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ABSTRACT
The wave–body interactions for a surface-piercing body in water of finite depth are studied using a
potential-theory-based, two-dimensional, fully nonlinear numerical wave tank. A parametric study
was conducted in order to investigate the effects of the non-dimensional water depth, wave steep-
ness, wave frequency, and beam–draft ratio on the wave-exciting forces acting on a fixed surface-
piecing barge. It was found that a reduction of the water depth from deep to finite enhances all the
wave-exciting forces. In all water depths, the second-order harmonics of the heave force and pitch
moment are significantly large, although they can generally be neglected for the surge force. The
barge was then allowed to move and the influence of the water depth on its wave forces is investi-
gated. It was found that with the body motion involved, the surge force and the heave force reduce
in the first-order harmonics while the pitch moment increases. In addition, a peak appears at finite
water depth for the first-order harmonics of the heave force as well as for the heave displacement,
indicating the great impact of water depth on the motions experienced by the floating barge.
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1. Introduction

Wave loading exerted on surface-piercing bodies is of
vital importance for structures in costal and ocean engi-
neering. Typical applications include floating breakwa-
ters, ferries, and offshore oil and gas platforms such as
Spar platforms, Tensioned Leg Platforms, Floating Pro-
duction Storage and Offloading vessels. Recently, off-
shore renewable industry has also adopted offshore oil
and gas platforms in the development of offshore wind
farms (Jonkman, 2007). Although many offshore float-
ing devices such as offshore floating wind turbines and
oil and gas platforms are installed in deep water, some
devices such as wave energy converters and floating
breakwaters are located nearshore, where the water depth
is comparable to the wavelength. Compared to their
offshore counterparts, nearshore devices have potential
advantages such as reduced installation andmaintenance
costs and increased device availability (Folley, Whittaker,
& Henry, 2007). When these surface-piercing applica-
tions are nearshore, therefore, it is particularly necessary
to know how different the wave loads are compared to
those of deep water.

Enormous efforts have been devoted to studying
wave–body interactions. In a wave field, a body can

CONTACT Hui Tang h.tang@polyu.edu.hk
†School of Transportation, Wuhan University of Technology, Wuhan, China

be either fixed or floating; examples include fully sub-
merged structures (Chaplin, 1984; Jagadeesh & Murali,
2010; Liu, Huang, & Tan, 2009), bottom-mounted cylin-
ders (Boo, 2002; Kim & Yue, 1989), and surface-piercing
bodies (Isaacson & Cheung, 1991; Koo & Kim, 2007;
Li & Lin, 2010, 2012). The presence of bodies influ-
ences waves that are initially dominated by gravity.
The interaction between waves and bodies is unsteady
and nonlinear, especially when the waves are severe.
Koo and Kim (2007) used a potential-theory-based,
two-dimensional, fully nonlinear numerical wave tank
(NWT) to calculate the hydrodynamic forces on fixed
surface-piercing bodies in deep water. They observed
that the second-order harmonic vertical wave force can
exceed its first-order counterpart when the wave steep-
ness is great enough. Li and Lin (2010, 2012) investigated
the same problem by solving the Navier–Stokes equa-
tions and found that in water of finite depth, the first-
order harmonic components of hydrodynamic forces
are much larger than those of deep water when the
incident wave frequency is low. Although the water
depth effect was considered, their investigation was lim-
ited to a wave diffraction problem where the body
is fixed.
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When the body is allowed to move, the wave–body
interaction problem becomes more challenging since
both diffraction and radiation are involved.Wave diffrac-
tion–radiation problems have been studied using the
potential-theory-based method by many researchers
(Bai & Eatock Taylor, 2009); Koo &Kim, 2004; Tanizawa,
1995; Wang, Tang, & Wu, 2015; Wu & Eatock Taylor,
2003). In these problems, it is critical to accurately com-
pute the time derivative of the velocity potential, which,
if calculated using the finite-difference method, can-
not guarantee the instantaneous equilibrium of forces
between waves and moving bodies (Tanizawa, 1995).
Therefore, the acceleration potential concept introduced
by Tanizawa (1995) is often employed.

The motion response of floating bodies in water of
finite depth is a classical seakeeping topic. For exam-
ple, Clauss, Stempinski, Dudek, and Klein (2009) studied
the effect of water depth on the hydrodynamic coef-
ficients of the semi-submersible crane vessel named
the Thiaf. By using the radiation and diffraction code
Wave Analysis @ MIT (Newman, 1977), they found
that the exciting heave forces are slightly influenced by
the water depth, while the added mass and potential
damping show a substantial dependence on the water
depth. As a result, moderate changes occur in the ves-
sel’s response amplitude operators when the water depth
changes, which was also confirmed in their model tests.
Kim and Kim (2012) numerically studied the motion
responses of various floating bodies, including a Series
60 hull and a floating barge in water of finite depth.
In their time-domain, three-dimensional Rankine panel
method, the linearized free surface boundary condi-
tion was applied. It was found that the motion response
is affected by both the hydrodynamic coefficients and
wave excitations. Significant differences in hydrodynamic
properties and motion responses were also observed in

shallow water compared to deep water. In most of the
previous studies (Anderson, 1979; Clauss et al., 2009;
Kim & Kim, 2012; Liu, Teng, Gou, & Sun, 2011;
Perunovic & Jenson, 2003; Tuck, 1970), the free-surface
nonlinearities as well as the nonlinear wave loads have
generally been neglected, which may cause significant
differences. Therefore, the present paper aims to study
the wave–body interaction of a surface-piercing barge
in water of various depths using fully nonlinear simula-
tions. A potential-theory-based, two-dimensional, fully
nonlinear NWT previously developed by the authors
(Wang et al., 2015) is adopted for this study, wherein the
initial-boundary value problem is solved using the desin-
gularized boundary integral equation method (DBIEM)
coupled with acceleration potential. A parametric study
is first conducted to examine the effects of the non-
dimensional water depth, wave steepness, wave fre-
quency, and beam–draft ratio on the wave-exciting forces
acting on the fixed surface-piercing barge. The barge is
then allowed tomove and the influence of thewater depth
on its wave forces is investigated.

2. Numerical wave tank

2.1. Initial-boundary value problem

The 2D NWT for simulating wave–body interactions in
this study is illustrated in Figure 1. The Cartesian coor-
dinate frame oxz is defined along the NWT’s length and
depth directions, with z = 0 as the plane of undisturbed
still water level and the z-axis pointing upwards. The
fluid is inviscid and incompressible, the flow is assumed
to be irrotational, and the surface tension is negligible.
With these assumptions, the velocity of fluid particles is
the gradient of velocity potential �(x, z, t). The govern-
ing equation for the motion of the entire fluid domain

Figure 1. Sketch of the present NWT.
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satisfies Laplace’s equation:

∇2� = 0. (1)

As depicted in Figure 1, the NWT is enclosed by
�F(t), �U , �D, �B, and �C(t), which represent the time-
dependent free-surface, upstream, bottom, downstream,
and time-dependent barge-surface boundaries, respec-
tively. The initial condition and boundary conditions for
these boundaries are as follows.

2.1.1. Initial condition
In this study, the simulation starts with a calm free sur-
face, hence initially the wave elevation η and velocity
potential � are set to zero:

η(x, 0) = 0 and �(x, 0, 0) = 0 at t = 0, (2)

where t is the time.

2.1.2. Boundary condition�

The boundary conditions for the NWT are as follows:

∂�

∂n
= nx

∂�

∂x
= nx

gHk
2ω

cosh k(z + h)
cosh kh

cos(kx − ωt)

+ nx
3
32

H2ω(2k)
cosh 2k(z + h)

sinh4kh
on �U , (3)

∂η

∂t
= −∇�∇η + ∂�

∂z
on �F(t), (4)

∂�

∂t
= −gη − 1

2
|∇�|2 − Pa

ρ
on �F(t), (5)

∂�

∂n
= 0 on �B �D, (6)

∂�

∂n
= n · (vc + ωc × r) on �C(t), (7)

where k is the wave number, ω is the wave frequency, H
is the wave height, h is the water depth, ρ is the fluid
density, g is the gravitational acceleration, Pa is the atmo-
sphere pressure, vc is the linear velocity of the barge, ωc
is the angular velocity of the barge, and r is the position
of a point from the barge’s center of mass. The unit nor-
mal vector of boundaries n = (nx, nz) points out of the
domain. Assuming that there is no wave breaking, the
wave elevation η can thus be expressed as a function of
horizontal location x and time t. Additionally, the con-
stant atmosphere pressure Pa is assumed to be zero in this
study.

On the upstream side of the NWT, second-order
Stokes regular waves are prescribed to resemble non-
linear incident waves. The normal velocity of the input
boundary is given by Equation (3). On the free surface,
the fully nonlinear kinematic (Equation (4)) anddynamic
(Equation (5)) boundary conditions are applied on the

exact free surface z = η(x, t). The exact free surface is
tracked by using the mixed Eulerian–Lagrangian (MEL)
method. On the flat bottom and downstream sides,
the zero-normal-flux boundary condition described in
Equation (6) is imposed. On the surface of the body,
the non-penetrating flux boundary condition given in
Equation (7) applies at each time step. Note that the body
surface boundary has to be updated at each time step
since the intersection between the free surface and the
body surface fluctuate with time.

2.2. Acceleration potential

The instantaneous body pressure around the barge sur-
face can be computed from the unsteady Bernoulli
equation:

P = −ρgz − ρ�t − 1
2
ρ|∇�|2. (8)

By integrating the pressure over the instantaneous
wetted body surface, the wave forces Fhydro and Mhydro
are then calculated:

Fhydro =
∫∫

�c,wet
Pnds, (9)

Mhydro =
∫∫

�c,wet
Pr × nds. (10)

In order to calculate Fhydro and Mhydro, it is neces-
sary to assess the time derivative of the velocity potential
or the acceleration potential appearing in Equation (8),
�t ° ∂�/∂t, on the body surface. Since �t also satisfies
the Laplace equation, i.e., ∇2�t = 0, it can be calculated
through solving another initial-boundary value problem,
whose boundary conditions are given as:

�t = −gη − 1
2
|∇�|2 − Pa

ρ
on �F(t), (11)

∂�t

∂n
= nx

∂�t

∂x
= nx

∂

∂t

(
∂�

∂x

)
on �U , (12)

∂�t

∂n
= 0 on �B&�D, (13)

∂�t

∂n
= n · (ac + ω̇c × r) + q� on �C(t), (14)

where ω̇c is the angular acceleration of the barge and ac is
the linear acceleration of the barge. In Equation (14), q�

is a term describing the contribution of the velocity field
to �t :

q� = n · [ωc × (ωc × r)] + κn(∇� − vc − ωc × r)2

+ n · [2ωc × (∇� − vc − ωc × r)]

− ∂

∂n

(
1
2
|∇�|2

)
, (15)
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where κn is the body surface curvature. From Equation
(15), q� can be computed once the velocity potential �
is obtained.

The velocity and acceleration potentials are both
solved using the DBIEM. The use of thismethod not only
eliminates singularity when conducting the boundary
integral but also turns the evaluation of all spatial deriva-
tives analytical for both potentials, which helps to reduce
errors caused by numerical differentiation. Furthermore,
through realizing the implicit method introduced by
Tanizawa (1995) in the present DBIEM framework,
the computational efficiency can be much improved
(Wang et al., 2015), which is introduced in the next
section.

2.3. Numerical implementation

2.3.1. Time stepping on the free surface
In the present NWT, the MEL method introduced by
Longuet-Higgins and Cokelet (1976) is applied for the
time marching of the free surface. In this method, a
boundary value problem is solved in the Eulerian frame
to obtain the velocity potentials, after which the instan-
taneous free surface is tracked in the Lagrangian frame
using the kinematic and dynamic boundary conditions.
By utilizing the material derivative d/dt = ∂/∂t + V ·
∇ , the fully nonlinear free surface boundary conditions
(Equations (4) and (5)) are rewritten as:

dη
dt

= (V − ∇�) · ∇η + ∂�

∂z
, (16)

d�
dt

= −1
2
|∇�|2 − gη − Pa

ρ
+ V · ∇�, (17)

where V represents the velocity of the nodes on the free
surface. There are two approaches available when using
the MEL method: semi-Lagrangian and material node.
When the semi-Lagrangian approach is employed, the
node velocity on the free surface is given by:

V =
(
0,
dη
dt

)
, (18a)

which means that the nodes on the free surface are only
allowed to move vertically. On the other hand, in the
material node approach the nodes follow the motion of
the fluid particles on the free surface; therefore, the node
velocity is given by:

V =
(

∂�

∂x
,
∂�

∂z

)
. (18b)

For the fixed surface-piercing body, the semi-Lagrangian
approach is used since the horizontal length of the free
surface is unchanged during the simulation, while for

the floating body the material-node approach is applied
to accommodate the length change of the free surface.
The five-point Chebyshev smoothing scheme (Longuet-
Higgins & Cokelet, 1976) is used to increase numerical
stability. The fourth-order predictor–corrector Adams–
Bashforth–Moulton scheme (Zhang, Khoo, & Lou, 2006)
is adopted for the integration of Equations (16) and (17).

2.3.2. Numerical beaches
At the downstream side the implementation of the non-
penetrating boundary conditions (Equations (6) and
(13)) can cause undesired reflection waves. To mitigate
these reflection waves, a numerical beach is applied by
imposing a damping layer at the NWT’s downstream side
(Figure 1). The energy of the outgoing waves thus dissi-
pates gradually in the direction in which the waves are
advancing. This layer is realized through adding a viscous
term to the free surface boundary conditions (Equations
(16) and (17)):

dη
dt

= (V − ∇�) · ∇η + ∂�

∂z
− vd(x)η, (19)

d�
dt

= −1
2
|∇�|2 − gη − Pa

ρ
+ V · ∇� − vd(x)�, (20)

where the tunable damping factor vd(x) is given by:

vd(x) =

⎧⎪⎨
⎪⎩
0, x ≤ xd

αω

(
x − xd

λ

)2
, x > xd

. (21)

In Equation (21), xd is the damping layer’s starting
abscissa and α is a tuning factor. In this study, α is taken
as 1.0 (Contento, Codiglia, & D’Este, 2001).

It is also the case that reflected waves can be gener-
ated when incident waves reach the barge’s weather side,
and these need to be eliminated to avoid re-reflection at
the NWT’s upstream side. Therefore, another damping
scheme is employed near the upstream side which only
damps out the reflected waves so that the incident waves
are not influenced. This damping scheme is similar to the
one used for the region near the downstream side, except
that the viscous term is different. Details of the scheme
used for the region near the upstream side can be found
in Tanizawa and Naito (1997).

2.3.3. The desingularized boundary integral equation
method (DBIEM)

The boundary value problems related to the velocity
and acceleration potentials at each time step are solved
using the indirect DBIEM. The potentials are determined
through the integration of all Rankine sources along a
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virtual boundary slightly outside the physical bound-
aries. Since the Rankine source points are outside the
fluid domain and never coincide with boundary points,
the DBIEM avoids the singularities often encountered
in other methods such as the constant panel method
used by Koo and Kim (2004, 2007) and the high-order
boundary elementmethod used by Bai and Eatock Taylor
(2009).

Details of the indirect DBIEM can be found in Zhang
et al. (2006) and Wang et al. (2015). In this method, the
desingularized distance between boundary points and
isolated Rankine source points is determined by the local
mesh size, which is measured along the normal direc-
tion of the boundaries. As proposed by Cao, Schultz, and
Beck (1991), the desingularized distance can be deter-
mined by:

Ld = (Dm)β , (22)

where Dm is the local mesh size and β is the desingular-
ized parameter. As suggested by Cao et al. (1991), when
using theDBIEM the numerical results aremore accurate
when β is chosen from a range between 0.50 and 1.00.
Previous work (Wang et al., 2015) further found that sim-
ulations similar to the present study are insensitive to the
desingularized distance when β varies between 0.65 and
1.00; therefore, in this study, β was set to 0.85.

2.3.4. Intersection between the free surface and the
body surface

Since in the present fully nonlinear NWT the instanta-
neous free surface is determined using the free surface
boundary conditions (Equations (16) and (17)), the inter-
sections between the free surface and the body surface
have to be updated at each time step. With the intersec-
tion points updated, the velocity potential at these points
can be obtained by interpolation. The double source
method proposed byWang (2005) is adopted to deal with
the intersection points in the present indirect DBIEM,
where two desingularized point sources are chosen for a
control point at the intersection, one inside the body and
the other outside the free surface, and their strengths are
determined in such a way that both the body and the free
surface boundary conditions are satisfied at the control
point.

2.4. Validation

In addition to the validation conducted in the previous
study (Wang et al., 2015), the present fully nonlinear
NWT is further validated through simulating the wave
radiation of a sinusoidally heaving wedge. In the wave

radiation problem, the motion of the body is prescribed
as sinusoidal oscillations. Therefore, the body’s linear and
angular velocities, i.e., vc and ωc in Equation (7), are
known a priori at any instant. Similarly, the body’s lin-
ear and angular accelerations, i.e., ac and ω̇c in Equation
(14), are also known. The wedge is placed at the upstream
side of the NWT. A numerical beach described by Equa-
tions (20) and (21) is placed near the downstream side
of the NWT in order to damp out the radiated waves.
The ratio between its half beam (0.5B) and draft (d)
is 0.5B/d = 0.4, and the water depth is h = 3d. In this
case, the NWT’s total length is set to eight wavelengths,
including a two-wavelength damping layer at its down-
stream side. The wedge is heaving with z(t) = Y sin(ωt),
where the heaving amplitude Y = 0.3B. The wave force
harmonics are obtained through the fast Fourier trans-
form (FFT) analysis of steady-state force histories in
the time domain, including the added mass (A33) and

Figure 2. Coefficients of a surface-piercing wedge with a forced
motion amplitude of Y = 0.3B: (a) added mass coefficients and
(b) damping coefficients.
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Figure 3. High-order harmonics of the heave force of a surface-
piercing wedge with a forced motion amplitude of Y = 0.3B: (a)
second-order harmonics and (b) third-order harmonics.

damping coefficients (B33), the second-order harmon-
ics |Fh(2ω)| and the third-order harmonics |Fh(3ω)|. As
shown in Figures 2 and 3, these harmonics are compared
with the fully nonlinear simulation results fromTanizawa
and Clement (2000) and Sung and Shoon Choi (2010),
and good agreement is achieved. The slight differences
may stem from the use of different numerical schemes,
such as the boundary element method, the size of the
computational domain, and damping schemes, etc. In
addition, from these results it can be seen that the higher-
order wave force harmonics are sensitive to the dimen-
sionless frequency (Figure 3). The magnitude of the
second-order harmonic |Fh(2ω)| reaches its minimum
near the frequency ω2B/2 g = 0.6, while the third-order
harmonic |Fh(3ω)| increases monotonically with the
frequency.

To validate the present NWT’s capability in simulating
wave–body interactions in water of finite depth, another
wave-radiation problem is simulated in which a circular
cylinder with a radius R and draft d ( = R) sinusoidally

Figure 4. Coefficients of a semi-submerged circular cylinder with
a forced motion amplitude of Y = 0.01R: (a) added mass coeffi-
cients and (b) damping coefficients.

heaves with z(t) = −Y sin(ωt), where the heaving ampli-
tude Y = 0.01R in water of depth h = 1.5d. Except for
the body geometry and water depth, the NWT settings
are almost the same as in the previous validation case. As
shown in Figure 4, the added mass (A33) and damping
coefficients (B33) that vary with frequency are compared
with the numerical results in K. Bai (1977), and a very
good agreement is achieved.

3. Results and discussion

3.1. Wave interaction with a fixed surface-piercing
body in deepwater

In this section, the fixed surface-piercing barge is intro-
duced into the NWT and the wave diffraction around the
barge in deep water is investigated to serve as a bench-
mark. Since the barge is fixed, the barge’s linear and
angular velocities, i.e., vc and ωc in Equation (7), and



518 L. WANG ET AL.

the barge’s linear and angular accelerations, i.e., ac and
ω̇c in Equation (14), are zero. The water depth is cho-
sen as kh = 2π , the same value as used in Tanizawa and
Minami (1998) and Koo and Kim (2007). Other values
are set as follows: the width of the barge B = 0.5m, the
draft d = 0.25m, and the radius of the round corner
r = 0.064m. The size of the barge in the y-direction is
taken to be L = 1m for this 2D simulation. The NWT’s
total length is set to six wavelengths, in which one wave-
length is taken by the downstream damping layer and
another by the upstream damping layer. Two different
wave heights (H = 0.01m andH = 0.07m) are used for
incident waves with the non-dimensional frequency ξ =
ω2B/2g varying from 0.5 to 2.0. Although not presented
in this paper, a convergence test was conducted and the
following parameters were found to be most appropriate
for the current simulations: a time step size of T/125 and
a grid size of 60 nodes per wavelength on the free surface
and 100 nodes on the body surface.

The wave-exciting forces including the drift force,
surge force, heave force and pitch moment on the fixed
barge are calculated and presented in Figure 5. The results
are generally in good agreement with the experimental
data fromNojiri andMurayama (1975) except at high fre-
quencies. For waves with a small amplitude H = 0.01m,
the simulation results are close to the linear-theory pre-
dictions from Maruo (1960) throughout the investi-
gated frequency range. For waves with a large amplitude
H = 0.07m, the results from the present fully nonlinear
simulation are also close to the linear-theory predictions
at frequencies no greater than ξ = 1.50. At frequencies
greater than ξ = 1.50, however, the simulation becomes
unstable because the wave steepness (ka = 0.21) is so
high that the incident wave tends to break – a phe-
nomenon that the present NWT cannot handle. Similar
observations are also reported by Tanizawa and Minami
(1998); in their simulation, the upper limit of frequency
for stable simulation is ξ = 1.75. For this reason, the

Figure 5. Comparison of normalized wave-exciting forces in deep water: (a) drift force, (b) surge force, (c) heave force, and (d) pitch
moment.
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simulation results for H = 0.07m waves are not pre-
sented at frequencies ξ > 1.50. The significant discrep-
ancy between the experimental data and theH = 0.07m
simulation results and the linear-theory predictions is
believed to be attributed to the nonlinearity in the exper-
iments.

The wave reflection coefficient (HR/HI) and transmis-
sion coefficient (HT/HI) were also calculated (Figures 6
and 7). Three wave gauges were placed at x = 1.9 λ,
2.0 λ and 4.0 λ, where the first two gauges are in front
of the fixed body and the third one is behind it. The
reflected waves are separated from the incident wave by
the two-point method developed by Goda and Suzuki
(1976). Overall, the simulation results agreewith both the
linear-theory predictions and the experimental data.

Higher-order harmonic components of the hydrody-
namic forces experienced by the fixed barge were also

Figure 6. Comparison of the wave reflection coefficient.

Figure 7. Comparison of the wave transmission coefficient.

obtained. As an example, Figure 8 shows the first three
harmonic components of the heave force under the
H = 0.07m waves. At low frequencies, the first-order
harmonic components are much larger than the second-
and third-order components. As the frequency increases,
the second-order components become significant and
even greater than the first-order components, whereas
the third-order components still remain very small. As an
example, the time history of the steady-state heave force
at ξ = 1.5 is plotted in Figure 9, which clearly shows
the dominance of the second-order harmonic compo-
nent. These trends have also been confirmed by other
researchers using either numerical methods (Koo&Kim,
2007) or the second-order perturbation theory (Kim,
1993; Kim & Yue, 1989).

Figure 8. Comparison of normalized heave force components for
H = 0.07m.

Figure 9. Time history of the normalized heave force with inci-
dent waves of H = 0.07m and ξ = 1.5.
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3.2. Wave interaction with a fixed surface-piercing
body in water of finite depth

With the established NWT, a parametric study was con-
ducted on waves interacting with the fixed barge in
water of finite depth. There are eight parameters for
this wave–body interaction problem: fluid density ρ,
gravity g, water depth h, wave height H, wavelength λ,
wave frequency ω, barge width B, and draft d. Of these,
seven are independent since the wave frequency can be
determined by the wavelength and water depth from

Figure 10. Comparison of normalized drift forces calculated by
the Maruo’s formula (Faltinsen, 1990) and by the direct pressure
integration method.

the wave dispersion relationship. By applying the Buck-
ingham Pi theorem, four independent non-dimensional
parameters – i.e., water depth, wave steepness, wave fre-
quency, and beam–draft ratio – are identified to govern
the present wave–body interaction problem:

kh = 2πh
λ

, ka = πH
λ

, ξ = ω2B
2g

, ε = B
d
. (23)

For a simple validation, the drift forces evaluated by
the present NWT at various frequencies and kh = 0.5π ,
ka = 0.01, and ε = 2.0 are compared with the pre-
diction from the modified Maruo’s formula (Faltinsen,
1990). As shown in Figure 10, the results calculated
from the two methods are close to each other both
in value and trend. From this result it can also be
seen that the maximum value of the normalized drift
force exceeds unity, confirming the effect of the finite
water depth.

In the present parametric study, the following base-
line parameters are set: the wave steepness ka = 0.125,
the wave frequency ξ = 0.75, and the beam–draft ratio
ε = 2.0. The water depth kh ranges from 0.5π to 2π ,
covering the range of finite to deep water depths. The
ranges for the other three parameters are chosen as
0.05 ≤ ka ≤ 0.2, 0.25 ≤ ξ ≤ 1.25, and 1.43 ≤ ε ≤ 3.
Figures 11 to 13 show the variation of the normal-
ized wave-exciting forces against the four parameters, in

Figure 11. Effect of the water depth and incident wave steepness on the wave-exciting forces: (a) drift force, (b) surge force, (c) heave
force, and (d) pitch moment.
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Figure 12. Effect of the water depth and incident wave frequency on the wave-exciting forces: (a) drift force, (b) surge force, (c) heave
force, and (d) pitch moment.

Figure 13. Effect of thewater depth and beam–draft ratio on thewave-exciting forces: (a) drift force, (b) surge force, (c) heave force, and
(d) pitch moment.

which the water depth appears as one horizontal axis
and one of the other three parameters appears as the
other horizontal axis. Note that for the surge force Fs,

heave force Fh, and pitch moment Mr, only the first-
order harmonics are presented. From these figures it can
be seen that all four hydrodynamic forces increase as
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Figure 14. Effect of the water depth on the first three harmonics
of thewave-exciting forces: (a) surge force, (b) heave force, and (c)
pitch moment.

the water depth reduces. Among them, the largest incre-
ment of 123% occurs in the heave force at ξ = 1.25
(Figure 12(c)).

From Figure 11, it can be seen that at a given water
depth, no matter whether it is finite or deep, the drift and
heave forces remain almost unchanged, the surge force
decreases a little, and the pitch moment increases as the

Figure 15. Effect of the incidentwave steepness on the first three
harmonics of the wave-exciting forces: (a) surge force, (b) heave
force, and (c) pitch moment.

wave steepness ka increases, indicating that of the four
forces, the pitch moment is more sensitive to the wave
steepness.

The trends of the wave-exciting forces against the fre-
quency ξ are a little complicated. As shown in Figure 12,
as ξ increases, single peaks appear at ξ = 0.5 in the
surge force and pitch moment, a plateau occurs at about
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ξ > 1.0 in the drift force, and a monotonic decrease
occurs in the heave force. Although showing similar vari-
ation trends against ξ at various water depths, the drift
force in water of finite depth (kh = 0.5π) is quite differ-
ent from that of deep water (kh = 2π). The same finding
also applies to the heave force and pitch moment.

The beam–draft ratio ε also affects the wave-exciting
forces. It can be seen from Figure 13 that as ε increases,
the surge force, heave force, and pitch moment also
increase whereas the drift force decreases. The increase
of the pitch moment is dramatic – about 33 times at
kh = 2π – because an increase in the beam results in an
increase of the arm for the positive pitch moment, while
a decrease in the draft results in a decrease of the forces
that produce negative moments.

High-order harmonics of the wave-exciting forces
were also obtained. Figures 14 to 17 show the varia-
tions of the first three harmonics of the wave-exciting
forces against the wave height kh, wave steepness ka,
wave frequency ξ , and beam–draft ratio ε, respectively.
In general, the magnitudes of the first-order harmon-
ics are the largest pf the three, and the magnitudes of
the third-order harmonics are the smallest. As shown
in Figures 14(a) to 17(a), the second- and third-order
surge force components are very close to each other,
both of which are at least one order less than the first-
order components except at low wave frequencies, which
result in the second-order components increasing signif-
icantly. This indicates that the nonlinear effect on the
surge force can be neglected in most cases. However,
the same statement does not apply to the heave force
and pitch moment. For these two forces, the second-
order harmonics can be in the same order of the first-
order harmonics and significantly higher than the third-
order harmonics in certain circumstances. At ε = 1.43
(Figure 17(c)), they are even higher than their first-order
counterpart.

The variations of the high-order harmonics in water of
finite and deep depth, i.e., kh = 0.5π to 2π , are also pre-
sented in Figures 15 to 17. It can be seen that although the
first-order harmonics in water of finite depth are larger
than those in deep water, the second-order harmonics for
the finite water depth are generally smaller, especially for
the heave force and pitch moment, while the third-order
harmonics are again larger.

3.3. Wave interaction with a floating
surface-piercing body in water of finite depth

In this section, the barge was allowed to float and oscillate
in all three degrees of freedom (DOFs) on the free sur-
face, and its interaction with incident waves in water of
finite depth was investigated. Its mass ismc = 125 kg and

Figure 16. Effect of the incidentwave frequencyon thefirst three
harmonics of the wave-exciting forces: (a) surge force, (b) heave
force, and (c) pitch moment.

its moment of inertia is Ic = 4.05 kg·cm2 about the cen-
ter of mass, which is 0.115m below the free surface. This
floating barge was connected horizontally with a spring
(whose stiffness was 197.58 N/m) and a damper (with a
damping coefficient of 19.8N·s/m), the same as the set-
tings in Nojiri and Murayama (1975) and Koo and Kim
(2004) except that the water depth varies in the present
study. With the focus placed on the effects of the water
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Figure 17. Effect of the beam–draft ratio on the first three har-
monics of thewave-exciting forces: (a) surge force, (b) heave force,
and (c) pitch moment.

depth on the wave forces acting on the barge and the
barge’s response to these effects, the following parameters
were chosen: the wave steepness ka = 0.125, the wave
frequency ξ = 1, and the beam–draft ratio ε = 2.0. The
water depth kh ranged from 0.5π to 2π , covering both
finite and deep water depths.

In Figure 18, the time histories of the steady-state wave
forces are plotted for both a finite depth kh = 0.5π and a

Figure 18. Wave forces acting on the floating barge over time: (a)
surge force, (b) heave force, and (c) pitch moment.

deep depth kh = 2π . In addition, the resulting motions
of the floating barge are shown in Figure 19. As can
be seen from Figures 18 and 19, the water depth shows
its significance on the wave forces and the motions of
the floating barge. This is obviously seen from the surge
motion shown in Figure 19(a).
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Figure 19. Motions of the floating barge over time: (a) surge
force, (b) heave force, and (c) pitch moment.

By performing FFT on the time histories of the wave
forces, the first three harmonics of the wave forces acting
on the floating barge varying according to water depth
were calculated and are presented in Figure 20. It can be
seen that the trends are similar to those found with the
fixed barge. The magnitudes of the first-order harmonics
are the largest among the three and generally decrease as
the water depth increases. The second-order harmonics

Figure 20. Effect of the water depth on the first three harmonics
of the wave forces acting on the floating barge: (a) surge force, (b)
heave force, and (c) pitch moment.

however slightly increase as the water depth increases,
especially for the heave force and the pitch moment.
In addition, compared to those for the surge force and
pitch moment, the second-order harmonics of the heave
force are much more significant, which are about 25% of
the first-order harmonics in the investigated water depth
range.

When the surface-piercing barge is allowed to move
under the excitation of both hydrodynamic and spring
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Figure 21. Effect of the water depth on the displacement of the
free-floating barge.

forces, in the first-order harmonics the surge force drops
by about 40% on average and the heave force drops
by about 15%, while the pitch moment increases by
about 10%. Furthermore, a peak appears at kh = 0.6π
for the first-order harmonics of the heave force. This is
different from the heave force curve of the fixed barge
(Figure 20(b)), which monotonically decreases with the
water depth. The variation of the heave force for the free-
floating barge may be attributed to the wave radiation
since the free-floating barge itself can produce waves and
thus influence the pressure around the barge surface. In
the frequency domain, Bai (1977) has also shown the
dependence of the added-mass and damping coefficients
on the water depth for a heaving two-dimensional rect-
angular cylinder. Moreover, both Clauss et al. (2009)
and Kim and Kim (2012) have shown the dependency
of a floating body’s hydrodynamic coefficients on the
water depth. In this study, apart from the wave-exciting
force, the heave force which results from wave radi-
ation also varies according to the water depth. With
the combination of the wave-exciting force and wave-
radiation force, the resulting heave force exhibits a peak
at kh = 0.6π (Figure 20). As a result, the heavemotion of
the floating barge system also shows a peak at kh = 0.6π
(Figure 21). Compared with the heave motion with deep
water (kh = 2π), it shows about a 13% increase with the
finite depth kh = 0.6π . This significant difference indi-
cates the great impact of the water depth on the motions
experienced by the floating barge.

4. Conclusions

The interaction between waves and surface-piercing
bodies in water of finite depth was simulated using a

potential-theory-based, two-dimensional, fully nonlin-
ear NWT.With this numerical model, a parametric study
was conducted to investigate the effects of the water
depth kh, wave steepness ka, wave frequency ξ , and
beam–draft ratio ε on the wave-exciting forces acting on
a fixed surface-piercing barge. The main findings are as
follows:

(1) A reduction in the water depth kh from deep to
finite enhances all the wave-exciting forces that were
investigated.

(2) An increase in the wave steepness ka results
in increased pitch moment, a slightly decreased
surge force, and almost unchanged drift and heave
forces.

(3) As the wave frequency ξ increases, single peaks
appear at ξ = 0.5 for the surge force and pitch
moment, a plateau appears at about ξ > 1.0 for the
drift force, and amonotonic decrease happens to the
heave force.

(4) An increase in the beam–draft ratio ε causes an
increase in the surge force, heave force, and pitch
moment, and a decrease in the drift force; of these,
the increase in the pitch moment is massive.

(5) The second- and third-order harmonics of the
surge force can generally be neglected, whereas the
second-order harmonics of the heave force and pitch
moment are significant.

(6) Although the first-order harmonics in water of finite
depth are larger than those in deep water, the
second-order harmonics are generally smaller, espe-
cially for the heave force and pitch moment.

The barge was then allowed to move and the influ-
ence of the water depth on its wave-exciting forces was
investigated. It was found that with the body motion
involved, the surge force and heave force reduce in the
first-order harmonics, while the pitch moment increases.
In addition, a peak appears at kh = 0.6π for the first-
order harmonics of the heave force as well as for
the heave displacement, indicating the great impact of
the water depth on the motions experienced by the
floating barge.

Through this research, a better understanding of the
effects of water depth on wave–body interactions has
been achieved. However, the present NWT shows some
limitations and requires further development. For exam-
ple, numerical inability is observed when the water
depth is less than kh = 0.5π . In addition, the present
NWT is only two-dimensional. In the near future, the
same problem will be reinvestigated using a three-
dimensional, fully nonlinear NWT to gain more physical
insights.
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