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Abstract

The phenomenon of Acoustics Black Hole (ABH) benefits from the bending wave

propagating properties inside a thin-walled structure with power-law thickness variation to

achieve zero reflection when the structural thickness approaches zero in the ideal scenario.

However, manufacturing an ideally tailored power-law profile of a structure with embedded

ABH feature can hardly be achieved in practice. Past research showed that the inevitable

truncation at the wedge tip of the structure can significantly weaken the expected ABH effect by

creating wave reflections. On the premise of the minimum achievable truncation thickness by the

current manufacturing technology, exploring ways to ensure and achieve better ABH effect

becomes important. In this paper, we investigate this issue by using a previously developed

wavelet-decomposed semi-analytical model on an Euler-Bernoulli beam with a modified

power-law profile and an extended platform of constant thickness. Through comparisons with

the conventional ABH profile in terms of system loss factor and energy distribution, numerical

results show that the modified thickness profile brings about a systematic increase in the ABH

effect at mid-to-high frequencies, especially when the truncation thickness is small and the
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profile parameter m is large. The use of an extended platform further increases the ABH effect to

broader the frequency band whilst providing rooms for catering particular low frequency

applications.

Keywords: Acoustic black hole; Mexican hat wavelet-decomposed; Flexural vibration; modified

thickness profile; extended platform.

1. Introduction

Suppression of structural vibration while maintaining its light-weight is important for

various industrial applications. The Acoustics Black Holes (ABH) effect results from the

manipulation of bending wave propagation inside a thin-walled structure through thickness

changes. With a tailored power-law thickness variation, the phase velocity of the bending wave

gradually reduces to zero in the ideal scenario, resulting in zero wave reflection and high energy

concentration at the wedge tip [1-3]. ABH effect attracts increasing attention as a promising

passive vibration control method because vibration energy can be channeled and only a very

small amount of damping materials is required at the energy focalization region to achieve

efficient damping to flexural waves [4-9]. It also shows appealing potential in sound radiation

control [10, 11] and energy harvesting [12, 13] due to the high energy concentration within a

confined area.

Krylov et al [3] showed that the inevitable truncation (the residual thickness at the wedge

tip) resulting from the manufacturing difficulty would significantly compromise the ideal ABH

effect by generating wave reflections. To maximize the ABH effect, however, the ultimate

pursuit of extremely thin wedge tip is of high cost and harsh demand for the precision machining

and would also lead to tip damage of tearing and irregularities. Although Bowyer et al [14]

experimentally showed that the damage on the wedge tip does not notably affect the ABH effect;



Denis et al [15] reported that the imperfect wedge tip would reduce the reflection because of the

resultant scattering effects; structures with ultra-thin or damaged tips however can hardly be

applied in industry due to the structural strength problems. Therefore, on the premise of the

minimum achievable truncation thickness by currently available manufacturing technology, ways

maximize the ABH effect need to be explored.

Motivated by this, Bayod [16] proposed a modified thin wedge with extended constant

thickness to achieve better vibration damping compared with conventional wedge. Experiments

and FEM analyses were carried out to confirm this concept. Probably due to the lack of

simulation tools, however, no deep explanation and parametric studies were provided in that

work to guide the design of the modified wedge. Meanwhile various modified wedge thickness

profiles were also proposed [13, 17]. Although similar ABH effect as the conventional profile

was observed, the effect of various parameters defining the modified profiles still needs to be

systematically analyzed and quantified. On the other hand, nearly all the references mentioned

above focused on the ABH effect at relatively higher frequencies. Possible extension of the ABH

effect to lower frequencies is still a great challenge and is of particular importance for

applications in energy harvesting and noise control. It is understandable the none of the above

could be done without a reliable and flexible simulation tool.

In this paper, we focus on seeking ways to achieve better ABH effect on the premise of the

minimum achievable truncation thickness and the possibility of applying ABH effect at low

frequencies. Firstly, an Euler-Bernoulli beam, with modified thickness

profile, 0 0( ) ( )  mh x x x h and an extended platform, is studied using a previously developed

wavelet-decomposed model [18, 19]. Then, the effect of the additional thickness 0h and the



extended platform is systematically discussed through numerical simulations. Particularly, we

investigate the effect of the profile parameters on the average system loss factor for different

additional thicknesses and lengths of extended platform. A particular focus is also put on

exploring the beneficial effect of the extended platform in the low frequency range. Finally,

conclusions are drawn.

2. Modelling of a Beam with a Modified Thickness Profile and Extended Platform

We consider an Euler-Bernoulli beam composed of a uniform portion with a constant

thickness hb from xb3 to xb4, and an ABH portion with a modified thickness

profile, 0 0( ) ( )  mh x x x h , from xb2 to xb3 (Fig. 1). When x0 and h0 are both equal to zero, it

retreats to the conventional power-law thickness profile, i.e. ( )  mh x x . A platform of uniform

thickness h(xb2) is extended from the truncation point xb2 to point xb1. The beam is excited by a

point force f(t) at xf and is covered by two damping layers with variable thickness hd(x) from xd1

and xd2. The whole system is symmetrical with respect the mid-line of the beam. The extended

platform end of the beam is free and the other end is elastically supported by artificial

translational and rotational springs [20, 21], the stiffness of which can be adjusted to achieve

various boundary conditions. The damping of both the beam and the damping layer are taken

into account through complex stiffness E, i.e., E =E (1+iη), where η is the damping loss factor,

assigned differently to the beam and the damping layer. A previously developed

wavelet-decomposed mothed based on Lagrange’s equation is used to obtain the vibration

response [18, 19].



Fig. 1 An Euler-Bernoulli beam with symmetrical modified power-law profile and extended

platform.

For the benefit of readers, the modeling principle is briefly recalled. The displacement field

of the beam based on Euler-Bernoulli beam theory is expressed as

 , , ( , )   
 

wu w z w x t
x

(1)

where the vector  ,u w represents the displacement of a point either on the beam or on the

damping layers based on the assumption of perfect bonding between them. The transverse

displacement w can be expanded as

( , ) ( ) ( ) i i
i

w x t a t x (2)

where ( )i x are the assumed admissible functions and ( )ia t the complex unknowns to be

determined. As demonstrated in Ref. [18], the Mexican hat wavelets (MHW) [22, 23] are

particularly suitable, compared with power series, to characterize the present rapid wavelength

fluctuation along the beam, owing to the appealing properties of the wavelets in terms of scaling



and translation. Choosing MHW ( , ( ) j k x ) as the admissible functions, Eq. (2) can then be

represented as

, ,
=0

( , ) ( ) ( )
m

j k j k
j k

w x t a t x (3)
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j is the scaling parameter (integer) to stretch or squeeze the MHW and k the translation parameter

(integer) to move the MHW along x axis.

The extremalization of Hamiltonian function leads to the following Lagrange’s equations

, ,
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  

      j k j k
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(5)

where the Lagrangian of the system L writes

  k pL E E W (6)

in which Ek denotes the kinetic energy of the system; Ep the potential energy and W the work

done by the excited force. They can be expressed, respectively, as
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( ) ( , )  fW f t w x t (9)

Substituting Eqs. (7) to (9) into Eq. (5) yields the following linear equations

( ) ( ) ( ) Ma Ka f t t t (10)



where M and K are, respectively, the mass matrix and stiffness matrix; a(t) and f(t) are,

respectively, the vectors of the response ( )ia t and the force, which can be expressed as

( ) a A j tt e and ( ) f F j tt e in harmonic regime. Then Eq. (10) can be rewritten as

2[ ] K M A F (11)

The forced vibration response can be directly obtained by solving the Eq. (11), detailed

expressions of which are given in Appendix. For free vibration, setting the force vector in Eq.

(11) to zero leads to the following eigenvalue equation

-1 2M KA A (12)

which yields the natural frequencies and the corresponding mode shapes. Since the system is

complex, the eigenvalues take complex forms as

2 2= (1 )n i   (13)

where n is the natural frequency and η the corresponding modal loss factor of the system, which

is an important measure of the ABH effect in providing effective damping to the overall system.

3. Numerical Results and Discussions

Consider two clamped-free beams with the same uniform portion under a harmonic driving

force of 1N applied at the point, 3 cm away from the clamped end (as shown in Fig.1). Keep the

same truncation thickness h(xb2) and profile parameters ε and m, the responses of the two beams

are first analyzed and compared. Case 1 involves a conventional ABH thickness profile

( 1( )  mh x x ) and case 2 a modified thickness profile ( 2 0 0( ) ( )  mh x x x h ). The material and

geometrical parameters are listed in Table 1. Note that truncated at xb2=4 cm, the prescribed

truncation thickness h(xb2), 0.02cm, is the same in both cases. As a benchmark system, an



entirely uniform beam with the same thickness and length as case 1 is also given as a reference in

the following analyses.

It should be noted that, in order to keep the same truncated thickness and the same uniform beam

thickness, the effective length of the ABH part is different in cases 1 and 2. However, we start from the

assumption that the ABH structure is usually used as an add-on part to the existing structure (which is the

uniform beam in this particular case). In this context, we would accept a slightly different ABH length as

long as the results remain comparable. In the following analyses, within the range we used for ɛ, m and

other parameters, the difference in the ABH length is not very large, especially for cases of our interest

when m is large and truncation thickness is small. Meanwhile, we make sure that the cases shown in each

figure are comparable by ensuring that the same damping layers are applied in all cases, starting

from the free end with exactly the same thickness and length. The latter is taken as the shortest

ABH length if different ABH profiles are involved in figures where comparisons are made.

Table 1

Material and geometrical parameters.

Material parameters Geometrical parameters

Beam

Eb= 210 GPa ε = 0.00125

ρb= 7800 kg/m3 m = 2

ηb= 0.001 x0= 4

Damping layers h0= 0.02 cm

Ed= 5 GPa hb=0.32 cm

ρd= 950 kg/m3 h(xb2)= 0.02 cm

ηd= 0.1 lUni= xb4- xb3= 12 cm



3.1 Effect of the additional thickness h0

Since tip truncation is inevitable, we will first investigate the possibility of changing the

thickness profile, aiming at achieving better ABH effect than the conventional ABH profile with

the same truncation. Keeping the same truncation tips with the same minimum achievable

thickness h(xb2), the modified thickness profile (case 2) is different from the conventional ABH

thickness profile (case 1) in that it possesses an additional thickness term h0. We first investigate

the effect of this additional thickness term on the ABH effect without the consideration of the

extended platform.

Figure 2 shows the mean quadratic velocity of the uniform beam portion and the energy

ratio  (
2

ABH
2

Unif

10log V
V

  


 
) between the ABH portion and the uniform portion for three

different beams without damping layers. It can be seen that the overall vibration level of the

uniform portion of both beams with the conventional and modified ABH profiles are slightly

lower at higher frequencies compared with their uniform counterpart as a result of ABH effect.

However, due to the existence of the truncation, flexural waves are reflected back in the absence

of the damping layers, which explains the barely noticeable reduction in the vibration level.

Meanwhile, the modified thickness profile takes better ABH effect than the conventional profile

by slightly reducing the vibration level at higher frequencies as shown in Fig. 2 (a). This can be

further confirmed in the Fig. 2(b) which shows a clear vibration energy shift to the ABH portion,

in case 2 more than in case 1.



Fig. 2. (a) The mean quadratic velocity of the uniform beam portion, and (b) the ratio of the

mean quadratic velocity of the ABH portion to the uniform beam portion for three different beam

cases without damping layers.

Since the damping layers take the upmost effect near the truncation tip [18]. Fig. 3

compares the system loss factors for the same three beam cases when same length of damping

layers applied. Compared with the entirely uniform beam, while the system loss factor in case 1

with conventional ABH profile being significantly increased at higher frequencies due to the

ABH effect, that of case 2 with the modified profile is nearly doubled. Meanwhile, different from

case 1, the lower-order modal loss factor in case 2 also attains noticeable increase. Thus, the

overall reduction in the vibration level of the uniform portion in case 2 is also larger than that in

case 1, in comparison with the entirely uniform beam as revealed in Fig. 4, reaching a level as

high as 19.2 dB.



Fig. 3 The system loss factors for three different beam cases with same length of damping layers.

Fig. 4 (a) The mean quadratic velocity of the uniform beam portion, and (b) the ratio of the mean

quadratic velocity of the ABH portion to the uniform beam portion for three different beam cases

with same length of damping layers.

Two plausible reasons could explain the reason why the modified thickness profile with an

additional thickness h0 outperforms the conventional ABH profile for the same given thickness

truncation. The mode shapes of the entire beam for the two cases are shown and compared in Fig.



5. It can be seen that case 2 with modified profile promotes larger structural deformation at the

ABH portion for both the first and one representative higher-order (tenth) mode shape. This

enables more energy concentration on the ABH portion, conducive to energy absorption by the

damping layers. From the perspective of the geometrical acoustic theory, the total wave

reflection coefficient R0 can be expressed as
0

0 exp( 2 Im ( )d )  
x

x
R k x x [3], in which the local

wavenumber 1/4 1/2 1/2( ) 12 ( / ) ( )  lk x c h x with (1 ) /  l b b bc E i being the velocity of

longitudinal waves. Therefore, R0 is negatively correlated with the integration term
0

1/2( )
x

x
h x .

The derivatives of the thickness profiles of case 1 and case 2 are respectively 1
1( )    mh x mx and

1
2 0( ) ( )    mh x m x x . It can be seen that 1( )h x is always larger than 2 ( )h x . Therefore, given

the same starting truncation thickness xb2, the thickness at any point along the beam in case 1 is

always larger than that in case 2, i.e. 1/2 1/2
1 2( ) ( ) h x h x . On the other hand, for the same beam

thickness h(xb3), the corresponding x of case 1 is constantly smaller than that of case 2, i.e. xb3_1<

xb3_2.Consequently, the integration 3 _ 2

2

1/2
2 ( )

b

b

x

x
h x is always larger than 3 _1

2

1/2
1( )

b

b

x

x
h x , resulting in a

lower reflection coefficient in case 2 as compared to case 1. This implies better ABH effect achieved

by the case 2 for any ε and m as observed above.



Fig. 5 Mode shape comparison for two cases: (a) first mode; (b) tenth mode.

To quantify the broadband ABH feature of the modified profile, the average system loss

factor is used and applied to both thickness profiles cases. The band is defined starting from a

cut-on frequency fcut-on, at which corresponding wavelength  of the incoming wave

approaches and starts to be shorter than the characteristic ABH dimension, i.e. the length of the

ABH part, so that the incoming wave can interact more effectively with the ABH element. For

cut-on

  b
ABH

C L
f

and

1
2 2

4 4
12




 
 

   
 

b b
b b

b b

E I EC fh
A

, we get
2

4
12


  b b

cut on
ABH b

h Ef
L

. Then,

the increase in the average system damping loss factor is defined

as 2 2( 1) 2( ) 1 1( 1) 1( )
1 1( .... ) ( .... )      

 

            
p m q n

p p p m q q q n
p qm n

, where the first subscript

of  denotes the case number and the second subscript denotes the mode number above the

cut-on frequency.

Figure 6 shows the effect of h0 (i.e. the truncation thickness) on  for different

parameters (frequency band chosen as 10000 ~ 50000 Hz). It can be seen that the increase in the

ABH effect by the modified profile is much more noticeable as h0 reduces, due to the fact that



ABH effect is most effective near the very thin truncation region. Even a small variation in the

thickness profiles with a thinner truncation thickness would lead to significant difference in the

ABH effect. For the same h0, steeper profile variation with a larger profile parameter m is

certainly helpful, whilst ε, however, showing negligible effect. Noted that to maintain a

reasonable length comparison of the ABH part for different parameters, the change of m in Fig. 6

is not very large. If further increase in the parameter m is needed, the resultant increase in the

ABH effect will be more obvious. Therefore, for larger profile parameter m and smaller

truncation thickness, the modified thickness profile can greatly increase the ABH effect as

compared with the conventional ABH profile having the same truncated tip thickness.

Fig. 6 Average increase in system damping loss factor of case 2 compared with case 1 under

different parameters of thickness profile.

3.2 Effect of the extended platform

Using both ideal and modified thickness profiles, the truncated tip is extended to form a

platform of constant thickness. Numerical analyses are performed to explore the possibility of



improving ABH effect at both high and low frequencies using the extended platform. Fig. 7

compares the system loss factors for both cases with and without the platform when ABH

portion (extended platforms also considered as a part of the ABH portion for convenience) is

covered by damping layers with same length. It can be seen that the extended platform, with a

length lp= 4 cm, significantly increases the system damping at higher frequencies for both

thickness profiles. As defined before, the cut-on frequency (
2

4
12


  b b

cut on
ABH b

h Ef
L

) actually

shifts to lower frequencies because the characteristic dimension ABHL of the ABH region is

enlarged by the extended platform, i. e.  ABH ABH PL l l . Taking case 1 as an example, the

cut-on frequency without platform is roughly 2000 Hz, while that with the platform reduces to

about 1100 Hz, as shown in Fig. 7. On the other hand, compared with the cases without

platform, the system loss factor with a platform also significantly increases below the cut-on

frequency. Therefore, the extended platform allows achieving better broadband ABH effect

while providing the possibility to lower its effective region. Owing to the additional benefit of

the additional thickness h0 revealed above, the modified thickness profile further enhances the

ABH effect compared with the conventional ABH profile, as demonstrated in Fig.7.



Fig. 7 System loss factors for three different beam cases with and without extended platform

when damping layers with same length applied.

Focusing on case 2 with the modified thickness profile, Fig. 8 shows the vibration level of

the uniform part and the energy ratio of the beams with and without platform when damping

layers applied. As can be seen from Fig. 8 (a), the overall vibration level of the uniform beam

portion is reduced with the use of the extended platform, which is systematic at higher

frequencies, but more or less at the lower resonant frequencies. It is understandable that the

lower frequency alteration in the system damping depends more on the modal characteristics of

the system, which certainly deserves a closer examination. In general, however, the platform

allows better energy focalization in the ABH part at higher frequencies (Fig. 8 (b)). Meanwhile,

the first peak in the energy ratio curves increases significantly while the corresponding frequency

shifts to much lower frequency than the case without platform, which implies more effective

ABH effect at a lower frequency as well.



Fig. 8 (a) Mean quadratic velocity of the uniform beam portion, and (b) ratio of mean quadratic

velocity of the ABH portion to the uniform beam portion for case 2 with and without extended

platform when damping layers with same length applied.

To further explain the observed phenomena, Fig. 9 shows the mode shape with and without

the extended platform. Similar to Fig. 5, the case with a platform involves more significant

structural deformation at the ABH portion than the one without platform at the first mode,

allowing better energy concentration in the ABH portion. For higher–order mode (tenth mode as

an example), the extended platform prolongs the active area of the ABH by extending the

intensive wave packet to the platform area after being compressed by the ABH profile.

Fig. 10 shows the effect of the length of the extended platform on the system loss factor. As

the length increases, the system loss factor also increases in a broadband region, not necessarily

proportional to the increase in the length of the platform. Below the cut-on frequency, although

the damping enhancement is observable, the tendency, however, is less systematic for different

lengths of the platform. Nevertheless, the observation that the first system modal loss factors

increases and the effective frequency is shifted to lower frequencies with the increasing platform

length still holds. Again, the phenomenon strongly depends on the modal behavior of the



structure. Therefore, the length of the platform should be properly selected to target particular

application frequency range with additional consideration of the system dimension.

Fig. 9 Mode shape comparison for case 2 with and without extended platform: (a) first mode; (b)

tenth mode.

Fig. 10 System loss factor for case 2 with different lengths of the extended platform when

damping layers with same length applied.



Effect of different thickness profile parameters is revealed in Fig. 11, which shows the

influences of the length of the extended platform on the average system loss factor for case 2 and

the corresponding damping enhancement compared with case 1, respectively. It can be seen that,

irrespective of the profile parameters, the average system loss factor systematically increases as

the length of platform increases. A larger power parameter m further helps enhancing the effect.

The average system loss factor is lower for larger ε and shorter platform, but higher when the

platform becomes longer. In terms of damping enhancement in case 2 compared with case 1,

 also increases with m and ε. The decreasing trend of  with the length of the extended

platform suggests that, although the damping being enhanced for both ideal and modified

thickness profiles with the use of extended platform, the modified thickness profile, however,

allows achieving more significant improvement as compared to the ideal thickness profile for

shorter platform. This could be an additional advantage for using modified profile, since an

excessively long extended platform may not be feasible in practical applications.

Fig. 11 (a) Average system loss factor in case 2 within broadband effective frequency range and

(b) Damping increase compared with case 1 when damping layers with same length applied.



To further examine the effect of the extended platform at lower frequencies, the first system

modal loss factor ( 1 ) and the frequency of the first peak 1f on the energy ratio curve for

different platform lengths and profile parameters are plotted in Fig. 12. For shorter platform

length, 1 seems to be insensitive to the profile parameters. With the increase in the platform

length, however, 1 rapidly increases before reaching a certain relatively stable level.

Meanwhile, larger m and ε are beneficial. Fig. 12(b) shows that 1f is also down-shifted more

significantly for larger m and ε, which confirms the favorable effect of the extended platform on

expanding ABH effect further down to lower frequencies.

Fig. 12. (a) The first system modal loss factor and (b) The frequency of the first peak in the

energy ratio curve  in case 2 when damping layers with same length applied.

5. Conclusions

In this paper, we investigate an Euler-Bernoulli beam with a modified thickness profile and

extended platform using a previously developed wavelet-decomposed semi-analytical model

based on Lagrange’s equation. On the premise of the same minimum achievable truncation



thickness, the vibration level of the uniform part of the beam, the energy distribution and the

system loss factor with the modified thickness profile are systemically investigated and

compared with its counterpart with conventional ABH profile when damping layers are applied.

It is shown that the ABH effect can be significantly enhanced through the use of the modified

thickness profile in terms of vibration reduction of the uniform part, energy distribution and the

system loss factor. The observed improvement on ABH effect can be explained using the

geometrical acoustical theory, which indicates a reduced wave reflection coefficient as a result of

the modified thickness profile irrespective of m and ε. The improvement in the ABH effect is

more significant with larger power parameter m and smaller truncation thickness, with negligible

influence of parameter ε.

The use of an extended platform brings about two positive effects: an enhancement of the

overall system damping in a broad frequency band above the cut-on frequency; and an

appreciable shift of the ABH effect towards low frequency. For the former, the system loss

factors increases with the length of the extended platform, especially with a larger power index m.

The effect of parameter ε, however, depends on the length of the extended platform. Therefore,

an optimal configuration needs to be worked out in order to find the best combination among

different parameters. For the latter, the extended platform can significantly enlarge the first peak

of energy ratio and shift it to lower frequency, which provides the possibility of catering ABH

effect for lower frequency applications. The tuning of this phenomenon, however, strongly

depends on the modal behavior of the whole system, which again requires meticulous analyses

using a simulation tool (as the one used in this work) to optimize the ABH performance for

particular applications.



In conclusion, for a given truncation thickness, which can possibly be achieved by currently

available manufacture technology or prescribed by practical limitation due to the structural

strength consideration, an ABH wedge can be profiled and manufactured according the proposed

modified thickness profile with an extended platform to prolong the ABH effect. By choosing

appropriate parameters such as m, ε and the length of the platform, enhanced ABH effect can be

achieved in a broad frequency range, including the possibility of performance tuning at lower

frequencies.
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Appendix: Formulas for M, K, and F

beam_Uni beam_ABH damp
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Figures and Tables Caption

Fig. 1 An Euler-Bernoulli beam with symmetrical modified power-law profile and extended

platform.

Fig. 2 (a) The mean quadratic velocity of the uniform beam portion, and (b) the ratio of the mean

quadratic velocity of the ABH portion to the uniform beam portion for three different

beam cases without damping layers.

Fig. 3 The system loss factors for three different beam cases with same length of damping layers.

Fig. 4 (a) The mean quadratic velocity of the uniform beam portion, and (b) the ratio of the mean

quadratic velocity of the ABH portion to the uniform beam portion for three different

beam cases with same length of damping layers.

Fig. 5 Mode shape comparison for two cases: (a) first mode; (b) tenth mode.

Fig. 6 Average increase in system damping loss factor of case 2 compared with case 1 under

different parameters of thickness profile.

Fig. 7 System loss factors for three different beam cases with and without extended platform

when damping layers with same length applied.

Fig. 8 (a) Mean quadratic velocity of the uniform beam portion, and (b) ratio of mean quadratic

velocity of the ABH portion to the uniform beam portion for case 2 with and without

extended platform when damping layers with same length applied.

Fig. 9 Mode shape comparison for case 2 with and without extended platform: (a) first mode; (b)

tenth mode.



Fig. 10 System loss factor for case 2 with different lengths of the extended platform when

damping layers with same length applied.

Fig. 11 (a) Average system loss factor in case 2 within broadband effective frequency range and

(b) Damping increase compared with case 1 when damping layers with same length

applied.

Fig. 12. (a) The first system modal loss factor and (b) The frequency of the first peak in the

energy ratio curve  in case 2 when damping layers with same length applied.

Table 1 Material and geometrical parameters.




