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Approximate Area-to-Point Regression Kriging for 

Fast Hyperspectral Image Sharpening 
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Abstract—Area-to-point regression kriging (ATPRK) is an 

advanced image fusion approach in remote sensing. In this paper, 

ATPRK is considered for sharpening hyperspectral images (HSIs), 

based on the availability of a fine spatial resolution panchromatic 

or multispectral image. ATPRK can be used straightforwardly to 

sharpen each coarse hyperspectral band in turn. This scheme, 

however, is computationally expensive due to the large number of 

bands in HSIs, and this problem is exacerbated for multi-scene or 

multi-temporal analysis. Thus, we extend ATPRK for fast HSI 

sharpening with a new approach, called approximate ATPRK 

(AATPRK), which transforms the original HSI to a new feature 

space and image fusion is performed for only the first few 

components before back-transformation. Experiments on two HSIs 

show that AATPRK greatly expedites ATPRK, but inherits the 

advantages of ATPRK, including maintaining a very similar 

performance in sharpening (both ATPRK and AATPRK can 

produce more accurate results than seven benchmark methods) 

and precisely conserving the spectral properties of coarse HSIs. 

 

Index Terms—Downscaling, sharpening, image fusion, 

geostatistics, area-to-point regression kriging (ATPRK), 

hyperspectral image. 

I. INTRODUCTION

The abundant spectral information available from 

hyperspectral images (HSIs) provides new opportunities to 

analyze materials covering the Earth’s surface. The high 

dimensionality of HSI (usually composed of over 100 bands) 

poses new processing challenges and it has motivated 

considerable research over the past decades [1]-[5]. Due to the 

limited amount of incident energy, a tradeoff results between the 

spatial resolution and spectral resolution. In remote sensing, a 

fine spatial resolution is frequently needed for reliable image 

interpretation, for example, for target detection and 

classification. It is, thus, of great interest to increase the spatial 
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resolution of HSIs with computer technologies, such as image 

fusion, that combine HSIs with coarse spectral resolution, but 

fine spatial resolution multispectral images (MSI) or 

panchromatic (PAN) images [6]. For clarity, in this paper, we 

term correspondingly these two cases in HSI sharpening as 

MS-sharpening and pan-sharpening. 

Image fusion techniques such as pan-sharpening were 

originally designed for MSI sharpening [7], [8], for example, 

fusing MSIs (e.g., four-band 2.4 m QuickBird image) with a 

PAN image (e.g., single band 0.6 m QuickBird PAN image) 

acquired over the same scene to produce sharpened MSIs (e.g., 

four-band 0.6 m QuickBird image). In recent years, with the 

increasing availability of HSIs and their increasing popularity, 

HSI sharpening has been identified as an active topic in remote 

sensing [6]. MSI sharpening methods, such as principal 

component analysis (PCA) [9]-[11], smoothing filter-based 

intensity modulation (SFIM) [12], Gram-Schmidt (GS) 

transformation [13], and adaptive GS (GSA) [14], can be applied 

straightforwardly to HSI sharpening [15]. However, the two 

types of issues should be noted. 

HSI sharpening is physically different from MSI sharpening. 

For MSI sharpening, the fine spatial resolution PAN and coarse 

spatial resolution MSI images are almost in the same spectral 

range, that is, the visible spectral range (0.4–0.8µm). For HSI 

sharpening, however, the spectral range of HSIs commonly 

covers additionally the shortwave infrared range (0.8–2.5µm) 

that is not covered by the fine spatial resolution PAN or MSI. On 

the other hand, MSI sharpening usually involves pan-sharpening, 

while HSI sharpening can sometimes involve MS-sharpening, 

which is a case of hyper-sharpening, a terminology presented in 

a recent publication [16]. MS-sharpening can be viewed as an 

extension of pan-sharpening, where the fine spatial resolution 

source in pan-sharpening (i.e., single band PAN) is extended to a 

set of bands. Correspondingly, appropriate mathematical models 

need to be identified for MS-sharpening. 

HSI sharpening has received increasing attention and several 

approaches have been developed. Apart from the methods 

originally designed for MSI sharpening (e.g., SFIM, PCA, GS 

and GSA), some other methods exist, including guided filter 

PCA (GFPCA) [17], coupled nonnegative matrix factorization 

(CNMF) [18], sparse representation [19]-[20], Bayesian 

approaches (including Bayesian Naïve [21], Bayesian Sparse 

[22] and HySure [23]) [21]-[24], and hybrid approaches [25].

The methods in [17]-[25] can be used for both pan-sharpening

and MS-sharpening. It is beyond the scope of this paper to

explicitly introduce the existing hyperspectral sharpening

approaches, but a recent review on them exists [6].

In this paper, we propose an area-to-point regression kriging 

(ATPRK)-based geostatistical solution for HSI sharpening. 

ATPRK was originally proposed for downscaling 500 m 

MODIS bands 3-7 to a spatial resolution of 250 m in our 
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previous work [26]. The terminology “downscaling” in this 

paper means increasing the spatial resolution of images and 

coveys the same meaning of sharpening. ATPRK explicitly 

accounts for the size of support, spatial correlation, and the point 

spread function (PSF) of the sensor and has the significant 

advantage of precisely preserving the spectral properties of the 

observed coarse data and the ease of incorporating multiple 

covariates (i.e., fine spatial resolution sources in image fusion). 

As illustrated in our previous works [26], [27], ATPRK is more 

user-friendly than other geostatistical solutions for sharpening 

such as kriging with external drift [28] and downscaling 

cokriging [29]. Moreover, the advanced approach was 

demonstrated to outperform 13 current state-of-the-art 

benchmarks in pan-sharpening MSIs in our previous work [30]. 

Motivated by the advantages and encouraging performances in 

sharpening MSIs (e.g., MODIS and Landsat images), ATPRK is 

further considered for sharpening HSI in this paper. 

Naturally, when applied to HSI sharpening, ATPRK can be 

used to sharpen each coarse band in turn, as was done in 

downscaling MODIS images. This scheme for HSI sharpening, 

however, is computationally expensive due to the large number 

of bands in HSIs. Moreover, often users need to downscale more 

than one scene, for example, multiple scenes for subsequent 

mosaicing. Last but not least, when applied to continuous 

monitoring, ATPRK needs to be repeated multiple times to 

analyze time-series images (e.g., 100 times for 100 dates in a 

time-series). 

In view of the computational cost, in this paper, an extended 

version of the advanced ATPRK approach, termed approximate 

ATPRK (AATPRK), is proposed for fast HSI sharpening. In 

HSI, there exists great correlation between bands and redundant 

information in original large number of bands. The proposed 

AATPRK approach transforms the original HSI data to a new 

feature space where only the few components containing most of 

the information are sharpened, thereby greatly save the 

computing time. The main contributions of AATPRK lie in 

noticeably expediting the advanced ATPRK approach in HSI 

sharpening but maintaining the sharpening accuracy. The 

expedited version will extend the use of ATPRK in multi-scene 

and multi-temporal analysis based on HSI. 

AATPRK holds the following characteristics and advantages. 

1) AATPRK can greatly expedite the ATPRK-based 

processing required for HSI sharpening and meanwhile 

maintain the performance in sharpening. 

2) Inheriting the appealing advantage of ATPRK (i.e., the 

perfect coherence), AATPRK can almost perfectly 

preserve the spectral properties of the original coarse 

HSI. 

3) Inheriting the advantages of ATPRK, AATPRK can be 

straightforwardly extended from pan-sharpening to 

MS-sharpening, thus facilitating the application in 

various data fusion (such as fusion of Hyperion and 

ASTER [31]). For MS-sharpening, each band of the fine 

spatial resolution MSI is considered as a covariate (i.e., 

auxiliary data) and multiple regression between the 

primary variable (i.e., observed coarse HSI bands) and 

covariates is involved. 

The remainder of this paper is organized into four sections. 

Section II introduces the principles of the AATPRK-based HSI 

sharpening approach. The experimental results for two HSI 

datasets are provided in Section III to demonstrate the 

applicability of AATPRK. Section IV further discusses the 

proposed approach, followed by a conclusion in Section V. 

II. METHODS 

Let ( )l

V iZ x  be the measurements of coarse spatial resolution 

pixel V centered at 
ix  (x is a two-dimension coordinate vector 

denoting the spatial locations of pixels; i=1,…,M, where M is the 

number of pixels) in coarse band l (l=1,…,L, where L is the 

number of HSI bands), and ( )k

v jZ x  be the measurements of fine 

spatial resolution pixel v centered at jx  (j=1,…, 2MF , where F 

is the spatial resolution (zoom) ratio between the coarse and fine 

spatial resolution bands) in fine spatial resolution band 

(hereafter fine band) k (k=1,…,K, where K is the number of fine 

MSI bands) in the fine MSI. The objective of HSI sharpening is 

to predict ( )l

vZ x  for all fine pixels in all L coarse bands. 

Since pan-sharpening can be viewed as a particular case of 

MS-sharpening and the mathematical models for both cases 

become the same when K=1, we only present the more general 

MS-sharpening case (i.e., fusion of ( )l

V iZ x  and ( )k

v jZ x ) in this 

section. 

A. Transforming the coarse HSI to a new feature space 

In HSI, the number of bands is large and the correlation 

between bands (particularly for spectrally neighboring ones) is 

very large. To reduce the computational burden in 

ATPRK-based HSI sharpening, some transformation of the 

original HSI is considered. The proposed fast AATPRK 

approach starts from projection of the HSI into a new feature 

space in which the components are uncorrelated, with the overall 

brightness variance in the original HSI condensed to a few 

components and the spectral shape retained by the remaining 

components. In the new feature space, only the components that 

contain most of the variance need to be sharpened using the fine 

MSI, which reduces the computational cost. 

In this paper, the well-known PCA is used for the feature 

space transformation. PCA works by linearly transforming the 

original data, and the variance in the original HSI is rearranged 

and the first few principal components (PCs) contain almost all 

of the variance in the original data [32]. In AATPRK, the first L0 

(L0<<L) PCs are sharpened using the fine MSI. In this paper, the 

first L0 PCs that contain over 99% of the information (quantified 

in terms of cumulative eigenvalues) are considered. The fusion 

scheme of sharpening only few components in a 

low-dimensional subspace was adopted in several studies. For 

example, Liao et al. [17] sharpened the first few PCs in the PC 

subspace using a guided filter. Simoes et al. [23] formulated the 

HSI sharpening problem as the minimization of a convex 

objective function and solved the problem in the 

low-dimensional subspace by the split augmented Lagrangian 

shrinkage algorithm. 

B. Sharpening PCs with ATPRK 

In the new space found by PCA, almost all variance in the 

original HSI is condensed to the first L0 PCs. ATPRK is used to 

sharpen the L0 PCs where each PC is considered as a primary 

variable and the available MSI provides the covariate set. That is, 
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the coarse PC images are fused with the fine spatial resolution 

MSI. Suppose ( )l

V iY x  is the measurements of pixel V centered at 

ix  in coarse band l (l=1,…,L) in the new feature space after 

PCA-based transformation. The first L0 bands in the new space 

are sharpened by ATPRK, treating the fine MSI as a set of 

covariates. ATPRK is a two-step approach consisting of 

regression modelling and area-to-point kriging (ATPK)-based 

residual downscaling. 

The prediction of the first step (i.e., regression modelling) in 

ATPRK is a linear combination of all fine spatial resolution 

bands in MSI (see (4)). Normally, there exists bias between the 

regression prediction and the observed coarse data. In the second 

step, the coarse spatial resolution residuals from the regression 

model in the first step (see (3)) are downscaled to the fine spatial 

resolution using ATPK (see (5)), where the coarse residuals can 

be retained perfectly. The fine spatial resolution residuals are 

added to back to the regression prediction in the first step to 

produce the final sharpened result (see (1)). In ATPK-based 

residual downscaling, the size of support, spatial correlation 

(characterized by the relation between residuals), and the PSF of 

the HSI sensor (see (7) and (8)) are explicitly accounted for. The 

final ATPRK prediction has perfect coherence with the observed 

coarse HSI, that is, when the ATPRK result is degraded to the 

coarse spatial resolution, it is exactly the same as the observed 

coarse HSI. 

Let 
1

ˆ ( )l

vY x  and 
2

ˆ ( )l

vY x  be the predictions of regression and 

ATPK, respectively, for band l. The ATPRK prediction is 

calculated as 

1 2
ˆ ˆ ˆ( ) ( ) ( )l l l

v v vY Y Y x x x .                           (1) 

The regression prediction is calculated by taking full 

advantage of the fine spatial resolution textural information in 

the K covariates (i.e., fine bands) of the MSI. First, the MSI is 

upscaled band-to-band to match the spatial resolution of the 

coarse PCs. Denoting the kth upscaled band of MSI as 
k

VZ , it is 

calculated as 

= ( )* ( )k k k

V V vZ h Zx x                                 (2) 

where * is the convolution operator and ( )k

Vh x  is the PSF for the 

kth band of the MSI sensor. The relationship between the two 

types of coarse images is modelled by multiple linear regression 

and the regression model for band l is described as 

0

0

( ) ( ) ( ), ( ) 1
K

l l k

V k V l V

k

Y a Z R Z


    x x x x x             (3) 

where ( )lR x is a residual term and 0

la  is the intercept. The 

coefficients { | 1,..., }l

ka k K  can be estimated by ordinary least 

squares. Based on the assumption of scale-invariance, the 

regression model in (3) is used for regression prediction at the 

fine spatial resolution. For a specific location 0x , (4) holds 

0

1 0 0 0

0

ˆ ( ) ( ), ( ) 1
K

l l k

v k v v

k

Y a Z Z


  x x x .                  (4) 

To retain the spectral information in the original coarse data, 

ATPK-based residual downscaling is performed as a 

complement to the regression step. ATPK downscales the coarse 

residual image ( )lR x  to the fine spatial resolution. Specifically, 

the fine residual at a specific location 
0x  is a linear combination 

of its neighboring coarse residuals 

2 0

1 1

ˆ ( ) ( ), s.t. 1
N N

l

v i l i i

i i

Y R 
 

    x x                   (5) 

where 
i  is the weight for the ith coarse residual centered at 

ix  

and N is the number of neighboring coarse pixels, such as the 

N=5×5 window of coarse pixels in this paper (a larger window 

size will not necessarily lead to a greater accuracy, but will 

certainly lead to longer computing time). The weights 

{ | 1,..., }i i N   are calculated according to the kriging matrix 

below 

1 1 1

1

( , ) ... ( , )

. . . .

. . . .
. . .

( , ) ...

l l

VV VV N

l l

VV N VV

 

 

  

   
   
  

 

x x x x

x x

0 11

0

( , )

. .

. .

. .

( , ) ( , )

1 ... 1

l

vV

l
NN N vV N



 



    
    

     
           

    
    
          

x x

x x x x

    (6) 

in which ( , )l

VV i j x x  is the coarse-to-coarse semivariogram 

between coarse pixels centered at 
ix  and jx  in band l, 

0( , )l

vV j x x  is the fine-to-coarse semivariogram between fine 

and coarse pixels centered at 0x  and jx  in band l, and   is the 

Lagrange multiplier of the term accounting for the sum-to-one 

constraint on the weights in (5). 

Suppose s is the Euclidean distance between the centroids of 

any two pixels and ( )l

Vh s  is the PSF for the lth band of the HSI 

sensor. ( )l

VV s  and ( )l

vV s  in (6) are calculated by convoluting 

the fine-to-fine semivariogram ( )l

vv s  with the PSF ( )l

Vh s  as 

follows 

( ) ( )* ( )l l l

vV vv Vh s s s                              (7) 

( ) ( )* ( )* ( )l l l l

VV vv V Vh h  s s s s                       (8) 

where ( )l

vv s  can be estimated by deconvolution of the coarse 

semivariogram calculated from the coarse residual image ( )lR x . 

Readers may refer to [26], [27], [30] for details on the 

deconvolution approach. The sensor PSF can be the one in (9), 

based on the hypothesis that the coarse pixel value is the average 

of the fine pixel values within it [33] 

1
, if ( )

( )

0, otherwise

VV

V
Sh


 

 
 

x x
x                           (9) 

in which VS  is the size of pixel V and ( )V x  is the spatial 

support (i.e., spatial coverage) of pixel V centered at x. 

C. AATPRK 

In AATPRK, the first L0 PCs are fused with the fine spatial 

resolution MSI using ATPRK. For the remaining L-L0 

low-ranking PCs, they are assumed to contain little variance (i.e., 

textural information) and only used to preserve the spectral 

shape of the observed HSI data. Thus, the low-ranking PCs are 

downscaled to the fine spatial resolution with the simple and fast 

bicubic interpolation instead. The downscaled HSI in the new 

feature space is finally transformed back to the original feature 
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space by inverse PCA. The implementation of the proposed 

AATPRK is summarized as follows. 

1) The original coarse HSI { ( ) | 1,..., ; 1,..., }l

V iZ i M l L x  

is transformed to the new feature space 

{ ( ) | 1,..., ; 1,..., }l

V iY i M l L x  by PCA. 

2) The first L0 PCs are downscaled to 
2

0
ˆ{ ( ) | 1,..., ; 1,..., }l

v iY i MF l L x  using ATPRK, where 

the available MSI 2{ ( ) | 1,..., ; 1,..., }k

v jZ j MF k K x  is 

treated as the covariate set, as illustrated in Section II-B. 

3) The remaining L-L0 PCs are downscaled to 
2

0
ˆ{ ( ) | 1,..., ; 1,..., }l

v iY i MF l L L  x  with fast bicubic 

interpolation. 

4) Inverse transformation is performed to transform the 

downscaled L PCs 2ˆ{ ( ) | 1,..., ; 1,..., }l

v iY i MF l L x  

back to the original feature space 
2ˆ{ ( ) | 1,..., ; 1,..., }l

v iZ i MF l L x . 

Fig. 1 is a flowchart describing the proposed AATPRK 

approach. The semivariogram modelling process (including 

deconvolution and convolution) in ATPRK generally takes some 

time for each band. If the number of bands is small, as for a 

four-band 2.4 m Quickbird or five-band 500 m MODIS image, 

the computational efficiency of the original ATPRK-based 

sharpening approach is acceptable [26]. If the number of bands 

is large, such as over 100 for a HSI, the cumulative 

computational cost of ATPRK-based sharpening will become 

large. The computational cost will further be enlarged for the 

cases involving multiple scenes or multi-temporal analysis. 

The proposed approximate version, AATPRK, greatly 

reduces the computational cost for HSI sharpening by applying 

PCA to transform the original HSI to a new feature space where 

spatial information is concentrated in the first L0 PCs. 

Sharpening only the first L0 PCs, the computational cost of 

AATPRK is approximately L0/L times that of ATPRK (the 

processes of space transformation and bicubic interpolation are 

very fast and their computational cost is ignored). For example, 

for a 200-band (L=200) HSI, usually the first five (L0=5) PCs are 

able to contain over 99% of the information. In this case, 

AATPRK increases the computational efficiency by about 40 

times. 

AATPRK can be viewed as a special case of ATPRK: when 

L0 equals L, all PCs in the new feature space will be sharpened 

by ATPRK in fact; after inverse PCA, AATPRK will achieve the 

same performance as ATPRK which sharpens all bands in the 

original feature space (the original space is a linear 

transformation of the new one and the two spaces are generally 

reversible). Thus, AATPRK in this case becomes ATPRK. 

 

.
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.

l

VZ
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.

l

VY
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ˆ l

vY
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.
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ˆ l

vZ

k

vZ

ATPRK

Fine MSI 
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Coarse HSI 

(L bands)
Fine HSI 

(L bands)

 
Fig. 1 Flowchart of the proposed AATPRK-based approach for HSI sharpening. 

 

III. EXPERIMENTS 

A. Datasets and experimental setup 

The proposed AATPRK approach was examined by two HSIs: 

the well-known Washington DC and Moffett Field datasets. The 

spatial extends of the Washington DC and Moffett Field images 

are 1200 by 300 and 300 by 300 pixels, respectively. After 

discarding the noisy and water absorption bands, 191 bands of 

the Washington DC image and 100 bands of the Moffett Field 

image were retained for the experiments. The spatial resolutions 

of the two images are 3 m and 20 m, respectively. 

In the first experiment, we tested the pan-sharpening case. For 

both HSIs, all bands were upscaled by a factor of four, 

simulating 12 m coarse Washington DC and 80 m coarse Moffett 

Field HSIs. In reality, the PAN image always covers the visible 

spectral range. To synthesize the fine spatial resolution PAN 

image, the first 50 bands that fall into the visible spectral range 

were averaged. The objective of HSI sharpening is to restore the 

3 m and 20 m Washington DC and Moffett Field HSIs. For 

example, for the Washington DC dataset, 3 m HSI was predicted 

by taking the 12 m HSI as the observed coarse data and 3 m fine 

PAN as the covariate. Using synthetic data, the reference at the 

fine spatial resolution is known perfectly, which is critical for 

reliable assessment. Moreover, we can concentrate solely on the 

performance of the sharpening methods which may be affected 

by uncertainties in reality (e.g., registration errors). 

In the second experiment, MS-sharpening was applied using 

the Moffett Field dataset. A four-band 20 m Moffett Field MSI 

was synthesized by averaging 12 consecutive bands of the first 

48 bands. The objective of HSI sharpening is to restore the 20 m 

Moffett Field HSIs, taking the 80 m HSI as the observed coarse 

data and 20 m fine MSI as a covariate set. 

We compared AATPRK with seven benchmark methods: 

SFIM [12], GS [13], GSA [14], PCA [9], GFPCA [17], CNMF 

[18] and Bayesian (using Gaussian prior) [21], [34] to show the 

accuracy gains of AATPRK in HSI sharpening. AATPRK was 

also compared with the original ATPRK approach that sharpens 
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all bands in the coarse HSI in turn, to illustrate the capability of 

AATPRK in maintaining the performance of ATPRK in 

sharpening. The implementations of SFIM, PCA, GS and GSA 

in HSI sharpening are the same as those in MSI sharpening. In 

the GFPCA approach, the first PCs are sharpened with a guided 

filter [17]. The number of PCs was the same as that in AATPRK, 

the regularization parameter for the guided filter was set to 10
-6

, 

and the local window size was set to 17×17. In CNMF, 

hyperspectral and multispectral data are alternately unmixed into 

endmember and abundance matrices, and the final hyperspectral 

endmember and multispectral abundance matrices are combined 

to achieve sharpening. The number of endmembers in CNMF 

was set to 20. 

The HSI sharpening results were compared both visually and 

quantitatively. Five indices were used for quantitative evaluation, 

including the root mean square error (RMSE), correlation 

coefficient (CC), relative global-dimensional synthesis error 

(ERGAS) [35], universal image quality index (UIQI) [36] and 

spectral angle mapper (SAM). For RMSE, CC and UIQI, they 

were first calculated for each band, and then the values for all 

bands were averaged. For SAM, values for spectra of all pixels 

were first calculated and then averaged. 

As mentioned in [37], any sharpened image, once degraded to 

its original spatial resolution, should be as close as possible to 

the original image. With this in mind, we also used another index 

termed coherence (quantified by the CC) for quantitative 

evaluation. The coherence is measured by the relation between 

the observed coarse image and the coarse image obtained by 

upscaling the sharpened image. For each hyperspectral band, a 

coherence value was calculated and the values for all bands were 

averaged. 

B. Experiment on pan-sharpening 

For the Washington DC dataset, the first three PCs contain 

87.16%, 10.95% and 1.59% of the information (quantified by 

dividing the eigenvalue of each PC by the sum of all 191 

eigenvalues), respectively, and their cumulative eigenvalues are 

99.86%. Thus, the first three PCs were sharpened by ATPRK in 

AATRPK. With respect to the Moffett Field dataset, the first 

four PCs were considered (with information proportions of 

88.85%, 7.11%, 2.68% and 0.73%, respectively). The 

pan-sharpening results for the two hyperspectral datasets are 

shown in Figs. 2-4. Tables 1 and 2 and Figs. 5 and 6 show the 

quantitative results for the tested methods. Four important 

observations can be made from the visual and quantitative 

results. 

First, AATPRK is superior to the seven benchmark methods. 

Visually, the GS, PCA and GFPCA methods lead to obvious 

spectral distortion. Although SFIM and GSA produce less 

spectral distortion, the spatial structure is not sufficiently 

reproduced and the results look ambiguous, especially for the 

land cover boundaries. Compared with GS, PCA, GFPCA, 

SFIM and GSA, the CNMF and Bayesian approaches have more 

satisfactory performances in preserving both the spectral and 

spatial information, but has a weaker performance in 

reproducing the spatial details than AATPRK. This can be 

illustrated by the examples of roof restoration in Fig. 3(g1), Fig. 

3(h1) and Fig. 3(i1). The boundaries in Fig. 3(i1) are sharper and 

clearer than those in Fig. 3(g1) and Fig. 3(h1), and Fig. 3(i1) are 

closer to the reference in Fig. 3(a1). Checking the values in 

Tables 1 and 2, AATPRK has a smaller RMSE, ERGAS and 

SAM, and larger CC, UIQI and coherence values than the seven 

benchmark methods. Figs. 5 and 6 further reveal that AATPRK 

produces larger CC than the seven methods for all hyperspectral 

bands. 

Second, all sharpening methods, including AATPRK, tend to 

have better performances for the bands that have greater 

correlation (in terms of CC) with the PAN image. As shown in 

Figs. 5 and 6, the trends of all curves in Fig. 5(a) and Fig. 6(a) are 

the same as those in Fig. 5(b) and Fig. 6(b). Taking the 

Washington DC image as an example, in Fig. 5(b), for the first 

50 bands, the correlation between them and the PAN image are 

greater than for the other 141 bands. Correspondingly, for each 

method, the sharpening accuracy in Fig. 5(a) is the greatest for 

the first 50 bands. Physically, the reason for this phenomenon is 

that the first 50 bands fall into the visible spectral range, which is 

covered by the PAN image. For the remaining 141 bands in the 

shortwave infrared range, the PAN image provides less relevant 

fine spatial resolution information for sharpening. Interestingly, 

in Fig. 5(b), the CC curve reaches a valley point at band 100 and 

goes up when the band number is larger than 100. As we know, 

the studied Washington DC area is dominated by vegetation, and 

the reflectance curve of vegetation reaches a valley point at 

wavelength 1.4µm, which corresponds to band 100 of the 

Washington DC hyperspectral data. For bands after the 100th 

band, the reflectance of vegetation increases and the correlation 

between their reflectance and those of first 50 bands (or the PAN 

image) increase as a result. This is not the case in Fig. 6(b), as the 

studied Moffett Field area is dominated by water. The 

reflectance of water is large for bands falling into the visible 

spectral range (bands 1-50) but very small for bands falling into 

the shortwave infrared range (bands after the 50th band). 

Third, the approximation involved in AATPRK greatly 

expedites ATPRK, but maintaining a very similar performance 

in sharpening. More precisely, ATPRK took 5921s and 2179s 

for the Washington DC and Moffett Field HSIs, while AATPRK 

took only 92s and 86s correspondingly. For the two HSIs, 

AATPRK increases the computational efficiency by 64 and 25 

times, which are generally similar to those calculated from L/L0 

(200/3=67 and 100/4=25). Regarding the accuracy in sharpening, 

the visual results of the two approaches in Figs. 2-4 are generally 

the same. Checking the quantitative results in Tables 1 and 2, the 

accuracy of AATPRK is slightly smaller than that of ATPRK. 

The accuracy decrease for AATPRK is the cost of reducing the 

computing time. However, we can see that the differences in 

quantitative results are also very minor. For example, for the 

Moffett Field dataset, the CC, UIQI and SAM values of the two 

methods are even the same. Moreover, the curves in Figs. 5 and 

6 for the two methods almost coincide, suggesting that they have 

almost the same CC for all hyperspectral bands. 

Fourth, AATPRK can almost perfectly preserve the spectral 

properties of the original coarse HSIs. For the two images, 

AATPRK produces coherence values of 0.9996 and 0.9999, 

which are very close to the ideal value of 1. This indicates that 

AATPRK inherits the appealing advantage of perfect coherence 

of ATPRK. 
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(a)                                     (b)                                     (c)                                     (d)                                     (e) 

     
(f)                                     (g)                                     (h)                                     (i)                                     (j) 

     
Fig. 2. Pan-sharpening results for the Washington DC dataset (bands 65, 52 and 36 as RGB). (a) 3 m reference image. (b) SFIM. (c) GS. (d) GSA. (e) PCA. (f) GFPCA. 
(g) CNMF. (h) Bayesian. (i) AATPRK. (j) ATPRK. 

 



>JSTARS-2015-01072< 

 

7 

(a1)                                            (b1)                                            (c1)                                            (d1)                                            (e1) 

     
(f1)                                            (g1)                                            (h1)                                            (i1)                                            (j1) 

     
(a2)                                            (b2)                                            (c2)                                            (d2)                                            (e2) 

     
(f2)                                            (g2)                                            (h2)                                            (i2)                                            (j2) 

     
Fig. 3. Pan-sharpening results for two sub-areas in Fig. 2. (a) 3 m reference image. (b) SFIM. (c) GS. (d) GSA. (e) PCA. (f) GFPCA. (g) CNMF. (h) Bayesian. (i) 

AATPRK. (j) ATPRK. 

 
(a)                                              (b)                                              (c)                                              (d)                                              (e) 

     
(f)                                              (g)                                              (h)                                              (i)                                              (j) 
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Fig. 4. Pan-sharpening results for the Moffett Field dataset (bands 33, 15 and 4 as RGB). (a) 20 m reference image. (b) SFIM. (c) GS. (d) GSA. (e) PCA. (f) GFPCA. 

(g) CNMF. (h) Bayesian. (i) AATPRK. (j) ATPRK. 

 

Table 1 Quantitative assessment of the nine pan-sharpening methods for the Washington DC dataset. 

 RMSE CC ERGAS UIQI SAM Coherence Time 

Ideal 0 1 0 1 0 1  

SFIM 479.4037 0.8779 7.6450 0.8766 0.1713 0.9351 6.2s 

GS 556.3292 0.8273 9.0007 0.8057 0.2025 0.8643 7.2s 

GSA 323.3304 0.9225 6.2204 0.9198 0.1638 0.9680 7.8s 

PCA 605.4827 0.7960 9.6884 0.7768 0.2142 0.8310 16.0s 

GFPCA 473.8344 0.8899 7.6409 0.8461 0.1893 0.9333 7.7s 

CNMF 288.8795 0.9437 5.3558 0.9394 0.1342 0.9887 38.4s 

Bayesian 281.7835 0.9495 5.0367 0.9461 0.1306 0.9976 6.6s 

AATPRK 239.4907 0.9583 4.6344 0.9568 0.1201 0.9996 91.5s 

ATPRK 239.0927 0.9586 4.6108 0.9573 0.1200 1 5921.0s 

 
Table 2 Quantitative assessment of the nine pan-sharpening methods for the Moffett Field dataset. 

 RMSE CC ERGAS UIQI SAM Coherence Time 

Ideal 0 1 0 1 0 1  

SFIM 359.7166 0.9406 5.1809 0.9403 0.1124 0.9688 0.8s 

GS 369.3218 0.9361 5.6186 0.9274 0.1219 0.9588 0.8s 

GSA 255.4487 0.9652 4.2519 0.9649 0.1079 0.9854 1.0s 

PCA 334.8550 0.9475 5.1285 0.9400 0.1183 0.9700 1.7s 

GFPCA 346.2622 0.9480 4.9651 0.9384 0.1131 0.9727 1.3s 

CNMF 192.6305 0.9809 3.0786 0.9804 0.0833 0.9983 7.0s 

Bayesian 189.5725 0.9814 3.0535 0.9811 0.0818 0.9998 0.8s 

AATPRK 178.0132 0.9835 2.9215 0.9834 0.0744 0.9999 85.7s 

ATPRK 177.7196 0.9835 2.9185 0.9834 0.0743 1 2179.0s 

 
(a)                                                            (b) 

 
Fig. 5. (a) CC of the nine pan-sharpening methods for each band of the 

Washington DC dataset (for each CC curve, it contains 191 values for 191 bands 
and each value means the CC between the sharpened band and the corresponding 

3 m reference band). (b) CC between the PAN and each band of the dataset. 

 
(a)                                                            (b) 

 

Fig. 6. (a) CC of the nine pan-sharpening methods for each band of the Moffett 

Field dataset (for each CC curve, it contains 100 values for 100 bands and each 

value means the CC between the sharpened band and the corresponding 20 m 
reference band). (b) CC between the PAN and each band of the dataset. 

C. Experiment on MS-sharpening 

In the second experiment, MS-sharpening for the Moffett 

Field dataset was conducted. GFPCA, Bayesian and CNMF are 

methods that can be used to fuse coarse HSIs and fine MSIs. 

Thus, the three methods were selected as benchmark methods. 

The visual results are shown in Fig. 7, while the quantitative 

results are shown in Table 3 and Fig. 8. Similarly, ATPRK and 

AATPRK produce highly similar results, which are more 

accurate than GFPCA, Bayesian and CNMF. Moreover, the 

approximation involved in AATPRK greatly expedites ATPRK 

(the computing time is decreased from 2165s to 86s) and can 

also precisely preserve the spectral properties of the original 

coarse hyperspectral data. The results in this experiment suggest 

that the proposed AATPRK approach can be used for fusing 

coarse HSIs and fine MSIs. 

Table 3 Quantitative assessment of the five MS-sharpening methods for the Moffett Field dataset. 

 RMSE CC ERGAS UIQI SAM Coherence Time 

Ideal 0 1 0 1 0 1  

GFPCA 288.6597 0.9658 3.8846 0.9597 0.0702 0.9877 6.3s 

CNMF 67.0049 0.9962 1.5385 0.9960 0.0298 0.9993 10.3s 

Bayesian 84.5843 0.9952 1.6218 0.9951 0.0342 0.9998 5.0s 
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AATPRK 60.2501 0.9968 1.4030 0.9968 0.0267 0.9999 86.0s 

ATPRK 57.9425 0.9969 1.3867 0.9969 0.0258 1 2164.5s 

 

(a)                                              (b)                                              (c)                                              (d)                                              (e) 

     
Fig. 7. MS-sharpening results for the Moffett Field dataset (bands 33, 15 and 4 as RGB). (a) GFPCA. (b) CNMF. (c) Bayesian. (d) AATPRK. (e) ATPRK. 

 

 
Fig. 8. CC of the five MS-sharpening methods for each band of the Moffett Field 

dataset (for each CC curve, it contains 100 values for 100 bands and each value 
means the CC between the sharpened band and the corresponding 20 m reference 

band). 

IV. DISCUSSION 

The recently developed ATPRK approach has been shown to 

be effective in multispectral image sharpening [26], [27], [30]. 

In this paper, for fast HSI sharpening, the advanced ATPRK 

approach was extended with an approximate version, AATPRK, 

which utilizes PCA to transform the original HSI to a new 

feature space and sharpening is performed for only the first few 

PCs. The experimental results consistently show that AATPRK 

produces very nearly the same accuracy as ATPRK, but greatly 

increases the computational efficiency. This means that the first 

few PCs are sufficiently to capture the brightness variance of the 

original HSIs and the PCA-based transformation for HSIs is 

nearly lossless. Thus, AATPRK is a powerful alternative for 

ATPRK in HSI sharpening. 

ATPRK has the appealing advantages of precisely conserving 

the spectral properties of the original coarse data and the ease of 

incorporating multiple covariates. As an extension for HSI 

sharpening, AATPRK makes full use of the advantages of 

ATRPK. It fuses coarse HSIs and fine MSIs by treating the fine 

MSI as a set of covariates (with each band of the MSI being a 

covariate) and all covariates (i.e., fine bands) are 

straightforwardly used in image fusion by multiple regression, 

see (3) and (4). This scheme can take full advantage of the 

information in the fine MSI, and is substantially different from 

the alternative solutions identified for hyper-sharpening (i.e., 

MS-sharpening in this paper) in [16], such as selecting a single 

band from a fine MSI or synthesizing a single band from a fine 

MSI (e.g., averaging all fine multispectral bands). 

On the other hand, based on the coherence advantage of 

ATPRK, when sharpening the critical, first few PCs in 

AATPRK, the information at the coarse spatial resolution is 

perfectly retained by ATPRK, thereby preserving the variance in 

the original data. This is the key factor enabling AATPRK to 

precisely preserve the spectral properties of the observed coarse 

HSI. 

Comparing the results in the two experiments, it can be seen 

that the accuracy of MS-sharpening is greater than that for 

pan-sharpening (see Tables 2 and 3). This is because the fine 

MSI characterizes the fine spatial resolution information more 

explicitly through multiple bands, rather than the single band in 

PAN. This finding also encourages the use of more fine bands, 

including those even in the shortwave infrared range, for 

possible enhancement of HSI sharpening. Furthermore, some 

other relevant information (e.g., topographic maps, thematic 

maps, feild measurements) on the studied areas is also worthy of 

consideration. 

Apart from PCA in this paper, it is also worthwhile to seek 

alternatives for feature space transformation under the 

theoretical basis of AATPRK. The transformation is required to 

condense the information in the original large number of bands 

into several bands, and it needs to be as lossless as possible to 

ensure information in the original HSI is retained to the largest 

extent possible and that the spaces are reversible. For example, it 

would be interesting to use a small number of reflectance basis 

functions (i.e., basis image planes) to characterize the entire HSI 

(such that each hyperspectral band is viewed as a linear 

combination of the basis functions) [38]. Sharpening only the 

small number of basis image planes will greatly speed up the 

process required for HSI sharpening. How to determine the basis 

functions and the weights would be critical issues. This is part of 

our ongoing research. 

As observed from the studied scene (Fig.2(a) and Fig. 4(a)), 

the spatial content (i.e., the land-cover/land-use class) may 

sometimes vary greatly from area to area [39]. For example, in 

the Moffett Field image, the top left corner region is dominated 

by the buildings, while the other region is covered by other land 

cover classes (e.g., water). In AATPRK, a global scheme is 

considered for sharpening each coarse PC. Spatially adaptive 

schemes that are able to account for the variation of spatial 

structure locally provide promising avenues for future research. 

The idea could be the construction of a local regression model or 

a local ATPK-based residual downscaling approach, or both. 

V. CONCLUSION 

This paper extends the advanced ATPRK approach with an 

approximate version, AATPRK, for fast HSI sharpening. First, 

the HSI is transformed to a new feature space by PCA to 

compress the spatial information in the original HSI into several 
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PCs. Then, only for the first few PCs, they are sharpened with 

ATPRK, treating the fine PAN or MSI as the covariate set. For 

the remaining PCs, they are downscaled to the fine spatial 

resolution with the simple and fast bicubic interpolation 

technique. Finally, inverse PCA is performed to produce the fine 

spatial resolution HSI. The proposed AATPRK approach was 

assessed using two HSIs, and its performance was compared to 

that of seven benchmark methods (i.e., SFIM, GS, GSA, PCA, 

GFPCA, CNMF and Bayesian) in the experiments. The findings 

are summarized as follows. 

1) AATPRK can produce more accurate sharpening results 

than the seven benchmark methods. 

2) The approximation involved in AATPRK greatly 

expedites ATPRK, but maintaining a very similar 

performance in sharpening. 

3) AATPRK can precisely preserve the spectral properties 

of the observed coarse HSIs. 
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