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Abstract 

A damage identification method named virtual vibration deflection (VVD) was 

developed, the principle of which was formulated based on the “weak” modality of the 

Pseudo-Excitation (PE) approach previously established. In essence, VVD is based on 

locating structural damage within a series of “sub-regions” divided from the entire 

structure under inspection, and each sub-region was considered as a “virtual” structure 

undergoing independent vibration. The corresponding vibration deflection of the 

“virtual” structure was then used to derive the damage index of VVD. Besides various 

advantages inheriting from the PE approach, for example, capability of detecting 

damage without baseline signals and pre-developed benchmark structures, VVD 

exhibits improved detection accuracy and particularly enhanced noise immunity 

compared with the PE approach, attributed to a hybrid use of multi-types of vibration 

signatures (MTVS). As a proof-of-concept investigation, a beam model was used in a 

numerical study to examine the philosophy of VVD. And the influences from different 

factors (i.e., level of measurement noise and measurement density) on the detection 

accuracy of VVD were discussed based on the numerical model. An experiment was 

carried out subsequently to identify the locations of multiple defects contained in an 

aluminum beam-like structure. Identification results constructed by the PE approach, 

VVD using single-type of vibration signatures (STVS), and VVD using MTVS, were 

presented, respectively, for the purpose of comparison. 
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1. Introduction 

Damage identification relying on examination of changes in structural vibration 

signatures has attracted intensive studies for decades (Farrar et al., 2001; Fan and Qiao, 

2011; Liu et al., 2011; He et al., 2014). Up to present, variations in a number of 

vibration signatures, such as eigen-frequencies (Lee and Chung, 2000; Wang et al., 

2001; Guo and Li, 2011; Pau et al., 2010), mode shapes (Kim et al., 2003; Cao et al., 

2013a), curvature mode shapes (Pandey et al., 1991; Qiao et al., 2007; Tomaszewska, 

2010; Montalvao et al., 2006; Ciambella and Vestroni, 2015), flexibility matrix (Aoki 

and Byon, 2001; Yan and Golinval, 2005) and damping properties (Kawiecki, 2001), 

were proven to be correlated with the existence, location or even severity of structural 

damage. However, the effectiveness of most existing vibration-based methods suffers 

from crucial limitations hampering their wide applications in engineering practices. For 

example, excessive reliance on baseline signals captured from pre-constructed 

benchmark structures. Under usual circumstances, it was accepted that it was a 

challenging task to build the benchmark structures in an accurate manner, through either 

a numerical or experimental means. This can be attributed to the complexity of material 

http://rsta.royalsocietypublishing.org/search?author1=Charles+R.+Farrar&sortspec=date&submit=Submit
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and geometric features of a real structure, in particular when vast environmental 

uncertainties involved (Stubbs and Kim, 1996).  

 

Aimed at addressing the above issues, the PE approach was developed based on the 

examination of local dynamic equilibrium of different structural components (Xu et al., 

2011, 2013a, 2013b). With an explicit physical implication (i.e., associated with the 

condition of dynamic equilibrium), the damage index of the PE is able to reveal damage 

locations and even sizes in the absence of baseline signals and benchmark structures, as 

long as several basic parameters relating to structural material and geometry (e.g., 

Young’s modulus) are known. Typified by local inspection, the application of the PE is 

independent of any prior knowledge of structural boundary conditions, and can be 

effectively performed using vibration signals generated under structural operational 

state. Thus the reliance on well controlled external excitation sources, which is of 

necessity for a variety of damage identification methods, particularly those utilizing 

characteristics of guided waves (Giurgiutiu, 2005; Wang et al., 2006; Zhao et al., 2007; 

Su et al., 2007; Ihn and Chang, 2008; Su et al., 2009; Chen et al., 2010; Zhou et al., 

2011; Sohn et al., 2014;), can be prevented. 

 

Involving high-order derivatives of vibration displacements, the damage index of the PE 

approach showed high sensitivity to measurement noise that was unavoidable under 
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experimental conditions. To reduce the noise influence, the “weak” formulation of the 

PE was developed by introducing weighted integration to the original differential 

equation. Depending on proper selections of integration interval, and particularly the 

form of weighting function, measurement noise was largely suppressed within the 

integration interval. More importantly, the “weak” formulation was able to achieve a 

variety of advantages besides noise reduction, for example, the flexibility of opting for 

various types of mechanical quantities to be measured at those positions which are 

arbitrarily selected. These advantages enable developments of new strategies of damage 

detection with enriched options of experimental configurations, capable of reaching 

improved detection accuracy and precision.  

 

VVD was established based on the “weak” formulation of the PE approach, with unique 

theoretical expressions and experimental configurations. The essence of VVD is based 

on identifying damage within a series of sub-regions, equivalent as the integration 

intervals of the “weak” formulation, divided from the entire structure under inspection. 

Each sub-region is deemed as a “virtual” structure undergoing independent vibration. 

Interestingly, the vibration deflection of the “virtual” structure, calculated according to 

classic mode superposition method, can be used as the weighting function included in 

the “weak” formulation. Consequently, the damage index of VVD can be constructed 

using the calculated weighing function. Different from the PE which is established 
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based on STVS (only vibration displacements were measured and processed), VVD can 

be constructed relying on the flexible selection of MTVS (for example, the combination 

of vibration displacements and curvatures). 

 

Originated from the PE approach, VVD naturally inherits the various advantages of the 

PE (e.g., independences of baseline signals and benchmark structures) as mentioned 

above. Moreover, VVD is capable of achieving improved detection accuracy and noise 

immunity compared with the PE approach, attributed to a hybrid use of MTVS. In 

engineering practices (particularly in civil engineering), it is common that MTVS are 

captured along inspected structures using different types of sensors (Zhang et al., 2011), 

so as to achieve optimal detection results.  In most cases, however, different types of 

vibration signatures can only be used separately by distinct damage identification 

methods, causing less efficient use of the database comprising of a great number of 

measurands. From this respect, VVD increases the efficiency of the utilization of 

existing database, providing the additional benefit of improving detection accuracy. 

 

As a proof-of-concept investigation, a finite element (FE) model of a cantilever beam 

containing a small damaged zone was used to examine the philosophy of VVD. And the 

influences from different factors (i.e., level of measurement noise and measurement 

density) on the detection accuracy of VVD were discussed based on the numerical 
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model. An experiment was carried out subsequently, to identify the locations of multiple 

defects in an aluminum beam-like structure. Identification results constructed using the 

PE approach, VVD using MTVS (i.e., densely measured vibration displacements and 

sparsely measured dynamic strains), and VVD using STVS, were presented, 

respectively, for the purpose of comparison.  

 

2. The PE Approach and Its “Weak” Formulation 

Damage indices of the PE approach were established based on equations of motion for 

various types of structural components, e.g., beam, plate or shell component. Using a 

homogeneous isotropic Euler-Bernoulli beam component as an example, the damage 

index under steady vibration state can be expressed as 

 

( )
( )

( )
4

2

4

d
DI

d

w x
x EI S w x

x
 = −        

    
                                                                   (1a) 

 

where ( )w x  is the vibration displacement at location ;   is the angular vibration 

frequency of the beam; E ,  , I  and S  are the modulus of elasticity, density, cross-

sectional moment of inertia and area of the beam under pristine status, respectively. In 

classic beam vibration theory, ( )DI x  represents the distribution of external excitation 

x
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applied on the axis of an undamaged beam, and ( )DI 0x =  signifies the absence of 

external excitation (in ideal cases, ( )DI x  remains zero for a beam subject to point 

excitations or excitations located at structural boundaries). It was found in previous 

study (Xu et al., 2011), however, the ( )DI x  showed variations from zero at damaged 

zones contained in a beam, whereas remained zero at intact regions of the beam. More 

importantly, prominent oscillations of ( )DI x  were discovered at the boundaries of 

damaged zones, which can be well utilized to precisely indicate the locations and sizes 

of damage. Because of the similarity between structural damage and external excitation 

in causing variations of ( )DI x , the signal of ( )DI x  in equation (1a), used for damage 

identification, was defined as “Pseudo-Excitation” (PE). 

 

In practical implementation, ( )w x  should be discretely measured in experiments. Thus 

the above ( )DI x , at a target point i, can be constructed using a finite difference method 

in a discrete form (if four neighboring measurement points from point 2i −  to 2i +  are 

involved), as 

 

( ) 2

2 1 1 24
DI 4 6 4i i i i i i i

EI
w w w w w S w − − + += − + − + −


                                               (1b) 
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where   is the distance between adjacent measurement points, iw  the flexural 

displacement measured at point i . Similarly, a two-dimensional damage index can be 

derived based on plate vibration theory, as 

 

( ) ( ) ( )4 2DI , , ,x y D w x y h w x y =  −                                                                     (1c) 

 

where D , being ( )3 2/12 1Eh − , signifies the bending stiffness of the plate component;

( ),w x y  is the vibration displacement; h and   are the thickness and the Poisson’s ratio, 

respectively. According to a two-dimensional finite difference method, ( )DI ,x y  in 

equation (1c) can be discretely constructed (Xu et al., 2013a). 

 

Although with the potential of precise indication of structural damage, the PE 

approach exhibits large sensitivity to the interference from measurement noise that is 

unavoidable in practical application, due to the high-order derivatives of vibration 

displacements involved in its damage index, as shown in equation (1a). Aimed at 

noise reduction, the “weak” formulation of the PE was developed by introducing 

weighted integration to the original formulation characterized by the differential 

equation. The general form of the “weak” formulation, still using a beam component 

for instance, can be written as 
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( ) ( )
/2

/2
DI DI

c

c

x

c
x

x x x dx





+

−
=  −                                                                                           (2) 

 

where DI  is the re-defined damage index subject to an integration interval of 

 / 2, / 2c cx x − +  with cx  and   as its center position and length, respectively. The 

integration interval is denoted by   in what follows. ( )x  is a weighting function 

selected with arbitrary form. When applying the “weak” formulation, the positions and 

sizes of   and ( )x  can be adjusted by regulating cx  and  , offering a “scanning 

window” to examine the entire beam component. And any variation of DI  from zero 

indicates the existence of damage within  . Depending on proper selections of   and 

( )x , the measurement noise can be considerably averaged and suppressed within  , 

with more prominent damage-related features highlighted. The significant de-noising 

effect of the “weak” formulation of the PE by selecting ( )x  as a classic Gaussian 

function was detailed in previous study (Xu et al., 2015).  And it was concluded that the 

principle of noise reduction using equation (2) is similar with that of some existing 

signal processing techniques such as wavelet transform (Cao et al., 2013b; Xu et al., 

2013c). 
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Specifically, equation (2) can be expanded by substituting equation (1a) into (2), as 

 

( )
( ) ( )

4

2
4

4

d
DI

d
c

w x
EI S w x x x dx

x
  



 
= − − 

 
                                                               (3a) 

 

The subscript k in DIk signifies the highest order of the derivative of ( )w x  involved in 

the integration, and 4k =  in equation (3a). Equation (3a) is defined as the fourth-order 

“expanded form” of the “weak” formulation. To take further steps, another four 

expanded forms, from third- to zero-order, can be obtained based on equation (3a) using 

partial integration, and the zero-order expanded form is expressed as 

 

( )
( )

( ) ( ) ( ) ( )3 2 2

0
3 2 2

d d d d d
DI

d d d d d

c c

c

w x w x x x w x x x
EI x x

x x x x x

 


 − −
=  − −  + 



  

( )
( ) ( )

( ) ( )

/2
3 4

2

3 4

/2

d d

d d

c

c

x

c c

c

x

x x x x
w x EI S x x w x dx

x x





 
  

+

−

  − −
−  − −  −  

  
      (3b) 

 

Mathematically, equation (3a) and (3b) are identical. Compared with equation (3a), 

however, equation (3b) offers the possibility to develop new identification strategies for 

damage with increased flexibilities in parameter selection and experimental 

configuration, enabling the utilization of MTVS. For example, ( )d / dw x x  in equation 
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(3b) can be obtained by measuring the rotation angle of structural vibration (Abdo and 

Hori, 2002). And ( )2 2d / dw x x , defined as ( )x  in what follows, is well-known as the 

curvature of vibration displacement, and can be obtained by measuring dynamic strains. 

The relationship between ( )x  and strain along beam component can be expressed as 

( ) ( )
2

h
x x =                                                                                                                                    (4) 

 

where ( )x  is strain, and h is the thickness of the beam component. Besides the 

involvement of MTVS, the measurement positions of the MTVS can be freely arranged 

along inspected structure, by adjusting the position and size of   in equation (3b). It is 

anticipated that by relying on reasonable selections of measurands and measurement 

positions, equation (3b) is able to attain satisfactory detection accuracy and precision.  

 

3. Virtual Vibration Deflection (VVD) 

VVD is then established based on equation (3b). Assuming that a certain form of ( )x  

in equation (3b) exists, satisfying 

 

( )
( ) ( )

4

2

4

d
0

d

c

c

x x
EI S x x w x dx

x


  



 −
−  − = 

 
                                                     (5a) 
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then equation (3b) can be simplified by containing those terms at the boundaries of   

only. If further simplification can be made, for example, with the following conditions 

satisfied: 

 

( ) ( )/ 2 0, / 2 0   = − =  , 
( ) ( )2 2

2 2

d / 2 d / 2
0, 0

d dx x

   −
= =                               (5b) 

 

then two more terms in equation (3b) can be eliminated, giving rise to a simple 

expression of the damage index of VVD, as 

 

( )
( )

( )
( )d / 2 d / 2

DI / 2 / 2
d d

VVD c cEI x x
x x

   
   −

− 
= − +  − −  

 
                

( )
( )

( )
( )3 3

3 3

d / 2 d / 2
/ 2 / 2

d d
c cEI w x w x

x x

   
 

 −
− +  − −  

 
                       (5c) 

 

In the above equation, ( )/ 2cx − , ( )/ 2cx + , ( )/ 2cw x −  and ( )/ 2cw x +  can 

be obtained by measuring dynamic strains and vibration displacements, respectively, 

and ( )d / 2 / dx − , ( )d / 2 / dx  , ( )3 3d / 2 / dx −  and ( )3 3d / 2 / dx   can be 
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calculated based on ( )x . Therefore, the key step of establishing VVD resides on the 

construction of ( )x  according to equation (5a) and (5b), to be detailed as follows. 

 

In equation (5a), assuming 

 

( )
( )

4

2

4

d
( ) ,

d

c

c

x x
q x EI S x x x

x


  

−
= −  −                                                      (6a) 

 

then equation (5a) becomes 

 

( ) ( ) 0q x w x dx


=                                                                                                      (6b) 

 

To calculate ( )q x , first make it represented by the summation of a trial function, ( )q x , 

and a constant, c , as 

 

( ) ( ) ,q x q x c x= +                                                                                              (6c) 

 

Since ( )q x  can be selected with an explicit form, and the distribution of ( )w x  is also 

fixed from experiment, c can be computed according to equation (6b) and (6c), as 
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( ) ( )

( )

q x w x dx

c
w x dx





=



                                                                                                    (6d) 

 

as long as ( ) 0w x dx


 . And then ( )q x  can be explicitly expressed using equation 

(6c).  

 

With a calculated ( )q x , equation (5a) and (5b) can be rewritten as 

 

( )
( ) ( )

4

2

4

d
,

d

c

c

x x
EI S x x q x x

x


  

−
−  − =                                                     (7a) 

( ) ( )/ 2 0, / 2 0   = − =  ,   
( ) ( )2 2

2 2

d / 2 d / 2
0, 0

d dx x

   −
= =                             (7b) 

 

Interestingly, equation (7a) shows the similar form with equation (1a), with ( )cx x −  

replacing ( )w x . Thus equation (7a) can be seen as the equation of motion for a 

“virtual” beam structure spanning over  , and equation (7b) can be seen as the 

boundary conditions, implying that the beam is simply-supported at its two ends, i.e., 

the boundaries of  . Actually,   can be arbitrarily selected along the span of the tested 
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beam component, which is illustrated in Figure 1. And it can be seen from the figure 

that ( )q x  in equation (7a) plays the role of external excitation applied on the axis of the 

“virtual” beam spanning over  , with angular frequency of  . Naturally, ( )cx x −  in 

equation (7a) is regarded as the vibration deflection of the “virtual” beam. Reaching 

here, ( )cx x −  can be calculated using classic mode superposition method, with a 

general form, as 

( ) ( )2 2
1

r
r

r r

Q
x Y x

 



=

=
−

                                                                                            (8a) 

where                                       

( ) ( )
0

, 1, 2...r rQ Y x q x dx r


= =                                                                                (8b) 

 

In the above equations, r  and ( )rY x  are the rth natural angular frequency and mode 

shape of the “virtual” beam, and   in equation (8b) corresponds to the length of the 

beam, equivalent as the length of  . It is noteworthy that equation (8a) and (8b) are 

presented in general forms, and all the relevant functions are defined within  0 , . In 

the following study, the first 100 modes of the “virtual” beam were superposed to 

construct the distribution of ( )x . 

[Figure 1] 
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A variety of other forms of the damage index of VVD, different from the one shown in 

equation (5c), can be constructed by assuming boundary conditions different from 

equation (7b). For example, subject to a new type of boundary conditions as 

 

( ) ( )/ 2 0, / 2 0   = − =  ,   
( ) ( )d / 2 d / 2

0, 0
d dx x

   −
= =                                (9a) 

 

the damage index of VVD exhibits a distinct form of 

( ) ( ) ( ) ( )2 2

2 2

d / 2 d / 2 d / 2 d / 2
DI

d d d d

c c
VVD

w x w x
EI

x x x x

     
−

 + − −
= −  −  

 
                

( )
( )

( )
( )3 3

3 3

d / 2 d / 2
/ 2 / 2

d d
c cEI w x w x

x x

   
 

 −
− +  − −  

 
                        (9b) 

 

Equation (7a) and (9a) constitute the equation of motion of a “virtual” beam “clamped” 

at its two ends, instead of the simply supported one as shown in Figure 1. DI VVD−  in 

equation (9b) can be constructed by measuring rotation angles and displacements of 

vibration, and the distribution of ( )x  can be calculated following the same procedure 

as shown in equation (6a) to (6d), (8a) and (8b). It is certain that more forms of DI VVD−  

can be established by setting different types of boundary conditions. For simplicity, 
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however, the form in equation (5c) was adopted in this study, relying on the 

measurements of vibration displacements and strains. 

 

4. Numerical Validation 

When applying VVD, the entire structure under inspection was first divided into a series 

of sub-regions, equivalent as a series of  , and the values of DI VVD−  were then 

constructed according to equation (5c) within each sub-region, leading to an ultimate 

“region-by-region” detection signal distributed along the inspected structure. As a 

proof-of-concept investigation, the philosophy of VVD was examined using a finite 

element (FE) model of a cantilever beam containing a small damaged zone. 

 

4.1 FE Model 

Considering an Euler-Bernoulli cantilever beam with geometric and material properties 

listed in Table 1. The beam was clamped at its left end as shown in Figure 2. A FE 

model of the beam, with 1100 beam elements evenly distributing across the beam length, 

was created using commercial FEM code ANSYS®. A harmonic point excitation of 

1000 Hz was applied at 10 mmx =  (referring to Figure 2 for the coordinate system). A 

damage zone spanning the region of [820mm, 840mm] was simulated by reducing 

Young's modulus of the modeled beam elements to 50% of the undamaged value. To 



19 

avoid any singularity near the excitation, an inspection region of  200mm,1100mm  

was pre-determined to exclude the vicinity of the excitation point.  

 

The flexural displacement at each node (corresponding to the measurement point in 

subsequent experiment) in the absence of noise interference, denoted by exact

iw , was 

obtained using ANSYS®, which was then numerically contaminated with added noise as 

 

( )noisy exact 1 ij

i i iw w e
=  +                                                                                            (10) 

 

where noisy

iw  is the noise-corrupted counterpart of exact

iw ; i  a Gaussian random real 

number related to the magnitude of exact

iw  and i  another Gaussian random real number 

related to the phase of exact

iw . In the succeeding analysis, ( ) ( ) 0i i   = = , 

( ) 1%i  =  and ( ) o1i  = (  and   signify the mathematical manipulation of 

calculating mean and standard deviation, respectively). It should be emphasized that the 

level of noise interference is directly associated with ( )i   and ( )i  , and can be 

expressed in a simple way. For example, ( ) 1%i  =  and ( ) o1i  =  was expressed as 

( )o1% ,1 . The distributions of exact

iw  and noisy

iw  with noise level of ( )o1% ,1  are plotted 

along the inspection region of the beam as shown in Figure 3.  
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[Figure 2] 

 

 

 

 

[Figure 3] 

 

Table 1. Material and geometric properties of the simulated cantilever beam for 

numerical validation 

 

 

 

 

 

 

 

 

4.2 Damage Identification Using the PE Approach 

Based on equation (1b), the damage index of the PE approach, without and with noise 

influence, were calculated using exact

iw
 
and noisy

iw , respectively, leading to exactDIi  and 

Properties Numerical value 

Density  3kg/m  
 2700 

Young's Modulus E  GPa  70 

Beam length L mm  1100 

Width b mm  10 

Thickness h mm  10 
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noisyDIi  signals as presented in Figure 4(a) and (b), respectively. In Figure 4(a), the 

damaged zone can be exactly identified. On the contrary, the signal of noisyDIi  in Figure 

4(b) fails to locate the damaged zone, as the added noise, though with a low level 

contained in vibration displacements (see Figure 3), was drastically magnified due to 

the fourth-order differentiation of ( )w x  as shown in equation (1a) and (1b), and thus 

significantly masked the damage-induced feature as presented in Figure 4(a). 

 

[Figure 4] 

 

It was reported that the noise influence in the PE approach can be minimized by 

reducing the measurement density of vibration displacement to be around ten 

measurement points per wavelength of vibration (Xu et al., 2011). And further reduction 

of measurement density brought unacceptable truncation error in the relevant numerical 

computations, causing the loss of the accuracy of finite difference as shown in equation 

(1b). Thus, the measurement density in the current analysis was reduced to be ten 

measurement points per wavelength, giving rise to exactDIi  and noisyDIi  signals as shown 

in Figure 4(c) and (d), respectively. In Figure 4(c), exactDIi  shows a single peak 

corresponding to the damaged zone, which is considered to be with decreased detection 

accuracy compared with Figure 4(a), from which two prominent peaks of the exactDIi  
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signal can be clearly observed at the boundaries of the damage, indicating both the 

location and the exact size of the damaged zone. On the other hand, significantly 

reduced noise influence is observed by comparing Figure 4(d) with (b). Under the noise 

influence, the detection accuracy was improved along with the reduction of 

measurement density, evidenced by the fact that the location of the damaged zone was 

indicated by one of the peaks of noisyDIi  signal in Figure 4(d). However, false peaks are 

observed at the intact regions of the beam, so the identification accuracy as presented in 

Figure 4(d) was still not satisfactory.  

 

4.3 Damage Identification Using VVD 

The values of ( )x  involved in equation (5c), without any influence from measurement 

noise, can be calculated discretely using exact

iw  according to a central difference scheme, 

as 

( )exact exact exact exact

1 12

1
2i i i iw w w − += − +


                                                                           (11a) 

There are two ways of simulating i  values subject to noise influence from 

experimental condition. One way relies on the derivation of noisy

iw
 
in equation (10), 

according to the central difference similar with equation (11a), as 
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( )noisy-D noisy noisy noisy

1 12

1
2i i i iw w w − += − +


                                                                        (11b) 

 

where noisy-D

i  indicates curvature derived from vibration displacement. The use of noisy

iw  

and noisy-D

i  typifies the application of a STVS-based VVD, because all terms in 

equation (5c) can be obtained based on the measurement of vibration displacements, i.e., 

noisy

iw . The noise influence in noisy-D

i  comes from that in noisy

iw , and was anticipated to 

be largely amplified due to the second-order derivation of noisy

iw , as shown in equation 

(11b). 

 

The other way of simulating a noise-contaminated i  is to directly introduce 

disturbance to exact

i  in equation (11a), as  

 

( )noisy-S exact 1 ij

i i i e
  =  +                                                                                         (11c) 

 

where noisy-S

i  simulates curvature from strain measurement (see equation (4)). In 

equation (11c), i  and i  are two Gaussian random real numbers related to the 

magnitude and phase of exact

i , respectively. ( ) ( ) 0i i   = = , and ( )i   and ( )i   
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signify the level of noise influence in noisy-S

i , caused by errors in strain measurement.  

The use of noisy

iw  and noisy-S

i  typifies the application of a MTVS-based VVD, since two 

types of vibration signatures, i.e., vibration displacement and strain, are involved in 

equation (5c). 

 

The inspection region of the beam model was uniformly divided into 15 sub-regions, 

within which DI VVD−  were constructed according to equation (5c). The center position 

of each sub-region, i.e., cx  in equation (5c), is listed in Table 2, corresponding to the 

coordinate system shown in Figure 2. The curvature values in equation (5c) only need to 

be known at the boundaries of the sub-regions, corresponding to 16 points evenly 

distributing along the inspection region. Within each sub-region, there are 61 points 

where vibration displacements, i.e., exact

iw
 
and noisy

iw , were evenly captured. The 

vibration displacements were captured densely in order to to construct the distribution 

of ( )q x  according to equation (6b) to (6d) as accurate as possible. Figure 5(a) and (b) 

show the values of exact

i , noisy-D

i  and noisy-S

i  at the boundaries of the sub-regions, 

calculated using equation (11a) to (11c), respectively. It can be seen in Figure 5(a) that 

the data of noisy-D

i  was seriously disturbed data compared with exact

i , because of the 

second-order derivation of noisy

iw  in equation (11b), as explained previously. Thus it is 
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anticipated that the noisy-D

i  signal may not be capable of providing reliable and accurate 

results for damage identification. In Figure 5(b), the noise level in noisy-S

i  was set to be 

( ) 2%i  =  and ( ) o2i  = , i.e., ( )o2% , 2 (referring to equation (11c)). A large 

similarity between noisy-S

i  and exact

i  can be observed. A comprehensive comparison 

between Figure 5(a) and (b) implies that the MTVS-based VVD, constructed using 

 and noisy-S

i , is capable of generating much superior accuracy of damage 

identification than that of the STVS-based VVD constructed using  and noisy-D

i .  

 

To implement VVD, first assign a specific form of the trial function, ( )q x , in equation 

(6c), as  

 

2
( ) sin ,

2 2

c

c c

x x

q x x x x




 



  
− +  

  = −   +
 
 
 

                                                     (12) 

Spanning over a sub-region, the profile of ( )q x  is similar with that of a half-period sine 

function. It is certain that ( )q x  can be assigned with other forms, and more suitable 

forms probably exist benefiting the effect of damage identification, but the relevant 

discussion is not included in the present study.  

noisy

iw

noisy

iw
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Based on ( )q x  in equation (12), ( )q x  and ( )x  can be constructed accordingly using 

equation (6c), (6d), (8a) and (8b). In equation (6d), the value of c changes subject to 

different sub-regions due to the variation of ( )w x  along the beam. Thus ( )q x  and 

( )x  also distribute differently in different sub-regions. c values corresponding to 

different sub-regions, calculated according to equation (6d) using exact

iw  and noisy

iw , 

respectively, are listed in Table 2, and the variations of c subject to noise influence are 

also presented. It can be seen that the noise influence on c is minimal under the current 

noise level, i.e., ( )o1% ,1  in noisy

iw .  

 

Figure 6(a) presents the DI VVD−  signal constructed based on equation (5c), using noisy

iw  

and noisy-D

i  as shown in equation (10) and (11b). The (STVS-based) DI VVD−  values are 

presented corresponding to the center positions of different sub-regions, i.e., cx  in Table 

2. 
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Table 2. Parameters associated with different sub-regions in numerical validation 

Center position  cx m  c based on exact

iw  c based on noisy

iw  Variation  %  

0.23 -0.6540 -0.6544 0.06 

0.29 -0.6542 -0.6553 0.17 

0.35 -0.6546 -0.6548 0.03 

0.41 -0.6546 -0.6534 0.18 

0.47 -0.6545 -0.6527 0.28 

0.53 -0.6545 -0.6548 0.05 

0.59 -0.6545 -0.6546 0.02 

0.65 -0.6547 -0.6544 0.05 

0.71 -0.6549 -0.6555 0.09 

0.77 -0.6425 -0.6443 0.28 

0.83 -0.6615 -0.6613 0.03 

0.89 -0.6513 -0.6514 0.02 

0.95 -0.6569 -0.6558 0.17 

1.01 -0.6606 -0.6605 0.02 

1.07 -0.6286 -0.6291 0.08 
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The sub-region containing the damage zone is marked by shadowed area. As anticipated, 

the STVS-based signal fails to reveal the damage location because of its vulnerability to 

noise influence. Subsequently, the MTVS-based DI VVD−  values were constructed using 

noisy

iw  and noisy-S

i , with a noise level of ( )o1% ,1  in noisy

iw  and ( )o2% , 2  in noisy-S

i . As 

shown in Figure 6(b), the signal shows satisfactory accuracy of identification, with 

strong noise immunity when compared with the noise-free DI VVD−  calculated based on 

exact

iw  and exact

i . Therefore, it can be concluded according to Figure 6(a) and (b) that 

MTVS-based detection results possess much superior detection accuracy and noise 

immunity than those of STVS-based results. And the STVS-based VVD is not 

recommended to be used in application, so the following parametric discussion is 

focused on the application of MTVS-based VVD exclusively. 

 

[Figure 5] 

 

[Figure 6] 
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4.4 Discussion 

4.4.1 Noise Immunity of MTVS-based VVD 

The level of noise influence contained in noisy-S

i  was changed by adjusting the values of 

( )i   and ( )i   in equation (11c), while the noise level in noisy

iw  was kept as ( )o1% ,1 . 

The resultant signals of DI VVD−  are presented from Figure 7(a) to (f). It can be observed 

that satisfactory detection accuracy can be maintained under the noise level of 

( )o10% ,10  in noisy-S

i , referring to Figure 7(a) and (b). Increase of the noise level in 

noisy-S

i  induces disturbances to the detection signals, as shown from Figure 7(c) to (e). 

But in these three figures, the signals can still facilitate to indicate the damage location, 

with their most prominent peak revealing the damage location, although false peaks are 

also seen at intact regions. Interestingly, it is discovered that a larger noise level does 

not necessarily lead to inferior detection accuracy and precision. For example, the 

indication of damage as presented in Figure 7(e), subject to noise level of ( )o40% , 40  

in noisy-S

i , seems even more accurate than those presented in Figure 7(c), subject to 

( )o20% , 20  in noisy-S

i , judging from less prominent fluctuations of DI VVD−   at intact 

regions in Figure 7(e). Such phenomenon is attributed to the random nature of noise 

influence. In a statistical sense, however, detection results subject to lower noise level is 

still considered to be more precise and stable than that subject to severe noise 
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interference. Further increased noise interference, with a level of ( )o50% , 50  in noisy-S

i , 

led to the detection result shown in Figure 7(f), and it is clear that the damage can no 

longer be revealed under such a severe noise interference. In general, the MTVS-based 

VVD possesses considerably strong immunity to measurement noise in noisy-S

i , capable 

of tolerating a noise level up to ( )o10% ,10 . To obtain even higher noise tolerance, a 

large number of measurements can be carried out. By doing so, more detection signals 

can be constructed and then averaged, giving rise to a more stable result subject to less 

random disturbance. 

 

Along the same way, influence from the measurement noise contained in noisy

iw  on the 

detection accuracy of MTVS-based VVD can be discussed, under a fixed noise level in 

noisy-S . Two representative cases were presented in Figure 8(a) and (b), corresponding 

to noise levels of ( )o5% , 5  and ( )o10% ,10  in noisy

iw , respectively. And the noise level 

in noisy-S  was kept as ( )o5% , 5 . According to the figures, a strong immunity of the 

MTVS-based VVD to noise interference in vibration displacements can be clearly seen.   

[Figure 7] 

 

[Figure 8] 
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4.4.2 Influence from Measurement Density of Vibration Displacements 

It was anticipated that within an individual sub-region, changing the number of 

displacement measurement points, defined as N, will influence the detection accuracy of 

VVD evidently. The reason is that in equation (6d), N directly determines the accuracy 

of the computation of c (e.g., larger N corresponds to smaller truncation error involved 

in the numerical integration in equation (6d)), thus will in turn determine the accuracy 

of the calculation of ( )q x  in equation (6c), ( )x  in equation (8a), and DI VVD−  in 

equation (5c). Figures 9(a) to (d) present the DI VVD−  signals subject to different values 

of N, under unchanged lengths of the sub-regions assigned previously and a fixed noise 

level of ( )o1% ,1  in noisy

iw  and ( )o5% , 5  in noisy-S . Progressively decreasing accuracy 

along with reduced N values was observed, as shown from Figure 9(a) to (d). The 

capability of damage indication was maintained until 16N =  (in Figure 9(c)), and a 

sharp decrease of detection accuracy was encountered when N was reduced from 16 to 

13. As shown in Figure 9(d), the DI VVD−  signal corresponding to 13N =  is not capable 

of locating damage. 

 

It is important that from Figure 9(a) to (d), the observation and analysis of the noise-free 

signals of DI VVD− , constructed based on exact

iw  and exact

i , plays a major role. Because 
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compared with signals showing large instability due to the random influence from noise, 

noise-free signals reflect the variations of the accuracies of relevant numerical 

computations (e.g., numerical computation of equation (6d)) more accurately, in turn 

providing a more solid reference for selecting N. In addition, the distribution of a noise-

influenced signal was constructed based on a noise-free one. If a noise-free signal fails 

to locate damage, so does its noisy counterpart. Therefore, according to the noise-free 

signals of  DI VVD−   as shown in Figure 9(a) to (d), 15N   was concluded as the basic 

requirement when applying VVD. It can be seen that to achieve satisfactory detection 

accuracy based on VVD, a large number of displacement measurement points is usually 

needed to be assigned along tested structure, which may cause inconvenience for 

practical measurement under certain circumstances. Thus further study is necessary to 

be developed aimed at reducing the influence from N on the detection accuracy. 

 

[Figure 9] 

 

5. Experimental Validation  

5.1 Setup 

Experimental validation was subsequently conducted to further scrutinize the detection 

accuracy of VVD, in identifying multiple defects in a cantilever beam-like structure, as 

sketched in Figure 10(a). The structure was made of aluminum 6061 with a density of 
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2.7 kg/m3 and a Young’s modulus of 68.9 GPa. The defined inspection region, shown in 

Figure 10(a), features a length of 550 mm, a constant width of 30mm and a uniform 

thickness of 8 mm, within which two through-width notches (1.2 mm×30 mm× 2 mm), 

each accounting for 0.2% of the entire beam span, were created at 220 mm and 380 mm 

from the clamped end, as shown in Figure 10(b). Notably, the irregular shape of the 

structure, referring to the varying width near the free end, was intentionally designed in 

order to demonstrate the effectiveness of VVD in detecting damage in structural 

components with complex boundary geometries. A harmonic excitation of 1000 Hz was 

applied with an electromechanical shaker (B&K®4809), near the free end of the 

structure. A scanning Doppler laser vibrometer (Polytec ○R PSV- 400B) was used to 

measure the flexural vibration displacements at 283 measurement points (with a spacing 

interval around 2 mm), along the central line of the beam. 

 

Within the inspection region, thirteen impedance strain gauges (manufactured by 

Huangyan Testing Apparatus Factory, Zhejiang, China; the product type of the strain 

gauges is BX120-3AA and the serial number is 105) were attached on the surface of the 

structure with uniform adjacent distances. Thus twelve sub-regions were formed, within 

which the notches were identified. The length of each sub-region is 40 mm, and the 

center positions, cx , of different sub-regions are listed in Table 3, referring to the 

coordinate system as shown in Figure 10(a). The data of dynamic strains were captured 
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using a universal recorder (Kyowa®EDX-100A) and the curvature values were then 

calculated according to equation (4). Between adjacent strain gauges, there are around 

20 measurement points of vibration displacements, i.e., 20N  . 

[Figure 10] 

 

Table 3. Center positions ( cx ) of different sub-regions in experimental validation 

 cx m  0.06 0.10 0.14 0.18 0.22 0.26 0.30 0.34 0.38 0.42 0.46 0.50 

 

5.2 Results 

The PE approach was firstly applied according to equation (1b), and the detection signal 

constructed using all measurement points of vibration displacements is shown in Figure 

11(a). As predicted in Section 4.2, the signal is drastically disturbed and the damage-

related information has been totally masked. By adjusting the measurement density to 

be ten measurement points per wavelength, improved detection accuracy was achieved 

as shown in Figure 11(b). It can be seen that the notch corresponding to 380 mmx =  

can be identified, but the other notch cannot be clearly revealed because of the serious 

fluctuations of the detection signal at intact regions.  
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The STVS- and MTVS-based detection signals of VVD are presented in Figure 12(a) 

and (b), respectively. In Figure 12(a), the notch corresponding to 220mmx =  seems to 

be identified by the STVS-based signal, whereas the other one corresponding to 

380mmx =  cannot be revealed. However, the signal is not considered to be reliable 

because of the severe noise influence included in the curvature values, referring to 

Figure 6(a) and 5(a). Thus the indication of one of the notches, although successful, was 

doubted as a coincidence arising from the random distribution of measurement noise. In 

Figure 12(b), the locations of both notches were accurately identified by the MTVS-

based VVD signal, featured by two prominent peaks of DI VVD−  corresponding to the 

sub-regions containing the notches.  

 

Higher detection precision of VVD is expected to be achieved by increasing the number 

of sub-regions along the inspected structure, using a larger number of strain gauges. 

And the accuracy of identification can be further increased by arranging a larger number 

of measurement points of vibration displacements between adjacent strain gauges, as 

evidenced by Figure 9(a) to (d). In fact, the level of noise influence associated with the 

current experiment was considered to be relatively severe, probably because of the 

interference from a variety of attachments to the surface of the specimen (such as wires 

connected to the strain gauges) on the linearity of the vibration of the specimen. Thus, it 

is anticipated that identification accuracy can be improved by making use of advanced 
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and compact experimental configurations, for instance, using new types of strain 

sensors (e.g., Fiber Bragg Grating sensor) or more reasonable wire arrangements. 

[Figure 11] 

[Figure 12] 

 

6. Conclusion 

VVD was established based on the “weak” formulation of the PE approach. By dividing 

the entire structure under inspection into a series of sub-regions, each sub-region was 

regarded as a “virtual” structure undergoing independent vibration subject to different 

types of boundary conditions, which can be assigned arbitrarily. The vibration 

deflection of the “virtual” structure, calculated according to classic mode superposition 

method, is equivalent as the weighting function in the “weak” formulation of the PE, 

and can be used to construct the damage index of VVD. 

 

The application of VVD is free of baseline signals, benchmark structures, prior-

knowledge of structural boundary conditions, etc.. And compared with the PE, VVD 

possesses improved detection accuracy, attributed to a hybrid use of MTVS in its 

formulation. Relying on numerical analysis, VVD shows a high tolerance of 

measurement noise both contained in vibration displacements and strains. Within an 

individual sub-region of identification, the number of measurement points for vibration 
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displacements larger than 15 was considered as a basic requirement for applying VVD. 

Finally, in experimental validation, the detection results demonstrated the effectiveness 

of VVD in identifying through width notches in beam-like structures. At last, it should 

be noticed that because of the interference from measurement noise, fluctuations of 

detection results of VVD cannot be totally eliminated at the intact regions of inspected 

structures, inducing difficulty in declaring the successful identification of damage.  

Thus, a more comprehensive algorithm is necessary to be developed, obtaining a 

threshold associated with the level of noise influence and the correlation between the 

damage index and the severity of damage, according to which damage can be identified 

with higher confidence.  
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