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An active noise control (ANC) system is model dependent/independent if its controller transfer function is dependent/independent
on initial estimates of path models in a sound field. Since parameters of path models in a sound field will change when boundary
conditions of the sound field change, model-independent ANC systems (MIANC) are able to tolerate variations of boundary
conditions in sound fields and more reliable than model-dependent counterparts. A possible way to implement MIANC systems
is online path modeling. Many such systems require invasive probing signals (persistent excitations) to obtain accurate estimates
of path models. In this study, a noninvasive MIANC system is proposed. It uses online path estimates to cancel feedback, recover
reference signal, and optimize a stable controller in the minimum H2 norm sense, without any forms of persistent excitations.
Theoretical analysis and experimental results are presented to demonstrate the stable control performance of the proposed system.
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1. INTRODUCTION

Most active noise control (ANC) systems are model depen-
dent. Let ̂P(z) and ̂S(z) denote estimates of primary and sec-
ondary path transfer functions P(z) and S(z). Either ̂S(z)
or both ̂P(z) and ̂S(z) must be obtained by initial system
identification for model-dependent ANC systems. Controller
transfer function C(z) of a model-dependent ANC system is
either designed by minimizing ‖ ̂P(z)+ ̂S(z)C(z)‖, or adapted
with the aid of ̂S(z) [1, 2]. If estimates ̂P(z) and ̂S(z) contain
too much error, a model-dependent ANC system may gen-
erate constructive instead of destructive interference. This is
mathematically equivalent to ‖P(z) + S(z)C(z)‖ > ‖P(z)‖
even if ‖ ̂P(z) + ̂S(z)C(z)‖ is minimized. If phase error in
̂S(z) exceeds 90◦ in some frequency, an ANC system adapted
by the filtered-X least mean square (FXLMS) algorithm may
become unstable [3–5]. An operator of a model-dependent
ANC system must have the knowledge and skill to obtain ac-
curate estimates of path models by initial system identifica-
tion for each individual application.

During the operation of an ANC system, changes of en-
vironmental or boundary conditions may cause significant

changes to path transfer functions P(z) and S(z). Since a
model-dependent ANC system only remembers initial path
estimates ̂P(z) and ̂S(z), variation of P(z) and S(z) may
cause mismatch with initial estimates ̂P(z) and ̂S(z) to de-
grade ANC performance. In cases of severe mismatch be-
tween path transfer functions and their initial estimates, a
model-dependent ANC system may generate constructive in-
stead of destructive interference, or even become unstable.

Model-independent ANC (MIANC) systems depend on
online path modeling or invariant properties of sound fields
to update or design controllers [6–8]. These systems avoid
initial path modeling and are adaptive to variations of en-
vironmental or boundary conditions of sound fields. Many
adaptive MIANC systems require invasive persistent excita-
tions to obtain accurate path estimates and ensure closed-
loop stability [6, 7, 9, 10]. Noninvasive MIANC systems are
able to ensure closed-loop stability without persistent ex-
citations, which are possible by a recently developed algo-
rithm, known as orthogonal adaptation [11, 12], if the pri-
mary noise signal is directly available as the reference signal.

In many real applications, the primary noise signal is not
necessarily available and the reference signal must be recov-
ered from the sound field [1, 2]. When an ANC system is
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Figure 1: Configuration of the proposed MIANC system.

active, a measured signal is a linear combination of primary
and secondary signals. Feedback of ANC signal in the mea-
surement is mathematically modeled by a feedback transfer
function F(z) from the controller to the reference sensor. Ac-
curate estimation of F(z) is as important as accurate estima-
tion of P(z) or S(z) [9, 13]. A complete noninvasive MIANC
(CNMIANC) system must be able to suppress the noise sig-
nal without injecting probing signals for online modeling of
P(z), S(z), and F(z). Most available methods for adaptive
feedback cancellation require persistent excitations [9, 13].
In this study, a new method is presented for adaptive feed-
back cancellation without persistent excitations.

It was proposed to use a pair of sensors to measure pres-
sure signals in ducts, from which traveling waves are re-
solved [14, 15]. The outbound wave could be used directly
as the reference signal without cancelling feedback signals if
an infinite-impulse-response (IIR) controller could be im-
plemented accurately [14, 15]. In reality, it is very difficult to
implement a stable ideal IIR ANC controller [16]. Most prac-
tical ANC systems use finite-impulse-response (FIR) con-
trollers. The outbound wave in a duct is a linear combina-
tion of primary noise and reflected version of feedback sig-
nal. Instead of using the outbound wave directly as the ref-
erence, the least mean square (LMS) algorithm is applied in
this study to cancel feedback signals in the outbound wave
before using it as the reference. Orthogonal adaptation is
combined with the proposed ANC configuration to imple-
ment a CNMIANC system. Experimental result is presented
to demonstrate the performance of the CNMIANC system.

2. SYSTEM CONFIGURATION AND MODEL

Figure 1 illustrates the configuration of the proposed ANC
system. The primary source is represented by the upstream
speaker and the secondary source is the midstream speaker.
Cross-sectional area of the duct is small enough such that
sound field in the duct can be modeled by a 1D sound field
in the frequency range of interest. Three microphone sensors
are installed in the duct, measuring signals p1, p2, and p3,
respectively. Since the primary noise signal is not available
to the ANC system, the reference signal is recovered from p1

and p2, while p3 is the error signal to be minimized by the
ANC system.

Let d denote the axial distance between p1 and p2. The
acoustical two-port theory [16, 17] has been applied by many
ANC researchers for the design and analysis of ANC systems.
It is adopted here as an analytical tool. An equivalent acousti-
cal circuit is shown in Figure 2 to model the two-microphone
system. The upstream part, from the primary source to loca-
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Figure 2: (a) Acoustical two-port circuit in the duct system, (b)
contribution by controller, and (c) contribution by primary source.

tion of p1, is equivalent to an acoustical source with strength
up and impedance Zp. The downstream part, from location
of p2 to the outlet, is represented by another acoustical source
with strength us and impedance Zs. Characteristic impedance
of the duct is represented by Zo.

The linear system theory allows one to solve p1 and p2

in Figure 2(a) by focusing on acoustical circuits of Figures
2(b) and 2(c) before adding two solutions together as the fi-
nal solution of Figure 2(a). For the case of up = 0, which is
represented by Figure 2(b), one obtains

p2|up=0 =
[

cos(kd) + j
Zo
Zp

sin(kd)
]

p1|up=0,

us − p2|up=0 =
[

Zs
Zp

cos(kd) + j
Zs
Zo

sin(kd)
]

p1|up=0,

(1)

where k is the wave number. One can solve, from (1),

p2|up=0 =
Zo
[

Zpcos(kd) + jZosin(kd)
]

(

Zs + Zp
)

Zocos(kd) + j
(

ZsZp + Z2
o

)

sin(kd)
us,

(2)

p1|up=0 =
ZoZp

(

Zs + Zp
)

Zocos(kd) + j
(

ZsZp + Z2
o

)

sin(kd)
us.

(3)

Similarly, for the case of us = 0, which is represented by
Figure 2(c), one obtains

p1|us=0 =
[

cos(kd) + j
Zo
Zp

sin(kd)
]

p2|us=0,

up − p1|us=0 =
[

Zp
Zs

cos(kd) + j
Zp
Zo

sin(kd)
]

p2|us=0,

(4)
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from which one can solve

p1|us=0 =
Zo
[

Zscos(kd) + jZosin(kd)
]

(

Zs + Zp
)

Zocos(kd) + j
(

ZsZp + Z2
o

)

sin(kd)
up,

(5)

p2|us=0 =
ZoZs

(

Zs + Zp
)

Zocos(kd) + j
(

ZsZp + Z2
o

)

sin(kd)
up.

(6)

Adding (2) and (6), one may write

p2 = p2|up=0 + p2|us=0

= Zo
[

Zpcos(kd) + jZosin(kd)
]

us + ZoZsup
(

Zs + Zp
)

Zocos(kd) + j
(

ZsZp + Z2
o

)

sin(kd)
.

(7)

The same method is applicable to (3) and (5) for

p1 = p1|up=0 + p1|us=0

= Zo
[

Zscos(kd) + jZosin(kd)
]

up + ZoZpus
(

Zs + Zp
)

Zocos(kd) + j
(

ZsZp + Z2
o

)

sin(kd)
.

(8)

The next step is to use complex factor α = Zo/((Zs +
Zp)Zocos(kd) + j(ZsZp +Z2

o )sin(kd)) to simplify (7) and (8).
The results read

p2 = α
{[

Zpcos(kd) + jZosin(kd)
]

us + Zsup
}

,

p1 = α
{[

Zscos(kd) + jZosin(kd)
]

up + Zpus
}

.
(9)

Since cos(kd) = 0.5(e jkd + e− jkd) and jsin(kd) = 0.5(e jkd −
e− jkd), (9) can be written as

p2 = α
{[

Zp + Zo
2

e jkd +
Zp − Zo

2
e− jkd

]

us

+
[

Zs + Zo
2

+
Zs − Zo

2

]

up

}

,

p1 = α
{[

Zs + Zo
2

e jkd +
Zs − Zo

2
e− jkd

]

up

+
[

Zp + Zo
2

+
Zp − Zo

2

]

us

}

.

(10)

Let

wi = α
{

Zs − Zo
2

up +
Zp + Zo

2
e jkdus

}

(11)

wo = α
{

Zp − Zo
2

us +
Zs + Zo

2
e jkdup

}

(12)

represent the in- and outbound waves in the duct. By com-
paring (10) with (11) and (12), one can see that (10) are
equivalent to

p2 = wi +woe
− jkd, p1 = wie

− jkd +wo. (13)

The in- and outbound waves can be resolved from p1 and p2

via
[

wi

wo

]

=
[

e− jkd 1

1 e− jkd

]−1 [
p1

p2

]

= 1
1− e−2 jkd

[−e− jkd 1

1 −e− jkd
][

p1

p2

]

.

(14)

In a digital implementation of ANC system, it is recom-
mended to select sampling interval δt such that its product
with sound speed c satisfies cδt = d. As a result, the delay op-
erator exp(− jkd) = z−1 becomes an exact one-sample delay
for discrete-time ANC systems.

3. FEEDBACK CANCELLATION

It is indicated by (12) that the outbound wave contains feed-
back from us that must be cancelled to recover the reference
signal. Let R1 = (Zp −Zo)/(Zp +Zo) denote the upstream re-
flection coefficient. By multiplying e− jkdR1 to (11), one ob-
tains

e− jkdR1wi = α
{
(

Zs − Zo
)(

Zp − Zo
)

2
(

Zp + Zo
) e− jkdup +

Zp − Zo
2

us

}

.

(15)

A subtraction of (15) from (12) enables one to write

wo − e− jkdR1wi = n, (16)

where

n= α
[(

Zs + Zo
)(

Zp + Zo
)

e jkd−(Zs − Zo
)(

Zp − Zo
)

e− jkd
]

2
(

Zp + Zo
) up

(17)

is only contributed by the primary source up.
Using cos(kd) = 0.5(e jkd + e− jkd) and jsin(kd) =

0.5(e jkd − e− jkd), one can see that the common denomina-
tor of p1, p2, and all transfer functions in the duct is
(

Zs + Zp
)

Zocos(kd) + j
(

ZsZp + Z2
o

)

sin(kd)

= 0.5
(

Zs+Zo
)(

Zp+Zo
)

e jkd−0.5
(

Zs−Zo
)(

Zp−Zo
)

e− jkd.
(18)

Substituting (18) into the definition of α (immediately after
(8)), one obtains

2Zo=α
[(

Zs +Zo
)(

Zp+Zo
)

e jkd−(Zs −Zo
)(

Zp −Zo
)

e− jkd
]

.
(19)

A further substitution of (19) into (17) leads to

n = Zoup
Zp + Zo

. (20)

This is the reference signal to be recovered by the proposed
ANC system.

A question to be answered here is why not recovering the
reference signal from a pressure signal such as p1. The hint
is (8) that may be expressed as p1 = F( jω)us + B( jω)up. In
view of (8), the acoustical feedback transfer function is

F( jω) = ZoZp
(

Zs + Zp
)

Zocos(kd) + j
(

ZsZp + Z2
o

)

sin(kd)
.

(21)

Since F( jω) is a transfer function with resonant poles, it has
an infinite impulse response (IIR). In many ANC systems, a
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finite-impulse-response (FIR) filter ̂F( jω) is used to approx-
imate F( jω). This means inevitable approximation errors in
the first place.

Besides, all transfer functions in a duct are sensitive to
values of Zo, Zs, and Zp. In particular, Zs is the impedance
of the entire downstream segment from the location of p2 to
the duct outlet. Objects moving near the duct outlet could
cause changes of Zs. A fracture in any downstream part may
also cause a significant change to Zs as well. If initial estimate
̂F( jω) is remembered by an ANC system, it is a stability issue
how significant will F( jω) − ̂F( jω) turn out as a result of a
small variation of Zs. An indicative answer might be

∂

∂Zs
F( jω) = −ZoZp

[

Zocos(kd) + jZpsin(kd)
]

[(

Zs + Zp
)

Zocos(kd) + j
(

ZsZp + Z2
o

)

sin(kd)
]2 .

(22)

The common denominator of p1, p2, and all transfer func-
tions in the duct has an alternative form in (18), which is
equivalent to

0.5
(

Zs + Zo
)(

Zp + Zo
)

e jkd − 0.5
(

Zs − Zo
)(

Zp − Zo
)

e− jkd

= 0.5
(

Zs+Zo
)(

Zp+Zo
)

e jkd
[

1−
(

Zs−Zo
)(

Zp−Zo
)

(

Zs+Zo
)(

Zp+Zo
) e−2 jkd

]

= 0.5
(

Zs + Zo
)(

Zp + Zo
)

e jkd
[

1− R1R2e
−2 jkd],

(23)

where R2 = (Zs − Zo)/(Zs + Zo) represents the downstream
reflection coefficient.

Since resonant frequencies of the duct are roots of the
common denominator, it is suggested by (22) and (23) that
all transfer functions in the duct, including the feedback
transfer function F( jω), are sensitive to variance of Zs at the
resonant peaks. The stronger the resonance, the more sensi-
tive of transfer functions with respect to Zs. If an ANC system
recovers the reference signal from a pressure signal like p1, a
small online variation of Zs may cause a significant mismatch
between F( jω) and initial estimate ̂F(z). As a result, closed-
loop stability is sensitive to possible variation of Zs.

If the reference signal is recovered from traveling waves
with (16), the situation will be different. In a discrete-time
implementation, one may rewrite (16) to n(z) = wo −
Fw(z)wi, where the acoustical feedback transfer function is
a delayed version of upstream reflection coefficient Fw(z) =
z−1R1(z). Here, R1 = (Zp − Zo)/(Zp + Zo) is only sensitive
to Zp and Zo. Characteristic impedance Zo is a real constant
depending on sound speed and cross-sectional area between
p1 and p2. It seldom changes significantly in online ANC op-
erations. As for Zp, it is the impedance of the upstream por-
tion from the primary source to the location of p1. In most
applications, p1 and p2 are measured as close as possible to
the primary source. Impedance Zp is deeply hidden in a very
short segment of the duct. Its variation, if any, would be cer-
tainly not as significant as that of Zs.

No matter how significant are the possible variations of
Zp or Zo, the passive upstream reflection always has a lim-
ited magnitude |R1| < 1. For each pair of fixed Zp and Zo,

|R1( jω)| does not have sharp peaks or dips as a function
of ω. In many cases, |R1| is constant for a pair of fixed Zp
and Zo. Let X( jω) denote the Fourier transform of x(t), then
X( jω) = L{x(t)} and x(t) = L−1{X( jω)} share many similar
properties. For example, if x(t) is a low-frequency function
of t, then the bandwidth of X( jω) is narrow in terms of ω.
Similarly, if X( jω) is a “low-frequency” function of ω, then
the time duration of x(t) is short (a narrow bandwidth in
terms of t). The fact that |R1| is a “low-frequency” function
of ω for each pair of fixed Zp and Zo implies short impulse
responses of R1(z). It is, therefore, reasonable to assume that
R1(z) = ∑m

k=0rkz
−k can be approximated by a FIR transfer

function with negligible errors (Assumption A1). If both Zp
and Zo are constant, R1 is a single constant. Resonant effects
in the duct are hidden in wave signals wi and wo without af-
fecting R1. This is a major difference between recovering the
reference signal from traveling waves and recovering the ref-
erence signal from a pressure signal.

Even if an estimate of Fw(z) is obtained by initial iden-
tification, it is less likely that online variations of environ-
mental or boundary conditions could cause significant mis-
match between Fw(z) and its initial estimate. The resultant
ANC system is semimodel independent if its reference signal
is recovered with (16) in combination with a MIANC adap-
tation algorithm such as orthogonal adaptation.

4. COMPLETE NONINVASIVE MIANC

Noninvasive model-independent feedback cancellation is
possible by applying LMS to (16). With assumption A1, on-
line estimate of the feedback transfer function is represented
by polynomial

̂R(z) =
m
∑

k=0

r̂k(t)z−k, (24)

where rk(t) is the kth coefficient for the tth sample. An esti-
mated version of (16) would be

n̂ = wo − z−1
̂R(z)wi, (25)

which has a discrete-time domain expression,

n̂(t) = wo(t)−
m
∑

k=0

r̂k(t)wi(t − k − 1). (26)

Coefficients of ̂R(z) = ∑m
k=0r̂k(t)z−k are updated with the

LMS algorithm as follows:

r̂k(t + 1) = r̂k(t) + μn̂(t)wi(t − k − 1), (27)

where μ > 0 is a small constant representing the LMS
step size. Since R1(z) = ∑m

k=0rkz
−k by assumption A1, the

discrete-time domain version of (16) is

n(t) = wo(t)−
m
∑

k=0

rkwi(t − k − 1). (28)
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Subtracting (28) from (27), one obtains

n̂(t)− n(t) =
m
∑

k=0

[

rk − r̂k(t)
]

wi(t − k − 1)

=
m
∑

k=0

Δrk(t)wi(t − k − 1),

(29)

where Δrk(t) = rk − r̂k(t) is the estimation error of rk. Let
Δr = [Δr0,Δr1, . . . ,Δrm]T and let �i(t) = [wi(t − 1),wi(t −
2),wi(t −m − 1)]T . It is possible to express (29) in an inner
product

n̂(t)− n(t) = ΔrT�i(t). (30)

Estimation residues of LMS algorithms are usually expressed
as inner products like (30). It has been proven that the LMS
algorithm is able to drive the convergence of these inner
products towards zero.

If the primary noise signal up was available, mathematical
model of the error signal may be expressed in the discrete-
time z-transform domain as e(z) = P(z)up(z) + S(z)us(z),
where the actuation signal would be synthesized as us(z) =
C(z)up(z). Since up is actually not available, the ANC sys-
tem has to recover n̂(z) from the outbound wave and then
synthesize us(z) = C(z)n̂(z) instead. After the convergence
of n̂(z) → n (z), one may express the mathematical model of
the error signal to

e(z) =
{

P(z)
[

1 +
Zp
Zo

]

+ S(z)C(z)
}

n(z), (31)

where (20) has been substituted. LetH(z) = P(z)[1+Zp/Zo],
then (31) becomes

e(z) = [H(z) + S(z)C(z)]n(z). (32)

It is mathematically equivalent to another ANC system
whose primary source is available to the controller as n(z),
with primary path transfer function H(z) and secondary
path transfer function S(z). Orthogonal adaptation is read-
ily applicable to (32) to implement a noninvasive MIANC
system.

It is assumed that H(z) and S(z) can be approximated
by FIR filters with negligible errors (Assumption A2). Let
hT = [h0 h1 · · · hm] and sT = [s0 s1 · · · sm] denote coef-
ficients of H(z) and S(z), respectively, the discrete-time do-
main version of e(z) = H(z)n(z)+S(z)us(z) is a discrete-time
convolution:

e(t) =
m
∑

k=0

hkn(t − k)−
m
∑

k=0

skus(t − k), (33)

where e(t), n(t), and us(t) denote samples of e(z),
n(z), and us(z), respectively. Introducing coefficient
vector θT = [hT sT] and regression vector φt =
[n(t) n(t−1) · · · n(t−m), us(t) us(t−1) · · · us(t−m)]T ,
one may rewrite (33) to

e(t) = θTφt. (34)

Let ̂H(z) and ̂S(z) denote online estimates of H(z) and S(z).
Path estimates ̂H(z) and ̂S(z) are obtained by minimizing es-
timation error as follows:

ε(z)=e(z)− ̂H(z)n(z)− ̂S(z)us(z)=ΔH(z)n(z)+ΔS(z)us(z),
(35)

where ΔH(z) = H(z) − ̂H(z) and ΔS(z) = S(z) − ̂S(z) are
online modeling errors. Let ̂θ T = [̂hT ŝT] denote online es-

timate of θT = [hT sT], then ̂hT = [̂h0
̂h1 · · · ̂hm] and

ŝ T = [ŝ0 ŝ1 · · · ŝm] represent the coefficients of ̂H(z) and
̂S(z), respectively. Similar to the equivalence between (34)
and e(z) = H(z)n(z) + S(z)us(z), (35) has a discrete-time
domain equivalence

εt = e(t)− ̂θ Tφt = Δ̂θ Tφt, (36)

where Δθ = θ − ̂θ is the online coefficient error vector. The
entire CNMIANC system performs three online tasks that are
mathematically represented by the minimization of three in-
ner products. The first is inner product given in (30); the sec-

ond one is given in (36); and the third one is ̂θ Tφt.
Equations (30) and (36) contain estimation errorsΔr and

Δθ. Most available estimation algorithms, such as LMS and
the recursive least squares (RLS), are very capable of driv-
ing inner products like (30) and (36) towards zero, or at
least minimizing their magnitudes [18]. A difficult problem
is how to force Δr→ 0 and Δθ → 0. Available solutions inject
significant levels of “persistent excitations” (invasive probing
signals) to the estimation system [6, 7, 9, 10, 13]. A unique
feature of the proposed CNMIANC is no persistent excita-
tions. The system works well without requiring Δr → 0 and
Δθ → 0.

For (30), minimizing the inner product in the right-
hand side implies convergence of n̂ → n in the left-hand
side. It would be great if Δr → 0 as well. Otherwise, Δr may
just converge to a FIR filter that filters out wi from wo. On
the other hand, minimizing the inner product in (36) only
implies εt → 0. The question is what does it further im-
plies? One may consider the equivalence between (34) and
e(z) = H(z)n(z) + S(z)us(z), which holds if one replaces
θT = [hT sT], H(z), and S(z) with respective estimates
̂θ T = [̂hT ŝT], ̂H(z), and ̂S(z). The equivalence is now be-

tween forcing ̂θ Tφt ≈ 0 and forcing

̂H(z)n(z) + ̂S(z)us(z) = [ ̂H(z) + ̂S(z)C(z)
]

n(z) ≈ 0. (37)

The CNMIANC system uses online estimates of ̂H(z) and
̂S(z) to solve C(z) that minimizes ‖ ̂H(z) + ̂S(z)C(z)‖2. This
is equivalent to forcing ̂θ Tφt ≈ 0. One can obtain

‖e‖ = ∥∥εt + ̂θ Tφt
∥

∥ ≤ ∥∥εt
∥

∥ +
∥

∥̂θ Tφt
∥

∥ (38)

by adding ̂θ Tφt to both sides of (36). As the CNMIANC sys-

tem drives εt = Δ̂θ Tφt → 0 and forces |̂θ Tφt| ≈ 0 ultimately,
it implies ultimate convergence of ‖e‖ → 0 even though Δθ
does not necessarily converge to zero [11, 12].
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Figure 3: Normalized PSDs of e(t) for (a) uncontrolled case
(dashed-black), (b) controlled case with up(t) available (solid-gray),
and (c) controlled case with recovered n̂(t) (solid-black).

5. EXPERIMENTAL VERIFICATION

A CNMIANC system was implemented and tested in an ex-
periment, with a configuration shown in Figure 1. Cross-
sectional area of the duct was 12×15 cm2. Two microphones
were placed 30 cm downstream from the primary speaker
with a space of d = 10 cm between p1 and p2. The distance
between p2 and the secondary speaker is represented by L in
Figure 1. To guarantee a causal ANC system, the value of L
must satisfy L > 2d such that the outbound wave is at least
two samples ahead of sound propagation in duct. The sam-
pling interval of the controller was 0.29 millisecond with a
sampling frequency of 3.448 Hz, which satisfies d = cδt with
c = 344 m/s and exp(jkd) = z. The cutoff frequency of an-
tialias filters was chosen to be 1200 Hz. The in- and out-
bound waves were recovered from pressure signals with (14).
The reference signal was recovered with (25). Coefficients of
̂R(z) were adapted with (27). Another online modeling pro-
cess used (34) to obtain coefficients of ̂H(z) and ̂S(z). The
ANC transfer function was solved by online minimization
of ‖ ̂H(z) + ̂S(z)C(z)‖2. The CNMIANC system was imple-
mented in a dSPACE 1103 board.

Error signal e(t) and primary noise up(t) were collected
as vectors e and up for three cases. In case 1, there was no
control action. In case 2, up(t) was available as the reference
signal for an ANC system to suppress noise in the duct. In
case 3, up(t) was not available and the CNMIANC system
had to recover n̂(t) from p1 and p2 for controller synthe-
sis. For each respective case, power spectral densities (PSD’s)
of e(t) and up(t) were computed with a MATLAB com-
mand called “pmtm()”. Computational results are denoted
as vectors Pe = pmtm(e) and Pp = pmtm(up), where ar-
gument vectors e and up represent measurement samples of
e(t) and up(t). The normalized PSD of e(t) was calculated as
Pne = 10log(Pe/Pp) for all three cases.

Shown in Figure 3 are normalized PSD of e(t) for the
three cases. For case 1, normalized PSD of e(t) is represented

by the dashed-black curve. For case 2, normalized PSD of
e(t) is plotted with the solid-gray curve. For case 3, normal-
ized PSD of e(t) is represented by the solid-black curve. Both
ANC systems were able to suppress noise with good control
performance as seen in Figure 3. The proposed CNMIANC
has slightly worse performance since its reference was the re-
covered signal n̂(t) instead of the true primary source up(t).
This is a small price to pay in case up(t) is not available to
the ANC system. The proposed CNMIANC system was stable
and able to recover the reference and suppress noise without
any persistent excitations.

The CNMIANC system was robust with respect to sud-
den parameter change in the duct. In the experiment, the
duct outlet was changed from completely open to completely
closed. Such a sudden change shifted all resonant frequencies
in the duct. Path transfer functions also changed suddenly.
The CNMIANC system remained stable and converged very
quickly.

6. CONCLUSIONS

The primary source is not necessarily available as the ref-
erence signal for ANC systems in all practical applications.
When the primary source is not available, the ANC system
must recover the reference signal from a sound field to which
ANC is applied. Feedback cancellation is an important issue
in ANC systems that recover reference signals from sound
fields. In most MIANC systems, persistent excitations are
required for online modeling of feedback path model and
adaptive feedback cancellation [9, 13]. In this study, a CN-
MIANC system is proposed that recovers reference signal
from traveling waves without persistent excitations. The cor-
responding feedback path model is the upstream reflection
coefficient and hence closer to an FIR filter than pressure
feedback transfer functions (IIR path models in resonant
ducts). Theoretical analysis and experimental results are pre-
sented to demonstrate the stable operation of the proposed
CNMIANC system.
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