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Highlights 

Singular Value Decomposition was applied to evaluate the temporal and spatial 

variations. 

Monthly visibility and AOT variability have large differences. 

Variations of inter-annual visibility and AOT agreed well over China. 

Aerosol vertical distribution contribute significantly in the relationship between AOT 

and visibility. 
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Abstract 

Although visibility is a widely-used indicator to quantify the aerosol loadings, only 

a few studies have been analyzed the representativeness of visibility in deriving Aerosol 

Optical Thickness (AOT). In this paper, ground-based visibility, MODerate-resolution 

Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer 

(MISR) monthly AOT products between July 2002 and December 2014 were analyzed 

in order to extract the dominant modes of variability using the Singular Value 

Decomposition (SVD) method. The method has significant merit to reduce data 

dimension and examine both spatial and temporal variability simultaneously. Results 

indicated that the satellite retrieved AOTs agreed well with ground-based visibility in 

terms of inter-annual variability. The correlation coefficients in the first deseasonalized 

mode are greater than 0.65 between visibility and satellite AOT products. However, 

large differences were observed in the seasonal variability between ground-based 

visibility and AOT. In addition, Aerosol vertical distribution from LIdar climatology of 

Vertical Aerosol Structure for space-based lidar simulation studies (LIVAS) and cloud 

data from ground-based meteorological station were used to investigate the seasonal 

variability disagreement. The AOT values derived from LIVAS extinction coefficients 

between 0 and 500 m above surface have a stronger relationship with visibility, than 

total column AOT with visibility. It also indicates that seasonal variation of aerosol 

vertical distribution is the main cause of the disagreement between two parameters, and 

the uncertainties of satellite products also contribute to the disagreement. Results in this 

study highlighted that the visibility observation could only be used to depict the inter-

annual AOT and more ancillary information could be used for studying seasonal AOT 

variation. 

  



1. Introduction 

 Aerosols contain a wide range of particles exhibiting varying kinds of shapes, 

sizes, compositions, and optical properties in air (Hinds, 1999). Aerosols can heat the 

atmosphere and cool the earth surface by absorbing and scattering solar radiation 

(Stocker, 2014). To date, aerosol particles affecting aerosol-cloud interactions remain 

one of the largest uncertainties in climate change studies (Field et al., 2014). There is a 

lack of long-term Aerosol Optical Thickness (AOT) data (e.g., more than 40 years), and 

the observation networks available only include sparse sites, which become a major 

issue in analyzing the climatic effects from aerosols.  

Atmospheric visibility has been used as an indicator of air quality at different 

ground meteorological stations worldwide (Bäumer et al., 2008; Wang et al., 2009; Li 

et al., 2015a). In several climatic studies, visibility data were interpreted and correlated 

with AOT for long-term analyzes (Wang et al., 2009). For example, Elterman (1970) 

developed relationships between surface particulate matter (PM) and vertical 

attenuation by deriving an exponential decrease of aerosols with height. Qiu and Lin 

(2001) derived AOT from visibility by modifying the Elterman method, based on 

surface water vapor pressure. Lin et al. (2014) investigated AOT over East China using 

visibility and vertical profiles of aerosol from a chemical transport model. Wu et al. 

(2014) modified the Elterman method by coupling with new parameters. García et al. 

(2015) reconstructed daily AOT from visibility and meteorological data using artificial 

neural network method. 

Although some promising results of AOT derivation were obtained using visibility 

data, some uncertainties still exist. For example, in the case of multiple or elevated 

aerosol layers, surface observations may not be able to represent the total aerosol 

loadings in the atmosphere (Li et al., 2015b). Toth et al. (2014) found that surface PM2.5 

concentrations in the eastern U.S. had the best correlation with the dry mass Cloud-

Aerosol Lidar with Orthogonal Polarization (CALIOP) extinction at 200 to 300 m. 

Typically, aerosol extinction coefficients at the surface are a common parameter for 



deriving visibility by a simple inverse formula, named Koschmieder’s equation 

(Koschmieder, 1925). However, Koschmieder’s equation is applicable only under 

specific atmospheric conditions (Horvath, 1971; Yuan et al., 2006; Lee et al., 2014) and 

the equation may also bring some discrepancies between AOT and visibility. Meyer et 

al. (1991) illustrated that Koschmieder’s equation generally underestimated the visual 

range using the default value. The range of constant used in the equation is varied from 

1.8 to 3.912 in different visibility stations among different applications (Ozkaynak et 

al., 1985; Yuan et al., 2006; Kessner et al., 2013). 

Many studies have investigated the relationship of AOT and visibility on hourly 

and daily scales at a few ground observation stations, but not for both spatial and 

temporal variations on significantly large scales. Random observed noise may comprise 

such limited studies (So et al., 2005; Chan, 2009; Zhao et al., 2015). In this study, 

MODIS (Terra and Aqua) and Multi-angle Imaging SpectroRadiometer (MISR) AOT 

datasets were obtained and used to estimate the relationship between satellite-retrieved 

AOT and ground-based visibility over China. The Singular Value Decomposition (SVD) 

approach was adopted in order to isolate patterns of different variabilities and reduce 

the noise level in the relationship. The primary objective of this study is to investigate 

the representativeness of visibility for estimating columnar AOT in China. This paper 

is organized as follows. Descriptions of the data used and the methodology are outlined 

in Section 2. In Section 3, spatial and temporal variability between surface visibility 

and satellite AOT and the influencing factors were examined. Section 4 summarizes the 

main conclusions and findings.  

2.  Data and method 

2.1 Satellite retrieved AOT 

MODerate-resolution Imaging Spectroradiometer (MODIS) Collection 06 

monthly AOT products (MYD08 for Aqua and MOD08 for Terra) were obtained from 

the NASA Goddard Space Flight Center, archived database 

http://ladsweb.nascom.nasa.gov/data/search.html


(http://ladsweb.nascom.nasa.gov/data/search.html). MODIS AOTs were calculated 

using three different algorithms for different regions: one algorithm for ocean and two 

for land — the Deep-Blue (DB) algorithms (Hsu et al., 2004) and Dark-Target (DT) 

(Levy et al., 2010). The retrieval errors of DT and DB AOT are within ±0.05±0.15×

AOT (Levy et al., 2013) and ±0.03±0.2×AOT (Sayer et al., 2013), respectively. In this 

paper, MYD08 and MOD08 combined DT and DB products between July 2002 and 

December 2014 were used. The mean AOTs of both Aqua and Terra in the study period 

are shown in Figure 1a and 1b, respectively. High AOTs are mainly distributed in the 

North China Plain (NCP), Yangtze River Delta (YRD), and Sichuan Basin (SB). 

MISR onboard of the Terra satellite was launched into earth orbit in December 

1999, and was designed to measure aerosol properties with repeat global coverage in 

between two and nine days (Kaufman et al., 1998; Diner et al., 2002). The MISR 

instrument consists of nine push-broom cameras. Compared to the MODIS aerosol 

algorithm, MISR has better capability over bright surfaces due to the multi-angle view 

(Abdou et al., 2005). The retrieval error of MISR AOT is within ±0.04±0.18×AOT 

(Liu et al., 2004). Monthly 555 nm MISR AOT products with resolution of 0.5o × 

0.5o are illustrated in Figure 1c. The spatial resolution of MODIS and MISR AOT in 

Figure 3 are 1o×1o and 0.5o × 0.5o, respectively. The AOT values from MODIS are 

higher than those from MISR, especially in the NCP and YRD regions. It may be related 

to the underestimation in MISR aerosol datasets for high AOT event (Kahn et al., 2005; 

Kahn et al., 2007; Shi et al., 2011). 

[Please insert Figure 1 here] 

2.2 Vertical distribution of aerosols  

In this study, vertical aerosol profile products from LIdar climatology of Vertical 

Aerosol Structure for space-based lidar simulation studies (LIVAS) were acquired 

(http://lidar.space.noa.gr:8080/livas/index.html). LIVAS products provide profiles of 

aerosol optical properties solved by combining Cloud-Aerosol Lidar and Infrared 

http://ladsweb.nascom.nasa.gov/data/search.html
http://lidar.space.noa.gr:8080/livas/index.html


Pathfinder Satellite Observation (CALIPSO) measurements and ground-based 

measurements. The horizontal spatial resolution of the LIVAS climatology is 1o × 1o, 

covering all longitudes, and latitudes between 82 °N and 82 °S. Vertical resolution of 

the data is 60 m from the surface to 20 km, and 180 m from 20 km to 30 km. The 

algorithms used to constrain extinction coefficients are given in Amiridis et al. (2015). 

The LIVAS data used in our study cover 4 years from June 2008 to December 2011. 

Derived extinction coefficients from the surface to 500 m above ground were used for 

calculating the AOT below 500 m altitude (hereafter AOTlow).  

2.3 Surface visibility 

 Surface visibility is measured using visibility meters and human observation in 

China (Ma and Yang, 2007). Trained observers estimate the visual range using reference 

objects in different directions. The uncertainty of visibility by human observation varies. 

The error of visibility measured by visibility meter is within ±10 ~ 20% (WMO, 1996). 

Hourly visibility datasets were acquired from the Integrated Surface Hourly Data Base 

(ISD), which is land-based station data available from the America National Centers 

for Environmental Information (NCEI). Fifty-four quality-assured algorithms of ISD 

were designed to eliminate obvious errors and ensure with the greatest likelihood that 

valid values were not removed (Smith et al., 2011). The hourly visibility data for all-

sky (including both clear sky and cloudy sky) conditions between 02 and 07 UTC were 

selected. Figure 2 shows the mean visibility between July 2002 and December 2014 for 

the selected 387 meteorological stations. Low visibility areas are mainly distributed in 

parts of the NCP, YRD, and Sichuan Basin. According to the location of the visibility 

station and corresponding data availability, monthly AOT values were extracted from 

MODIS datasets between July 2002 and December 2014. 

[Please insert Figure 2 here] 



2.4 Interpolation of missing data 

Missing monthly AOT data were interpolated following the steps proposed by Li 

et al. (2014b) to assure the completeness of the time-series data. Multi-year monthly 

average values were removed from the full visibility/AOT dataset. Then, linear 

interpolation was applied on the remaining time series of data to fill the gaps, and the 

full dataset was established by adding the multi-year monthly average value back. The 

interpolation method performs well with relatively small error, which can minimize 

seasonal variability (Li et al., 2014b; Zhang et al., 2016). One more criterion was 

proposed and used to further minimize the bias in the paper: each pixel/station must 

contain at least 70% of available monthly data.  

2.5 Singular Value Decomposition (SVD) analysis 

 Singular Value Decomposition (SVD) technique was performed to separate 

different modes between two input fields spatially and temporally. The SVD analysis 

was first applied in meteorological context by Prohaska (1976) to analyze the 

relationships between monthly surface air temperature in the United States and 

Northern Hemispheric sea level pressure. The SVD method can decompose two input 

fields into a set of independent eigenvectors of the cross-covariance matrix (Halldor 

and Venegas, 1997). Pairs of singular vectors describe spatial patterns for two variables. 

The two expansion coefficients explain the weighting of the mode in the temporal scale. 

This approach comprises the following: 

 Suppose X and Y represent normalized monthly visibility and AOT, respectively, 

which are centered in time. The cross-correlation matrix can be formulated as in 

equation 1: 

 M=XTY. (1) 

Then, SVD is performed on matrix M. Orthogonal matrices U and V can be found as 

equation 2, written as 



 M=ULVT. (2) 

The time series TX and TY, describing how each mode of variability oscillates in time, 

are calculated by projecting U back to X and projecting V back to Y (equations 3 and 

4). 

 TX=XU, and (3) 

 TY=YV. (4) 

The fraction of squared covariance (SCF) explained by the i-th mode can be calculated 

by letting li, denoting the i-th singular value in L (equation 5) as: 

 SCF𝑖 =
𝑙𝑖
2

∑ 𝑙𝑖
2𝑁

𝑖=1
⁄ . (5) 

 

3.  Results 

3.1 SVD results for satellite AOT and visibility 

SVD was performed on the full dataset by removing the temporal mean value for 

both the satellite AOT products and visibility. The first two modes explain more than 

80% and 90% of the variability for Terra and Aqua MODIS, and MISR, respectively. 

Thus, only the first two modes in SVD were analyzed and the others were deemed noise. 

The legend in the spatial pattern indicates the extent of variation. Deep blue and red 

colours represent large variation, as shown in Figure 3. The correlation coefficient 

between the time series of satellite AOT and visibility in different modes indicates the 

relationship of AOT and visibility on the temporal scale. In order to compare spatial 

modes of visibility and AOT, reverse visibility spatial modes were also illustrated. The 

first mode is shown in Figure 3, explaining about 50% of the total variance for MODIS 

and 83% for MISR. The first mode explains a higher percentage of total variance. This 



may be caused by the underestimation of MISR aerosol datasets for high AOT. Each 

spatial pattern has a corresponding time series, which is also named Principal 

Components (PC). PC 1 shows an annual pattern, with the maximum in winter. The 

correlation between PC 1 of the satellite AOT and visibility are highly correlated, and 

reach 0.782, 0.779, and 0.803 for Terra, Aqua, and MISR, respectively. Figure 3c shows 

strong variation in temporal pattern due to the light variations in the spatial pattern. 

Although some discrepancy exists in the amplitude of variation between visibility and 

MISR AOT in Figure 3c, similar seasonal and inter-annual variations are demonstrated. 

Large variation in associated AOT spatial patterns are found in Lop Nur, NCP, and 

southwest China. However, large variation of visibility in the first mode is found in the 

eastern and northeastern China. The spatial distribution of AOT and visibility both 

exhibit significant differences.  

[Please insert Figure 3 here] 

The second mode of Terra and Aqua accounts for about 32% of the total variance, 

while the second mode of MISR only explains about 7.7%. The signal is relatively 

strong for the southeastern and part of western China. The AOT and visibility spatial 

distribution agrees well. For MISR, strong variation was also observed in central China. 

Differences in spatial variability between MISR and MODIS from the first two modes 

may be due to the different temporal resolutions in these satellite data. The associated 

time series has an annual cycle, and the observed peak occurs in spring season. 

Correlation between time-series data is greater than 0.8 for all datasets. 

[Please insert Figure 4 here] 

The representation of visibility in terms of inter-annual AOT, solved by removing 

the seasonal mean values, was also examined. The first two modes account for about 

50% of total variance. The variances explained by deseasonalized MISR and visibility 

datasets are relatively low and is related to the narrower swath and longer measurement 

time of MISR (Li et al., 2014a). In the first mode, large variation of visibility and AOT 



is shown in the highly populated areas of China, which are mainly concentrated in the 

east. This indicates that AOT and visibility in this region varied significantly during the 

study period. The second mode is likely associated with the spatial variation of AOT in 

China. Increasing aerosol trends are shown in Shandong (location 3) and northwest 

China (location 4), while decreasing trends are shown over parts of southeast coast, 

Gobi Desert (location 1), and Joint of Shanxi, Sichuan, and Hubei province (location 

2). In this study, visibility does not capture the seasonal variation of AOT. However, a 

promising relationship is shown in inter-annual variation between visibility and AOT 

for two reasons: first, visibility and AOT both contain some information relating to 

water vapor. More water vapor can cause lower visibility and higher AOT, and water 

vapor is one of the factors that can influence the relationship of visibility and AOT. In 

general, the aerosol loading is the dominant factor. Thus, it implies that the inter-annual 

change of water vapor may have little impact in the relationship between inter-annual 

variation of AOT and inter-annual variation of visibility. 

[Please insert Figure 5 and Figure 6 here] 

3.2 Seasonal variations 

The results of SVD indicate that the differences between AOT and visibility are 

mainly a function of seasonal variability. Figure 7 shows the correlation in each station 

between different AOT products and all-sky visibility. Some differences in the spatial 

distribution of correlation are displayed in Figure 7a and Figure 7b. The differences are 

mainly located in central China, and related to the bias between the DT and DB 

algorithms (Figure 9). Similar spatial distributions of correlation among DT Terra AOT, 

DT Aqua AOT and MISR observation are shown in Figure 7. This indicates that 

uncertainties in DB MODIS AOT also contribute the representativeness of seasonal 

ground visibility for AOT. The correlation between different types of AOT products and 

visibility in clear-sky is shown in Figure 8. Comparing between Figure 7 and Figure 8, 

the influence of cloud contamination on the correlation between AOT and visibility is 

mainly found in southern China.  



The correlation between visibility and satellite AOT is tied to the spatial 

distribution of correlation between surface reflectance and DB surface reflectance 

(Figure 10). Negative correlation between surface reflectance and DB surface 

reflectance can be observed in Sichuan basin, south-central China, and northwest China 

region. Some significant influences on the aerosol retrievals may be observed in these 

regions. However, no causal correlation is observed. 

[Please insert Figure 7, Figure 8, Figure 9, and Figure 10 here] 

In order to analyze seasonal differences, the datasets were divided into four groups 

according to the correlation of monthly mean AOT and visibility (Figure 11a). Highly 

negative correlations of AOT and visibility are found in coastal regions and over 

northwestern China. Highly positive correlations are observed in the Yangtze River 

Basin. Multi-year average monthly cycles for four groups of data are shown in Figure 

11a. For correlation between -1 and -0.5, AOT exhibits high values from March to May, 

and lower values during the rest of year. Visibility reaches a maximum in October, while 

the lowest value is found in March. The seasonal variability for visibility and AOT are 

thus inversely related. Similar variation of visibility is shown in Group 2 and 3. High 

visibility values occur in July. The peaks of AOT occur in April and June for Group 2 

and only one peak occurred in June for Group 3. AOT and visibility show similar 

variation in Group 4, with high values from April to August. In general, high visibility 

indicates less aerosol loading. However, our results indicate that high visibility may 

correspond with high AOT for seasonal average values. This may be caused by variation 

of aerosol vertical distributions, the influence of clouds, and hygroscopic aerosol 

growth. 

The relationship between AOT and clear-sky visibility were also analyzed. There 

are some differences between all-sky (Figure 11a) and clear-sky (cloud fraction=0) 

conditions (Figure 11b). For the first group, there are two peaks for visibility in clear-

sky conditions. The visibility peaks occur in May in Group 2. For Group 3, the visibility 

in clear-sky condition is much higher than that in the all-sky condition. Little 



differences are observed in Group 4. Thus, it is implied that clouds contribute to the 

relationship between visibility and AOT. However, due to the lack of aerosol 

information under clouds, the impact of clouds on the correlation introduces many 

uncertainties. This will be studied in the future work. 

[Please insert Figure 11 here] 

3.3 Aerosol vertical distribution 

Seasonal spatial distribution of near-surface AOT (e.g. below 500 m,) and 

columnar AOT from LIVAS were mapped in Figure 12 and Figure 13, respectively. 

High AOTlow were distributed in different regions in different seasons. In spring, high 

AOTlow are concentrated in central China. The NCP region has high AOT in summer. 

High surface aerosol loadings are observed in the southwestern China in autumn. In 

winter, high AOTlow exists in several regions, such as PRD and YRD. The seasonal 

spatial distributions of high columnar AOT are similar with AOTlow. The fractions of 

AOTlow (e.g. AOTlow /total column AOT) are shown in Figure 14, which indicates that 

AOTlow contributes a high proportion in winter and autumn. The variation of fraction 

of AOTlow may thus be well-studied and it would have great impact on the relationship 

of visibility and columnar AOT.  

[Please insert Figure 12, Figure 13, and Figure 14 here] 

Figure 15 shows the variation of AOTlow and visibility for both clear-sky and all-

sky data. However, due to the data availability of LIVAS data, multi-year seasonal data 

were only used to analyze the variation between AOTlow and visibility. These data were 

divided into four groups using correlation coefficients. Comparing with Figure 11, 

Figure 15 shows significant negative relationships between visibility and AOTlow.  

[Please insert Figure 15 here] 



4.  Conclusion 

Surface visibility data are widely-used as an alternative information for long-term 

aerosol trend studies (Liepert and Kukla, 1997; Wang et al., 2009; Li et al., 2015a). In 

this study, the representativeness of surface visibility for analyzing spatial and temporal 

patterns of Aerosol Optical Thickness (AOT) retrieved from different satellites in China 

was investigated. The Singular Value Decomposition (SVD) method was applied to 

separate the dominant and correlated modes of variability from surface visibility, using 

MODerate resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging 

SpectroRadiometer (MISR) monthly AOT products between July 2002 and December 

2014. Both large-scale spatial and temporal variability were examined. Cloud 

information and aerosol vertical distribution from LIdar climatology of Vertical Aerosol 

Structure for space-based lidar simulation studies (LIVAS) were also used to investigate 

the impact on the relationship between visibility and AOT.  

Results indicate that large spatial differences occur seasonally between surface 

visibility and satellite derived AOT, while good agreement exists on all inter-annual 

scale. However, insignificant correlation between multi-year seasonal visibility and 

AOT are driven by seasonal variability of the aerosol vertical profile. According to the 

comparison between multi-year average monthly AOT and visibility in all-sky and in 

clear-sky, clouds also contribute to the relationship between seasonal visibility and AOT. 

The results in this paper indicate that the visibility can be used as a good indicator for 

analyzing the inter-annual variation of AOT values, and more factors such as clouds 

and near-surface AOT in seasonal scale should be considered. According to the results 

in the paper, surface visibility will be used as a proxy for retrieving annual AOT in 

future work, thus allowing to investigate regional AOT over large spatial scales that 

currently only available from ground instrumentation.  
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