresponding wealth process in Subsection 5.1 for the above
market data. According to (17), we obtain the numerical results
µ = 1.5046 and γ = 0.3154. Hence, the wealth process (18)
can be expressed by

X∗(t)=µN
(
−d2(t, φ(t))

)
e−r(T−t)−γN

(
−d1(t, φ(t))

)
φ(t)e−[2r−|θ̂|2](T−t),

(23)

where d1(t, φ(t))=
ln
(
γ
µ φ(t)

)
+[−r+ 3

2 |θ̂|
2](T−t)

√
|θ̂|2(T−t)

, d2(t, φ(t)) = d1(t, φ(t))

−
√
|θ̂|2(T − t), φ(t) = e−[r+ 1

2 |θ̂|
2](T−t)−θ̂(W(T )−W(t)), θ̂ = θ = σ−1B =

(0.3600, 0.2540, 0.5164)′. The efficient portfolio is given by

π∗(t) = γ(σσ′)−1B̂N
(
−d1(t, φ(t))

)
φ(t)e−[2r−|θ̂|2](T−t). (24)

where (σσ′)−1B̂ = (σσ′)−1B = (3.5200, − 0.8000, 1.6000)′.
In particular, the policy of investing in the second stock π∗2(t)

is shorting.

6.2. Bankruptcy Prohibition with No-shorting Constraint
From Subsection 6.1, we see that there exists a shorting case

in policy (24). Using (20), we obtain

λ = argmin
y∈Rm

+

‖σ−1y + σ−1B′‖ = (0, 0.03, 0)′.

Hence, θ̂ = σ−1B̂ = σ−1(B + λ) = (0.3600, 0.3695, 0.4131)′,

(σσ′)−1B̂ = (σσ′)−1(B + λ) = (2.72, 0, 1.28)′.
(25)

According to (17), we obtain the numerical results µ = 1.5253
and γ = 0.3368. Hence, the wealth process (18) can be ex-
pressed by

X∗(t)=µN
(
−d2(t, φ(t))

)
e−r(T−t)−γN

(
−d1(t, φ(t))

)
φ(t)e−[2r−|θ̂|2](T−t).

(26)

The efficient portfolio is presented by

π∗(t) = γ(σσ′)−1B̂N
(
−d1(t, φ(t))

)
φ(t)e−[2r−|θ̂|2](T−t). (27)

Note that the policy in (27) is always non-negative, namely,
a no-shorting policy.

6.3. No-shorting Constraint without Bankruptcy Prohibition
In this subsection, we present the optimal no-shorting policy

without bankruptcy prohibition of Subsection 5.3 and its cor-
responding wealth process. According to (22), we find the nu-
merical results µ = 1.5095 and γ = 0.3190. Hence, the wealth
process (18) can be expressed by

X∗(t) = µe−r(T−t) − γφ(t)e−[2r−|θ̂|2](T−t) (28)

and the portfolio is

π∗(t) = γ(σσ′)−1B̂φ(t)e−[2r−|θ̂|2](T−t), (29)

where θ̂ and (σσ′)−1B̂ are given by (25).
Note that the policy in (29) is non-negative, namely, a no-

shorting policy. However, its corresponding wealth (28) is pos-
sibly negative. We shall further discuss this point by simulation
results in the following subsection.

6.4. Simulation
In this subsection, we further analyze via simulation how the

properties of the optimal portfolio strategies (24), (27) and (29)
change, and compare their wealth processes (23), (26) and (28).
We set the target wealth d = 1.2X(0).

Figure 1: Prices of stocks
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Figure 2: Policy: Bankruptcy Prohibition & Shorting Allowed

Figure 3: Policy: Bankruptcy Prohibition & No-shorting

Figure 4: Policy: Bankruptcy Allowed & No-shorting

Figure 5: Optimal Wealth Processes

Figure 6: Comparison of Optimal Wealth Processes

According to the three scenarios in Figure 1, we plot the op-
timal portfolio strategies (24), (27) and (29) under different re-
strictions in Figure 2, Figure 3 and Figure 4. If shorting is al-
lowed, then (σσ′)−1B̂ = (3.5200, − 0.8000, 1.6000)′ and the
optimal policy is a (positive) multiple of this vector. Hence, we
see the shorting policy of the second stock in Figure 2. If short-
ing is not allowed, then (σσ′)−1B̂ = (2.72, 0, 1.28)′. There-
fore, compared to the scenarios 1 and 3, there is no trading of
the second stock over the whole trading horizon in Figure 3 and
Figure 4. In addition, we plot their corresponding wealth pro-
cesses under different restrictions in Figure 5, and we finally
combine all wealth processes into one picture in Figure 6.

7. Conclusion

We studied the continuous-time mean-variance portfolio se-
lection with mixed restrictions of bankruptcy prohibition and
convex cone portfolio constraints. The main contribution is
that we developed the semi-analytical expression for the pre-
committed efficient mean-variance policy without the viscos-
ity solution technique. A natural extension of our result
to continuous-time linear-quadratic cone constrained controls
with constrained states is straightforward, at least conceptually.
On the other hand, if some of the market coefficients are ran-
dom, the problem becomes more complicated. As pointed out
by many researchers, trading costs are a major concern in active
portfolio management, so it is a practically important and chal-
lenging problem to incorporate trading costs into our model. As
is well-known, the existence of trading costs will fundamentally
change the investment policy (see, e.g., [6]), we will address
this fact in future works.
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