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A parallel machine scheduling problem in plastic production is studied in this paper. In this problem, the processing time and
arrival time are uncertain but lie in their respective intervals. In addition, each job must be processed together with a mold while
jobs which belong to one family can share the same mold. Therefore, time changing mold is required for two consecutive jobs that
belong to different families, which is known as sequence-dependent setup time. This paper aims to identify a robust schedule by
min–max regret criterion. It is proved that the scenario incurring maximal regret for each feasible solution lies in finite extreme
scenarios. A mixed integer linear programming formulation and an exact algorithm are proposed to solve the problem. Moreover,
a modified artificial bee colony algorithm is developed to solve large-scale problems. The performance of the presented algorithm
is evaluated through extensive computational experiments and the results show that the proposed algorithm surpasses the exact
method in terms of objective value and computational time.

1. Introduction

Parallel machine systems are widely adopted in a variety of
manufacturing environments, such as the semiconductor
manufacturing industry [1] and the electronics industry [2].
Minimizing makespan is one of the commonly used objec-
tives in manufacturing scheduling problems [3, 4]. Par-
allel machine scheduling problems have both theoretical
and practical importance. Many literatures assume that the
parameters of the problem (i.e., the processing time and
job release time of jobs) are known in advance precisely
before production process begins. However, the results of
the solution derived under the deterministic assumptionmay
deviate considerably in real situations [5]. In practice, it is
difficult to get the exact parameters before production process
begins due to some uncertainties, such as machine condi-
tions, production environments, and jobs’ characteristics [6–
9]. To characterize and overcome the impact of uncertain-
ties, several robust scheduling approaches are proposed to
enhance the quality and stability of the derived solution in
real situations.

Unlike the typical parallel machine system, a parallel
machine system for plastic product involves mold changes
during the process of production, which is also known as
setup requirements. In a plastic production system, jobs
are allocated to one of parallel injection machines and the
corresponding injection mold is required to be installed
onto the injection machine before the injection process. Jobs
belonging to one family can be processed with the samemold
and the mold changing process costs a period of time. The
production planner would try to arrange the jobs such that
jobs that belong to the same family are processed together
in order to avoid extra mold change process and improve
efficiency as well. For two jobs that are scheduled to be
processed consecutively but belong to different families,
mold change must be conducted before the next job can be
performed.Therefore, reducingmold changing time is crucial
in plastic production scheduling.

This paper investigates the uniform parallel machine
problem in the plastic production system, which involves
uncertain processing time, job release time, and setup time
for mold. It is an extended problem studied by [5]. The
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preliminary objective is to minimize the makespan. A sce-
nario is firstly defined as a possible realization of processing
times and job release time for all jobs. Due to the uncertainty
in job processing time and release time, the makespan of a
given solution can be different under various scenarios. It is
proposed to identify an optimal solution with the strongest
stability across all scenarios. The performance (or stability)
of a given solution under its worst-case scenario is the major
concern in robust scheduling. For generality, it is assumed
that the processing times and job release time lie in their
respective intervalswith lower bound andupper bound value.
The intervals of the corresponding parameters are considered
to be known but not fall into any statistical distribution
due to asymmetric information [5, 9]. And then the robust
deviation criterion is adopted to evaluate the robustness of
each candidate schedule. The robust deviation criterion is
also known as min–max regret criterion, which aims to find
out a solution with a minimum maximal deviation across all
possible scenarios. This criterion has its advantages in the
highly competitive environment for the reason that the robust
decision performs well in any set of potential realizable
scenarios [5]. The robust deviation criterion confines the
magnitude of missed opportunities by identifying a schedule
that possesses a performance close to that of the optimal (or
near optimal) decision in any scenarios.

To the best knowledge of the authors, parallel machine
scheduling problem with uncertain processing time, ready
time, and mold change consideration has not been covered
by the other researchers in the parallel machine scheduling
problem. In this paper, a mixed integer linear programming
(MILP) formulation is introduced to identify a robust sched-
ule with minimum maximal regret across all scenarios. The
concept of critical machine proposed in [5] is revised and
adopted in the problem to eliminate the worst-case scenario
into a finite number of extreme point scenarios in order to
evaluate the robust deviation of given solution by calculating
the maximal regret. Exact algorithm based iterative relax-
ation procedures are presented, and a modified artificial bee
colony algorithm is proposed for the research problem. To
demonstrate the effectiveness and efficiency of the proposed
heuristic algorithm, a set of testing problem is carried out.

The contribution of this paper is shown as follows:

(1) A parallel machine scheduling problem with consid-
eration of uncertain processing time, job release time,
andmold changing time is studied. For generality, the
uncertain data is assumed to lie in intervals, which
capture the situation in real environment.

(2) Swarm intelligence algorithm is proposed to solve the
NP-hard problem.The computational results demon-
strate the stability and effectiveness of the proposed
algorithm. To the best of our knowledge, this research
is the first to adopt artificial bee colony algorithm in
robust optimization for a parallel machine scheduling
problem.

The rest of this paper is organized as follows. Section 2 pro-
vides the literature reviewofworks related to parallelmachine
as well as robust scheduling approaches. Section 3 presents

the description and the mathematical model of the proposed
problem. The exact algorithm based on iterative relaxation
is provided in Section 4. The modified artificial bee colony
algorithm for large-scale problem is proposed in Section 5.
Results of extensive computational experiment and com-
parison are provided in Section 6. Section 7 provides the
conclusion and direction for further works in related fields.

2. Literature Review

Stochastic approaches for tackling scheduling problem under
uncertainties are available [10], but some of these approaches
have their limitation due to the strict prerequisite and as-
sumption [5]. For example, stochastic approaches require cer-
tain information on probability distribution of processing
time or release time of each job, which can be inferred on
the condition that a substantial amount of historical data is
available [9, 11]. However, such amount of historical data is
unavailable in highly uncertain environment and the only
information is an educated guess of the lower bound and
upper bound of some parameters, such as processing time
and ready time [12]. For some one-time jobs, decision-makers
are more interested in obtaining a robust schedule, which is
against the worst-case performance across all scenarios, rath-
er than obtaining an expected optimal performance under
an expected situation. Robust deviation approach, which is
known as min–max regret [13], is suitable for these circum-
stances to obtain such solution [14, 15]. The robust devia-
tion approach is widely adopted in various combinational
optimization problems when the input data are presented as
intervals, such as the shortest path [16, 17], spanning tree [14,
17–19], and production problems [5, 20].This approach yields
a satisfactory result in an uncertain environment. More-
over, robust scheduling approaches are also adopted in other
problems, such as maritime transportation problem [21, 22],
routing problem [23], and scheduling problem in public
health service department [24]. Most recently, a min–max
regret makespan minimization in an identical parallel
machine scheduling environment with interval data is stud-
ied [5]; in particular, they considered the processing time of
jobs lies in respective intervals. To solve this nondetermin-
istic polynomial-time hard (NP-hard) problem, the concept
of critical machine and extreme point scenarios and two
properties are proposed to avoid visiting an infinite number
of possible scenarios and eliminating worst-case scenario
into finite number of extreme point scenarios. A makespan
minimization problem with interval job processing time on
identical parallel machines is addressed in [5] for the first
time in related field. Furthermore, the approach of robust
deviation on a uniform parallel machine scheduling problem
is adopted in [12] to minimize the total flow time with uncer-
tain processing time which lies in respective intervals. The
concept of worst-case scenario used to identify the maximal
regret for a feasible solution is adopted in [5, 12] and then the
exact and heuristic algorithms are proposed to find the robust
schedule across all scenarios.

Scheduling problemwith sequence-dependent setup time
is a very active research area [25–28]. In the plastic manufac-
turing process, injection operation is a typical single-stage
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manufacturing process, which requires the plastic to be
injected into specified mold to produce plastic products in
different shape. Several jobs are manufactured by a single
machine with their respective molds [29]. A setup of mold
is required for a product to be produced in injection oper-
ation, while setup is a sequence-depending operation and
parameters such as time formold change and install time vary
depending on two consecutive jobs [30]. If two consecutive
jobs are processed by different mold, cost of setup is induced
during the manual mold change operation. Therefore, the
time for mold change as well as reinstall cannot be ignored in
amass production situation and planner would try to arrange
those jobs by the samemold to be processed together in order
to reduce the number of mold changes during production.
The sequence-dependent family setup time represented by
interval data on a single machine scheduling problem to
minimize the total flow time is considered in [20].

Exact and heuristic algorithms have been proposed to
solve min–max regret problem. A min–max regret problem
of minimizing the total flow time on a single machine in [6]
and then this problem are investigated further by the other
researchers. In order to reduce the computational effort,
different approaches have been proposed for the min–max
regret model. It is proved that the optimal schedule under
the mid-point scenario guarantees a 2-approximation of the
optimal solution [15]. Heuristics method is an approximation
algorithm to obtain near optimal result for min–max regret
model. Typical example is shown in [5]. Some heuristic
algorithms based on job swap moves and insert moves are
presented by researchers. A hybrid tabu search algorithm
for batching and sequencing decision-making in a single
machine scheduling problem is proposed by Suppiah and
Omar [31]. Job swapping and insertion approaches are
applied to generate neighborhood solution and employed
arcs in which the solution appears in the form of arcs in the
tabu list to represent the sequence of job on a single machine;
in addition, they also implemented a search depth strategy
in the process of neighborhood generation to eliminate
noneffective moves so as to reduce the computational burden
while obtaining final schedule with outperformed quality.
The work of Bilge et al. [32] points out that, for the situation
where neighborhood of solution is in large number or its
elements are expensive to evaluate, it is essential to restrict the
number of solutions examined on a given iteration to screen
the neighborhood so as to concentrate on promisingmoves at
each iteration. Three candidate list strategies are proposed to
confine the number of neighborhood solution for calculation
efficiency.

Various studies on parallel machine problem have, re-
spectively, considered uncertain processing time, arbitrary
ready time, and mold changing time in the model develop-
ment stagewhile there are no studies concerning these factors
altogether in an integrated robust scheduling model. There-
fore, this paper investigates these factors altogether and for-
mulates a novel model in a plastic production environment.
The presented paper is an extended version of the previous
paper, containing more uncertain factors and features in a
practical manufacturing system.

3. Problem Formulation and
Mathematical Model

It is started by describing the problem and the definition of
the maximal regret of a feasible schedule. Then the MILP is
presented.

3.1. Problem Description. The problem under consideration
dealswith the scheduling of parallelmachine over an assigned
planning horizon in order to minimize the makespan. The
job is processed by machine and mold and each job can be
processed only once. Under the previous assumptions, the
problem can be modelled as a mixed integer linear program-
ming formulation as stated below.

3.2. MILP Formulation

Notations

𝑖: job, 𝑖 = 1, 2, . . . , 𝑛, where 𝑛 is the total number of
jobs, 𝑖 ∈ 𝐽
𝑚: machine, 𝑚 = 1, 2, . . . , 𝑞, where 𝑞 is the total
number of machines,𝑚 ∈ 𝑀
𝐴 𝑖: mold installation time for job 𝑖
𝐷𝑖: mold removal time for job 𝑖
𝑝𝑠𝑖 : job 𝑖’s processing time under scenario 𝑠, 𝑝𝑠𝑖 ∈[𝑝
𝑖
, 𝑝𝑖]

𝑟𝑠𝑖 : job 𝑖’s arrival time under scenario 𝑠, 𝑟𝑠𝑖 ∈ [𝑟𝑖, 𝑟𝑖]𝑞𝑚: processing speed of machine𝑚
𝑠: scenario 𝑠 = {𝑝𝑠1, 𝑝𝑠2, . . . , 𝑝𝑠𝑛; 𝑟𝑠1, 𝑟𝑠2, . . . , 𝑟𝑠𝑛} which
is a possible realization of the processing times and
arrival time of jobs, 𝑠 ∈ 𝑆
𝑀: a large positive number

Decision Variables

𝑥𝑖𝑚: 1 if job 𝑖 is scheduled to be processed on machine𝑚 and 0 otherwise

𝑦𝑗𝑖𝑚: 1 if job 𝑖 is scheduled to be processed after job 𝑗
on the same machine𝑚 and 0 otherwise

𝐵𝑠𝑖𝑚(𝑋): the beginning time of job 𝑖 to be processed on
machine𝑚 in schedule𝑋 under scenario 𝑠
𝑍𝑠𝑖𝑚(𝑋): the completion time of job 𝑖 scheduled on
machine𝑚 in schedule𝑋 under scenario 𝑠
𝐶𝑠𝑚(𝑋): the completion time of machine 𝑚 in sched-
ule𝑋 under scenario 𝑠

A feasible solution should satisfy ∑𝑞𝑚=1 𝑥𝑖𝑚 = 1 (𝑖 =1, 2, 3, . . . , 𝑛) and 𝑦𝑖𝑗𝑚 + 𝑦𝑗𝑖𝑚 ≥ 𝑥𝑖𝑚 + 𝑥𝑗𝑚 − 1, ∀𝑖, 𝑗 ∈ 𝐽,𝑖 ̸= 𝑗; 𝑚 ∈ 𝑀. That is, each job should be processed exactly
once in parallel machine system and there exists a processing
sequence for jobs to be processed on the same machine. LetΦ be the set of feasible schedules.
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Completion time of job 𝑖 in schedule 𝑋 under scenario 𝑠
can be defined as follows:

𝑍𝑠𝑖𝑚 (𝑋) = 𝐵𝑠𝑖𝑚 (𝑋) + ( 𝑝𝑠𝑖𝑞𝑚) − 𝑀(1 − 𝑥𝑖𝑚) . (1)

Calculation of completion time of machine𝑚 under scenario𝑠:
The completion time of machine 𝑚 in schedule 𝑋 under

scenario 𝑠 is equal to the completion time of the job that is
scheduled to be processed by the last machine

𝐶𝑠𝑚 (𝑋) ≥ 𝑍𝑠𝑖𝑚 (𝑋) , ∀𝑖 ∈ 𝐽, 𝑚 ∈ 𝑀. (2)

That is,

𝐶𝑠𝑚 (𝑋) ≥ 𝐵𝑠𝑖𝑚 (𝑋) + ( 𝑝𝑠𝑖𝑞𝑚) − 𝑀(1 − 𝑥𝑖𝑚) ,
∀𝑖 ∈ 𝐽, 𝑚 ∈ 𝑀.

(3)

The starting of job 𝑖 on machine𝑚 is equal to or greater than
the arrival time of job 𝑖 under scenario 𝑠:

𝐵𝑠𝑖𝑚 (𝑋) ≥ 𝑟𝑠𝑖 − 𝑀 ⋅ (1 − 𝑥𝑖𝑚) , ∀𝑖 ∈ 𝐽. (4)

In addition, if job 𝑖 and its preceding job 𝑗 are processed by
different mold, the time for mold change is involved before
job 𝑖 starts to be processed:
𝐵𝑠𝑖𝑚 (𝑋) − 𝑍𝑠𝑗𝑚 (𝑋) ≥ (𝐷𝑗 + 𝐴 𝑖) ⋅ 𝑦𝑗𝑖𝑚

− 𝑀(1 − 𝑦𝑗𝑖𝑚) ,
∀𝑖, 𝑗 ∈ 𝐽, 𝑖 ̸= 𝑗; 𝑚 ∈ 𝑀.

(5)

The makespan of schedule 𝑋 under scenario 𝑠 is equal to the
completion time of the machine that finished last in parallel
machine system:

𝐹 (𝑋, 𝑠) = max
𝑚∈𝑀

{𝐶𝑠𝑚 (𝑋)} (6)

or

𝐹 (𝑋, 𝑠) ≥ 𝐶𝑠𝑚 (𝑋) . (7)

We define the minimum makespan under scenario 𝑠 as 𝐹∗𝑠
and the corresponding optimal schedule as𝑋∗𝑠 :

𝐹∗𝑠 = 𝐹 (𝑋∗𝑠 , 𝑠) = min
𝑋∈Φ

𝐹 (𝑋, 𝑠) . (8)

For a given schedule 𝑋 ∈ Φ, its regret under scenario 𝑠 is
defined as

𝑅 (𝑋, 𝑠) = 𝐹 (𝑋, 𝑠) − 𝐹∗𝑠 . (9)

The maximum regret of schedule𝑋 is

𝑅max (𝑋) = max
𝑠∈𝑆

𝑅 (𝑋, 𝑠) . (10)

The robust parallelmachine schedulingwith interval process-
ing time and arrival time andmold change can be formulated
as

min
𝑋∈Φ

𝑅max (𝑋) = min
𝑋∈Φ

max
𝑠∈𝑆

(𝐹 (𝑋, 𝑠) − 𝐹∗𝑠 ) . (11)

Theproposed problem is a generalization of classical𝑃 ‖ 𝐶max
schedule problem and the optimal solution derived from
(11) corresponds to the robust schedule across all possible
scenarios.

The parallel machine robust scheduling with uncertain
processing time and arrival time (RS) can be formulated as
follows:

min
𝑋

{max
𝑠∈𝑆

[𝐹 (𝑋, 𝑠) − 𝐹∗𝑠 ]} , (12)

s.t. 𝐵𝑠𝑖𝑚 (𝑋) ≥ 𝑟𝑠𝑖 − 𝑀 ⋅ (1 − 𝑥𝑖𝑚) ,
∀𝑖 ∈ 𝐽, 𝑚 ∈ 𝑀, 𝑠 ∈ 𝑆, (13)

𝐵𝑠𝑖𝑚 (𝑋) − 𝑍𝑠𝑗𝑚 (𝑋)
≥ (𝐷𝑗 + 𝐴 𝑖) ⋅ 𝑦𝑗𝑖𝑚 − 𝑀(1 − 𝑦𝑗𝑖𝑚) ,

∀𝑖, 𝑗 ∈ 𝐽, 𝑖 ̸= 𝑗; 𝑚 ∈ 𝑀, 𝑠 ∈ 𝑆,
(14)

𝑞∑
𝑚=1

𝑥𝑖𝑚 = 1, ∀𝑖 ∈ 𝐽, (15)

𝑦𝑖𝑗𝑚 + 𝑦𝑗𝑖𝑚 ≥ 𝑥𝑖𝑚 + 𝑥𝑗𝑚 − 1,
∀𝑖, 𝑗 ∈ 𝐽, 𝑖 ̸= 𝑗; 𝑚 ∈ 𝑀, (16)

𝑥𝑖𝑚 ∈ {0, 1} , ∀𝑖, 𝑗 ∈ 𝐽, 𝑖 ̸= 𝑗, (17)

𝑦𝑗𝑖𝑚 ∈ {0, 1} , ∀𝑖, 𝑗 ∈ 𝐽, 𝑖 ̸= 𝑗; 𝑚 ∈ 𝑀. (18)

We note that the above formulation is nonlinear due to the
two operators in the objective function.However, the original
model of RS can be transformed into a mixed integer linear
programming model:

min 𝑅𝑉,
s.t. 𝐵𝑠𝑖𝑚 (𝑋) + ( 𝑝𝑠𝑖𝑞𝑚) − 𝑀(1 − 𝑥𝑖𝑚) − 𝐹∗𝑠 ≤ 𝑅𝑉,

∀𝑖 ∈ 𝐽, 𝑚 ∈ 𝑀, 𝑠 ∈ 𝑆,
(13)–(18) .

(19)

After linearization of the original model of RS problem, the
formulation still cannot be solved directly due to an infinite
number of possible scenarios. To tackle this problem, the
primal goal is to identify the maximal regret of each feasible
solution and then select the solution with the minimum
maximal regret across all solutions.Therefore, two properties
are proposed to identify and confine worst-case scenario to a
finite number of extreme point scenarios, which means that
we do not have to visit all possible scenarios to obtainmaxima
regret of a given solution. In order to capture the uncertainties
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in real manufacturing environment, we assume that the
processing time and arrival time of each job are uncertain
by lying in their respective intervals. Therefore, the number
of possible scenarios is infinite under such assumption and
it is impractical to enumerate all possible scenarios to get
the worst-case scenario for a given solution. The derived
properties are used to narrow down the worst-case scenario
to several extreme point scenarios.

Definition 1. A machine 𝑓 ∈ 𝑀 is said to be critical in a
schedule 𝑋 ∈ Φ under scenario 𝑠 ∈ 𝑆, if 𝑓 is the machine
with maximum completion time in X under 𝑠:

𝐶𝑠𝑓 (𝑋) = max
𝑚∈𝑀

{𝐶𝑠𝑚 (𝑋)} = 𝐹 (𝑋, 𝑠) . (20)

Definition 2. An extreme point scenario 𝑠𝑚 for schedule X is
defined as follows:

𝑝𝑠𝑚𝑖 = {{{
𝑝𝑖, if 𝑥𝑖𝑚 = 1,
𝑝
𝑖
, if 𝑥𝑖𝑚 = 0, 𝑖 ∈ 𝐽,

𝑟𝑠𝑚𝑖 = {{{
𝑟𝑖, if 𝑥𝑖𝑚 = 1,
𝑟𝑖, if 𝑥𝑖𝑚 = 0, 𝑖 ∈ 𝐽.

(21)

Property 1. For any schedule 𝑋 ∈ Φ, let 𝑠0 be a worst-case
scenario forX in whichmachine𝑓 is critical.Then a scenario𝑠𝑓 exists for schedule X such that

(a) machine 𝑓 is also critical in X under 𝑠𝑓;
(b) scenario 𝑠𝑓 is a worst-case scenario for X.

Assume that a given solution X has a worst-case scenario𝑠𝑓 that satisfies conditions (a) and (b) of Property 1. Since
machine 𝑓 is critical in X under scenario 𝑠𝑓, the makespan
and maximal regret for solution X can be calculated as
follows.

Note that the set containing all the jobs on machine𝑚 in
schedule X is denoted as 𝑃(𝑋,𝑚), 𝑚 ∈ 𝑀. If 𝑥𝑖𝑚 = 1, then𝑖 ∈ 𝑃(𝑋,𝑚).
𝐹 (𝑋, 𝑠𝑓) = max

∀𝑖∈𝑃(𝑋,𝑓)
{𝐵𝑠𝑓𝑖𝑓 (𝑋) + ( 𝑝𝑖𝑞𝑓)} ,

where 𝐵𝑠𝑓𝑖𝑓 (𝑋) ≥ 𝑟𝑖, ∀𝑖 ∈ 𝑃 (𝑋, 𝑓) ,
𝑅max (𝑋) = 𝐹 (𝑋, 𝑠𝑓) − 𝐹∗𝑠𝑓

= max
∀𝑖∈𝑃(𝑋,𝑓)

{𝐵𝑠𝑓𝑖𝑓 (𝑋) + ( 𝑝𝑖𝑞𝑓)} − 𝐹∗𝑠𝑓 ,
where 𝐵𝑠𝑓𝑖𝑓 (𝑋) ≥ 𝑟𝑖, ∀𝑖 ∈ 𝑃 (𝑋, 𝑓) .

(22)

Proof. Worst-case scenario 𝑠0 can be transformed into sce-
nario 𝑠𝑓 by decreasing 𝑝𝑠0𝑖 to 𝑝

𝑖
and 𝑟𝑠0𝑖 to 𝑟𝑖 for all 𝑖 ∉

𝑃(𝑋, 𝑓) and by increasing 𝑝𝑠0𝑖 to 𝑝𝑖 and 𝑟𝑠0𝑖 to 𝑟𝑖 for all 𝑖 ∈𝑃(𝑋, 𝑓), and 𝑓 is also the critical machine in X under 𝑠𝑓. Let

Δ = 𝐹(𝑋, 𝑠𝑓) − 𝐹(𝑋, 𝑠0) denote the increase in the makespan
under 𝑠𝑓. Let 𝑋∗𝑠0 be the optimal schedule for scenario 𝑠0.
Because the makespan in 𝑋∗𝑠0 cannot increase by more thanΔ under scenario 𝑠𝑓 in comparison with 𝑠0, we get

𝐹∗𝑠𝑓 − 𝐹∗𝑠0 ≤ 𝐹 (𝑋∗𝑠0 , 𝑠𝑓) − 𝐹 (𝑋∗𝑠0 , 𝑠0) ≤ Δ
= 𝐹 (𝑋, 𝑠𝑓) − 𝐹 (𝑋, 𝑠0) . (23)

From the abovementioned inequality, we have𝐹(𝑋, 𝑠0)−𝐹∗𝑠0 ≤𝐹(𝑋, 𝑠𝑓) − 𝐹∗
𝑠𝑓
, indicating that the maximal regret cannot

decrease if we replace 𝑠0 with 𝑠𝑓, which is also the worst-case
scenario for X.

Property 2. The maximal regret of a given solution X can be
expressed as follows:

𝑅max (𝑋)
= max
𝑚∈𝑀

{ max
∀𝑖∈𝑃(𝑋,𝑚)

{𝐵𝑠𝑖𝑚 (𝑋) + ( 𝑝𝑖𝑞𝑚)} − 𝐹∗𝑠𝑚} ,
where 𝐵𝑠𝑖𝑚 (𝑋) ≥ 𝑟𝑖, ∀𝑖 ∈ 𝑃 (𝑋,𝑚) .

(24)

Proof. Equation in Property 2 shows that

𝑅max (𝑋)
≤ max
𝑚∈𝑀

{ max
∀𝑖∈𝑃(𝑋,𝑚)

{𝐵𝑠𝑖𝑚 (𝑋) + ( 𝑝𝑖𝑞𝑚)} − 𝐹∗𝑠𝑚} . (25)

Suppose by contradiction that there exists a machine 𝑘 ∈ 𝑀
such that

𝑅max (𝑋) < 𝐵𝑠𝑘𝑖𝑘 (𝑋) + (𝑝𝑖𝑞𝑘) − 𝐹∗𝑠𝑘
where 𝐵𝑠𝑘𝑖𝑘 (𝑋) ≥ 𝑟𝑖, ∀𝑖 ∈ 𝑃 (𝑋, 𝑘) .

(26)

Since 𝐹(𝑋, 𝑠𝑘) ≥ 𝐵𝑠𝑘𝑖𝑘(𝑋) + (𝑝𝑖/𝑞𝑘), where 𝐵𝑠𝑘𝑖𝑚(𝑋) ≥ 𝑟𝑖, ∀𝑖 ∈𝑃(𝑋, 𝑘),
𝑅max (𝑋) < 𝐹 (𝑋, 𝑠𝑘) − 𝐹∗𝑠𝑘 . (27)

4. Exact Algorithm

RS is a min–max problem that can be solved using a general
iterative relaxation (IR) procedure proposed by [33–35]. First,
the set of all possible scenarios 𝑆 is replaced in RS with a finite
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set of scenarios Γ = {𝑠1, 𝑠2, . . . , 𝑠ℎ}, resulting in relaxed mixed
integer program (RS-relaxed):
min 𝑅𝑉 (28)

s.t. 𝐵𝑠𝑖𝑚 (𝑋) + (𝑝𝑠𝑘𝑖𝑞𝑚) − 𝑀(1 − 𝑥𝑖𝑚) − 𝐹∗𝑠 ≤ 𝑅𝑉,
∀𝑖 ∈ 𝐽, 𝑚 ∈ 𝑀, 𝑠𝑘 ∈ Γ,

(29)

𝐵𝑠𝑘𝑖𝑚 (𝑋) ≥ 𝑟𝑠𝑘𝑖 − 𝑀 ⋅ (1 − 𝑥𝑖𝑚) ,
∀𝑖 ∈ 𝐽, 𝑚 ∈ 𝑀, 𝑠𝑘 ∈ Γ, (30)

𝐵𝑠𝑘𝑖𝑚 (𝑋) − 𝑍𝑠𝑘𝑗𝑚 (𝑋)
≥ (𝐷𝑗 + 𝐴 𝑖) ⋅ 𝑦𝑗𝑖𝑚 − 𝑀(1 − 𝑦𝑗𝑖𝑚) ,

∀𝑖, 𝑗 ∈ 𝐽, 𝑖 ̸= 𝑗; 𝑚 ∈ 𝑀, 𝑠𝑘 ∈ Γ,
(31)

(15)–(18) . (32)
Note. In this iterative relaxation approach, we replace the set
of all possible scenarios 𝑆 (|𝑆| = ∞) with Γ = {𝑠1, 𝑠2, . . . , 𝑠ℎ},
and the scenario in Γ is theworst-case scenario for the feasible
solution that is identified in the last iteration.

The minimal makespan 𝐹∗𝑠𝑘 can be solved by solving a
mixed integer programming if the scenario is fixed.

We refer to the𝑚 constraints 𝐵𝑠𝑖𝑚(𝑋) + (𝑝𝑠𝑘𝑖 /𝑞𝑚) −𝑀(1 −𝑥𝑖𝑚) − 𝐹∗𝑠 ≤ 𝑟; ∀𝑖, 𝑚 and 𝐵𝑠𝑘𝑖𝑚(𝑋) ≥ 𝑟𝑠𝑘𝑖 −𝑀 ⋅ (1 − 𝑥𝑖𝑚), ∀𝑖, 𝑚
associated with 𝑠𝑘 as regret cuts.
Iterative Relaxation Algorithm. The IR procedures stop when
LB = UB, where UB is the maximum regret for current re-
laxed solution �̂�.

Step 0. Set LB = 0 (LB is lower bound for regret value) and
UB∗ = +∞ (UB is upper bound for regret value); choose an
initial solution �̂�.

Step 1. Identify solution �̂�’s worst-case scenario �̂� and its
respective 𝑅max(�̂�) through Property 1 and Property 2. If
UB∗ ≥ 𝑅max(�̂�), then UB∗ = 𝑅max(�̂�),𝑋∗ = �̂�. If UB∗ ≤ LB,
go to Step 4.
Step 2. Add regret cuts 𝐵𝑠𝑖𝑚(𝑋)+(𝑝𝑠𝑘𝑖 /𝑞𝑚)−𝑀(1−𝑥𝑖𝑚)−𝐹∗𝑠 ≤𝑟; ∀𝑖, 𝑚 and 𝐵𝑠𝑘𝑖𝑚(𝑋) ≥ 𝑟𝑠𝑘𝑖 −𝑀⋅(1−𝑥𝑖𝑚), ∀𝑖, 𝑚; to RS-relaxed
scenario Γ.
Step 3. �̂� and �̂� are identified by solving RS-relaxed. Set LB =�̂�; go to Step 1.
Step 4. Stop.

5. Swarm Intelligence Approach

5.1. Modified Artificial Bee Colony Algorithm

5.1.1. Description of Modified Artificial Bee Colony Algorithm.
ABC algorithm has been well-studied in parallel machine

Start

Initialization using 
greedy heuristics

Construction of neighborhood solution by employed bees

Greedy selection

Solution assignment for onlooker bee by roulette wheel selection

Greedy selection

Memorizing the 
current best solution

Abandon 
solution?

Scout bee phase

End

Stopping criteria?

T

T

F

F

Figure 1: Process flowchart of artificial bee colony algorithm.

scheduling [36–38]. ABC algorithm is a promising swarm
intelligence algorithm for optimization problems, which
simulates the foraging behavior of honeybees. Three types
of bees serve different functions to contribute to the forage
acquisition for the bee social structure in the hive. The
collected nectar will be stored as a food supply during the
shortage of nectar. Employed bees and onlooker bees respond
to obtain nectar from the nearby plants, while the main force
of scout bee is to gather nectar information to guide the
foraging behavior of the employed bees and onlooker bees.
The design of the ABC algorithm follows a recursive search
procedure with four major phases, including initialization
phase, employed bee phase, onlooker bee phase, and scout
bee phase. The process flowchart is shown in Figure 1.

The size of the bee colony is equal to CS, which
includes employed bees, onlooker bees, and one scout bee.
Approximately half of honeybees are as employed bees, and
the remaining are onlooker bees. The number of solutions
in ABC algorithm is equal to SN, where SN = CS/2.
Each solution 𝑐𝑖 represents an occupied food source by
one employed bee. Hence, the population of the solution is
represented by 𝑐𝑖, 𝑖 = 1, 2, . . . , SN. The role of employed bee
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Figure 2: Swap operator in employed bee phase (same machine and different machine).
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Figure 3: Insert operator in employed bee phase (same machine and different machines).
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1 6 7 5 −1 −1 −1 −1 2 0 3 4 −1 −1 −1 −1

Figure 4: Crossover operator in employed bee phase.

is to gather nectar back to the hive; then the information of
the food source will be shared among the hives. Onlooker
bees will select one food source to further exploit based on
the abundance level of the known nectar. Scout bee will seek
for a new solution once a food source is exhausted.

5.1.2. Initialization Phase. For the initialization phase, the
conventional approach is to generate a random assignment
and sequence for an optimization problem.This prolongs the
convergence to the global optimum and fails to achieve the
global optimum, as the process of converging to the promis-
ing regions involves certain unsuccessful neighborhood
searching under the large size solution space. A solution will
be abandoned when there is no improvement after certain
unsuccessful search. Therefore, a constructive heuristic for
the initialization phase insists on developing the best possible
solution at the initial stage in order to reduce the searching
effort of the ABC algorithm in converging to the global
optimum.The composition of theminimalmakespan in PMS
model aims to obtain a solution with the least total length of
the parallel machine schedule to complete all the available
jobs. The solution quality of an initial solution by sorting
the ready time of each job in ascending order is expected
to be the best alternative in timely fashion compared to

random assignment. While maintaining a certain quality of
initial solution, the diversity between solutions should be
considered. Otherwise, certain solution space could not be
visited. At the same time, it is difficult for the population-
based metaheuristics to escape from the premature conver-
gence [39]. One way of reducing the possibility of converging
to an identical but not a global optimal solution for the
population-basedmetaheuristics relies on randomness in the
construction of initial solution. In our preliminary study, it
is effective to develop a fair quality of solution by random
machine assignment for a sorted sequence.

5.1.3. Employed Bee Phase. Each employed bee performs a
neighborhood search on a solution 𝑐𝑖 to generate a neigh-
borhood solution 𝑐𝑖 by three neighborhood operators to
enhance the solution quality in terms of its objective value.
A greedy selection is applied herein to continuously improve
a solution by comparing the objective values between fit(𝑐𝑖)
and fit(𝑐𝑖). If the solution quality of neighborhood solution
is better than the original one, the neighborhood solution
will replace the previous solution 𝑐𝑖 ← 𝑐𝑖. The neighbor-
hood operators include swap operator, insert operator, and
crossover operator as shown in Figures 2, 3, and 4, corre-
spondingly. The neighborhood search is not restricted on
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Table 1: List of algorithms for robust parallel machine scheduling with uncertainties processing time and arrival time.

Iterative relaxation approach Algorithm for RS Algorithm for 𝑃 ‖ 𝐶max

Approach 1 Mixed integer programming Mixed integer programming
Approach 2 Proposed artificial bee colony algorithm Proposed artificial bee colony algorithm

either the same or another runway by randomly selecting
two or more elements.The accumulative trial of unsuccessful
improvement on a solution trial(𝑐𝑖)will be increased by 1 if the
objective value of a neighborhood solution is worse than the
previous solution. The crossover operator will select a single
runway solutionwith the longest completion time and choose
another solution by fitness selective probability to combine
and develop an offspring solution.

5.1.4. Onlooker Bee Phase. Each onlooker bee will further
act as neighborhood operators to a specified solution based
on a probabilistic selection with regard to the fitness values.
The fitness value of a solution fit(𝑐𝑖) is measured by (33).
A larger number of fitness values imply a better quality of
a solution 𝑐𝑖. After the computation of fitness value for all
the solutions, (34) is able to obtain the individual selective
probability of each solution 𝐼𝑛𝑑𝑖𝑃𝑟𝑜𝑏𝑖. A cumulative proba-
bility 𝐶𝑢𝑚𝑢𝑃𝑟𝑜𝑏𝑖 is computed by aggregating the preceding
individual probabilities. The selection criterion follows the
approach of roulette wheel selection. A random number𝑝 will be generated for each onlooker bee for selecting a
solution to further search by neighborhood operators:

fit (𝑐𝑖) = {{{
11 + fun (𝑐𝑖) , if fun (𝑐𝑖) ≥ 0,

1 + abs (fun (𝑐𝑖)) , if fun (𝑥𝑖) ≤ 0,
∀𝑖,

(33)

IndiProb𝑖 = fit (𝑐𝑖)∑SN
𝑖=1 fit (𝑐𝑖) , ∀𝑖. (34)

5.1.5. Scout Bee Phase. During the neighborhood search, the
cumulative number of unsuccessful update will be recorded
as trial(𝑐𝑖). A large number of trial(𝑐𝑖) imply a possibility that
solution 𝑐𝑖 is tripped in a local optimum. The employment
of scout bee phase is to abandon a solution once it reaches
the maximum tolerance of searching. If one solution cannot
be further improved by several iterations and reaching the
maximum tolerance 𝑙𝑖𝑚𝑖𝑡, the scout bee will be replaced by
an exhausted solution by an initial solution.

5.1.6. Min–Max Regret Approach Using Artificial Bee Colony
Algorithm. The design of the min–max regret approach is
to obtain a robust PMS schedule to minimize the maximum
regret value by considering a number of scenarios. Two main
stages require optimization techniques to resolve the min–
max regret model, which are optimal makespan under the
worst-case scenario and makespan under robust schedule.
The process workflows using the ABC algorithm in deriving
the worst-case optimal makespan and robust makespan are
the same, except the computation of objective value and

fitness value. The objective function in optimal makespan
under the worst-case scenario is 𝐹(𝑋, 𝑠𝜁), while the objective
function in robust ALP makespan by considering all the
worst-case scenarios follows (28) and (29).

6. Numerical Experiments and Results

In this section, the performance of the modified ABC
algorithm is evaluated by random robust PMS instances and
comparedwith the results usingmixed integer programming.
The MIP is computed by IBM ILOG CPLEX Optimization
Studio 12.6.3 for comparison. All algorithms are written in
C# language with visual studio 2015 on a computer with Intel
Core i7 3.60GHzCPU and 16.0 GB ram under theWindow 7
Enterprise 64-bit operating environment. In order to evaluate
the algorithm performance, two approaches have been con-
sidered in the numerical experiments, as shown in Table 1.
Approach 1 usingmixed integer programming in resolvingRS
and 𝑃 ‖ 𝐶max is considered as a baseline for comparison. In
approach 2, the optimization technique for RS and 𝑃 ‖ 𝐶max
is the proposed artificial bee colony algorithm. In this regard,
the performance of convergence and computational speed of
the proposed artificial bee colony algorithm can be measured
by comparing the values obtained in exact method.

The test running is conducted in preliminary study to
obtain the parameter setting.Themaximum iterationMaxIter
is equal to 1000 × 𝑛 × 𝑞. The maximum tolerance of
unsuccessful update is equal to SN × 𝑛 × 𝑞 × 2. The colony
size is set to be 80, and the number of solutions is 40. These
results are also evaluated together with the optimal solution
fromMIP to measure the deviation between exact algorithm
and swarm intelligence. The maximum computational time
for MIP and proposed ABC algorithm is 7200 seconds.

Both algorithms are evaluated by test instances with 𝑛 =21, 27, 33 jobs and 𝑞 = 3, 4, 5 machines. For each job, the
lower bound and upper bound of ready time and processing
time fall into a random uniform distribution integer with
intervals of 𝑟𝑖 ∈ [0, 15𝑛], 𝑟𝑖 ∈ [𝑟𝑖, 1.1𝑟𝑖], 𝑝𝑖 ∈ [10, 50], and 𝑝𝑖 ∈[𝑝𝑖, 𝑝𝑖(1+𝛽)] correspondingly, where 𝛽 value is considered to
be (0.2, 0.4, 0.6, 0.8, 1.0). The total number of test instances is
45 with any combination of 𝑛, 𝑞, and 𝛽. The processing speed𝑞𝑚 is equal to a random uniform distribution from 1 to 10,
where 𝑚 = 1, 2, . . . , 𝑘. Assuming there are only three types
of injection molds, the mold installation time 𝐷𝑖 and mold
removal time𝐴 𝑖 of injectionmolds for each group are defined
as (30, 60, 90) and (10, 20, 30). The number of jobs for each
group is equally distributed.

The regret upper bound value and regret lower bound
value have been recorded using MIP to indicate the perfor-
mance of the iterative relaxation algorithm. If the regret gap
is equal to 0%, the recorded robust optimal value implies a
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true optimum. Otherwise, the model has not been able to
determine the optimal solution within 7200 seconds if the
regret gap is larger than 0%. In order to compare between
the performance of MIP algorithm and the performance
of MABC algorithm, the deviation from the best-known
solution indicates the deviation between average optimal and
the optimal value using Cplex with limited computational
time.

Table 2 shows the average computational performance
for robust parallel machine scheduling using modified ABC
algorithm in 10 run times. The results indicated that the
computational time is exponentially increased when the
problem size grows for both algorithms. For the problem size
of 𝑛 = 21, the robust optimal solution obtained by MIP
performs better than the result using MABC algorithm in
terms of optimal value and computational time. This implies
the certain computational overhead for MABC algorithm in
small size instance. When the problem size increases, MIP
was not able to determine the optimal solution within a
reasonable time, while MABC algorithm was able to obtain
near optimal value. In order to measure the variability of
algorithm performance, the number of best solutions denotes
the number of optimal values (maximum number of 10) that
surpasses the result obtained byMIP in Table 3.These results
can provide evidence that the variability of MABC algorithm
performance for the test instance with 𝛽 = 20, 40, 60, 80
is in low level with respect to the quality of the solutions.
The number of better solutions #best represents the number
of solutions found by modified ABC algorithm in 10 run
times which outperforms the solution obtained by MIP
with time limit. As for the large size instance, the modified
ABC algorithm is able to obtain better solution with lower
computational effort than the exact method.

7. Concluding Remarks

Parallel machine model has been widely adopted in the
manufacturing environment and its scheduling problem is
extensively studied in literatures andminimizingmakespan is
the common objective in parallel machine scheduling prob-
lem. However, most of the literatures have the assumption
that the parameters of job such as processing time and ready
time are precisely known, which is counter to the practical
situation for the set of jobs that are processed for the first
time. Uncertain processing time and ready time in parallel
machine scheduling are the common phenomenon in the
production scheduling. In practice, the ready time of a job
is uncertain and cannot be estimated by an exact probability
distribution due to the effect of external factors, such as
delivery variability, in-bound logistics delays, labour issues,
and transportation schedules. The processing time of a job
may deviate from the standard operation time, which is
caused by corrupting operational events, corrective action,
and reworking.

In order to characterize the uncertainties of parameters, it
is assumed that the exact value of processing time and ready
time of each job is unknown and the available information
is the bound of each parameter. To resolve this robust
version of 𝑃 ‖ 𝐶max problem, the min–max regret approach

is introduced herein to obtain a robust parallel machine
schedule that considers all possible scenarios. We first intro-
duce a mixed integer linear programming formulation to
characterize the problem and then propose two properties to
eliminate worst-case scenario The proposed two properties
allow the model obtain the maximal regret for each feasible
schedule with a finite number of extreme point scenarios.

An exact algorithm based on general iterative relaxation
algorithm is developed to solve the proposed problem. How-
ever, it is difficult to obtain a solution from large size instances
by the exact algorithm since identifying worst-case scenario
for each feasible is computationally expensive. Therefore,
a modified artificial bee colony algorithm is proposed to
solve the large-scale parallel machine scheduling with uncer-
tainty. The experimental result indicates that a robust near
optimal solution can be obtained with a reasonable time.
The strength of artificial bee colony algorithm follows the
three main features to obtain a near optimal solution by
utilizing decentralization of honey bee, self-organizing in
swarm performance, and collective behavior in algorithm
structure. The proposed artificial bee colony algorithm is
widely adopted in a static parallel machine scheduling and
other related problems. In order to enhance the exploitation
and exploration of the proposed algorithm to achieve a high
level of optimization technique for robust modelling, certain
modification on artificial bee colony algorithm has been
proposed.

Future work can be concluded as follows: (1) extension
of parallel machine scheduling with realistic uncertainties,
constraints, and objectives to retain feasible solution in actual
operation and (2) optimizing the algorithm structure and
iteration process with other known optimization techniques
to achieve optimum with less computational effort.

Notation of Artificial Bee Colony Algorithm

CS: The size of bee colony
SN: The number of colony solutions
MaxIter: The maximum number of iterations
Dim: The dimension of an independent

solution𝑐𝑖, 𝑖 = 1, 2, . . . , SN: The position of each solution in bee
colony

fun(𝑐𝑖): The objective value of solution 𝑐𝑖
fit(𝑐𝑖): The fitness value of solution 𝑐𝑖𝐼𝑛𝑑𝑖𝑃𝑟𝑜𝑏𝑖: The probability of an individual

solution 𝑐𝑖 among the entire colony in
terms of fitness value𝐶𝑢𝑚𝑢𝑃𝑟𝑜𝑏𝑖: The cumulative probability of an
individual solution 𝑐𝑖 in ascending
order among the entire colony in
terms of fitness value𝑐𝑖: The neighbor solution of an
individual solution 𝑐𝑖

trial(𝑐𝑖): The accumulated trial value of an
individual solution 𝑐𝑖, which cannot
enhance the quality of solution in
terms of its objective value
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Table 2: The average computational performance for robust parallel machine scheduling using modified ABC algorithm.

𝑛 𝑞 𝛽
MIP w/Cplex Modified ABC algorithm

Optimal Iteration CPU Regret
UB

Regret
LB

Regret gap(%)a Average
optimalc

Average
iterationc CPU DFB(%)b

21 3

20 368.4 2 1.46 0.00 0.00 0.00 371.43 3.50 350.26 0.82
40 363.6 2 TL 41.50 6.30 84.82 374.20 4.40 477.13 2.83
60 346.2 0 TL 119.90 0.00 100.00 396.44 7.50 859.81 12.67
80 400.2 1 TL 96.10 0.00 100.00 419.52 9.70 1172.62 4.61
100 378 0 TL 174.50 0.00 100.00 432.20 9.00 1062.08 12.54

21 4

20 332 3 63.15 0.00 0.00 0.00 341.64 3.40 558.23 2.82
40 338.4 3 58.35 0.00 0.00 0.00 356.80 6.00 961.19 5.16
60 346.2 5 119.16 15.90 36.40 0.00 357.14 9.70 1762.27 3.06
80 342.6 4 298.16 22.00 45.00 0.00 360.06 9.80 1854.48 4.85
100 350.6 4 TL 43.90 3.30 92.48 354.80 10.00 1871.19 1.18

21 5

20 332 0 7.43 0.00 0.00 0.00 344.32 0.70 357.86 3.58
40 332 9 91.40 21.50 31.60 0.00 348.28 4.30 966.30 4.67
60 332 8 82.64 27.20 36.40 0.00 353.90 7.70 2085.18 6.19
80 342.6 8 110.42 8.20 22.00 0.00 359.52 9.80 2700.58 4.71
100 332 8 90.58 56.20 62.00 0.00 354.54 10.00 2468.68 6.36

27 3

20 442 1 TL 67.70 0.00 100.00 488.56 4.40 794.83 9.53
40 446.8 0 TL 102.80 0.00 100.00 521.12 7.60 1450.59 14.26
60 487.4 0 TL 118.40 0.00 100.00 519.66 9.80 2049.22 6.21
80 498.8 0 TL 163.20 0.00 100.00 519.92 10.00 2076.67 4.06
100 514.6 0 TL 218.80 0.00 100.00 546.42 10.00 2085.48 5.82

27 4

20 463 2 TL 28.80 10.00 65.28 427.02 0.00 253.22 −8.43
40 469.4 2 TL 55.10 10.00 81.85 436.88 0.00 253.35 −7.44
60 435.4 1 TL 84.30 0.00 100.00 436.08 10.00 3574.79 0.16
80 482.2 2 TL 108.30 0.00 100.00 445.92 10.00 3530.21 −8.14
100 488.6 2 TL 127.70 0.00 100.00 453.70 10.00 3566.66 −7.69

27 5

20 418 3 TL 22.10 2.70 87.78 422.50 5.30 2038.03 1.07
40 418 2 TL 32.30 6.00 81.42 435.22 9.20 3544.58 3.96
60 418 3 TL 31.20 4.40 85.90 419.92 8.80 3614.32 0.46
80 435.4 3 TL 57.20 21.30 62.76 439.56 9.80 4098.94 0.95
100 429 10 TL 59.50 70.60 0.00 447.08 9.80 4139.47 4.04

33 3

20 575.6 0 3541.30 0.00 0.00 0.00 589.19 4.30 1513.64 2.31
40 585 1 TL 118.50 26.20 77.89 609.84 7.40 2857.19 4.07
60 560.2 0 TL 0.00 0.00 0.00 627.76 9.40 4102.80 10.76
80 618.9 1 TL 215.20 17.50 91.87 642.50 7.80 4419.67 3.67
100 602 0 TL 293.50 0.00 100.00 627.36 7.80 4412.68 4.04

33 4

20 556.5 8 TL 18.80 0.00 100.00 555.92 3.40 2763.64 −0.10
40 562.9 4 TL 89.30 66.00 26.09 538.80 5.40 4641.83 −4.47
60 540.2 2 TL 115.80 13.20 88.60 561.04 6.00 4680.89 3.71
80 519 2 TL 194.90 0.00 100.00 542.20 6.00 4662.75 4.28
100 519 2 TL 152.00 34.70 77.17 563.08 6.00 3566.53 7.83

33 5

20 556.5 2 463.82 0.00 0.00 0.00 556.50 0.90 1872.39 0.00
40 562.9 8 1614.77 15.40 33.80 0.00 566.20 2.60 3383.73 0.58
60 519 11 2449.81 48.40 50.30 0.00 526.72 5.40 4764.68 1.47
80 519 9 TL 88.00 41.40 52.95 519.54 6.00 5264.46 0.10
100 519 8 TL 58.50 14.90 74.53 560.98 5.40 5088.87 7.48

aThe percentage gap between regret lower bound value and regret upper bound value.
bThe deviation in percentage between the average optimal value using MABC algorithm and the optimal value using MIP.
cThe average solution obtained by MABC algorithm in 10 run times.
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Table 3: The best computational performance for robust parallel machine scheduling using modified ABC algorithm.

𝑛 𝑞 𝛽
MIP w/Cplex Modified ABC algorithm

Optimal Iteration CPU Regret
UB

Regret
LB

Regret
gap(%)a

Best
optimalc

Best
iterationc CPU # best DFB(%)b

21 3

20 368.4 2 1.46 0.00 0.00 0.00 368.40 4.00 381.22 7 0.00
40 363.6 2 TL 41.50 6.30 84.82 363.60 2.00 246.51 3 0.00
60 346.2 0 TL 119.90 0.00 100.00 368.40 7.00 702.52 1 6.03
80 400.2 1 TL 96.10 0.00 100.00 404.60 10.00 1225.68 2 1.09
100 378 0 TL 174.50 0.00 100.00 394.00 10.00 1167.61 1 4.06

21 4

20 332 3 63.15 0.00 0.00 0.00 332.00 1.00 126.41 7 0.00
40 338.4 3 58.35 0.00 0.00 0.00 338.40 1.00 258.02 4 0.00
60 346.2 5 119.16 15.90 36.40 0.00 346.20 7.00 1359.59 5 0.00
80 342.6 4 298.16 22.00 45.00 0.00 342.60 10.00 1730.55 2 0.00
100 350.6 4 TL 43.90 3.30 92.48 350.60 10.00 1821.72 7 0.00

21 5

20 332 0 7.43 0.00 0.00 0.00 332.00 0.00 184.60 5 0.00
40 332 9 91.40 21.50 31.60 0.00 332.00 0.00 215.59 3 0.00
60 332 8 82.64 27.20 36.40 0.00 334.60 10.00 3020.11 4 0.78
80 342.6 8 110.42 8.20 22.00 0.00 342.60 10.00 2351.84 4 0.00
100 332 8 90.58 56.20 62.00 0.00 332.00 10.00 2704.27 1 0.00

27 3

20 442 1 TL 67.70 0.00 100.00 474.20 4.00 733.30 0 6.79
40 446.8 0 TL 102.80 0.00 100.00 511.00 6.00 1112.00 0 12.56
60 487.4 0 TL 118.40 0.00 100.00 465.80 2.00 2140.45 2 −4.64
80 498.8 0 TL 163.20 0.00 100.00 501.60 10.00 2084.83 0 0.56
100 514.6 0 TL 218.80 0.00 100.00 499.00 10.00 2084.33 2 −3.13

27 4

20 463 2 TL 28.80 10.00 65.28 418.00 0.00 252.50 6 −10.77
40 469.4 2 TL 55.10 10.00 81.85 434.00 0.00 253.65 10 −8.16
60 435.4 1 TL 84.30 0.00 100.00 426.00 10.00 3576.53 4 −2.21
80 482.2 2 TL 108.30 0.00 100.00 440.40 10.00 3570.41 10 −9.49
100 488.6 2 TL 127.70 0.00 100.00 439.30 10.00 3588.61 10 −11.22

27 5

20 418 3 TL 22.10 2.70 87.78 418.00 0.00 296.45 9 0.00
40 418 2 TL 32.30 6.00 81.42 418.00 10.00 3511.84 3 0.00
60 418 3 TL 31.20 4.40 85.90 418.00 10.00 4067.50 8 0.00
80 435.4 3 TL 57.20 21.30 62.76 422.40 10.00 4393.53 4 −3.08
100 429 10 TL 59.50 70.60 0.00 418.00 10.00 4433.44 2 −2.63

33 3

20 575.6 0 3541.30 0.00 0.00 0.00 575.60 6.00 1930.36 3 0.00
40 585 1 TL 118.50 26.20 77.89 596.50 5.00 1866.59 0 1.93
60 560.2 0 TL 0.00 0.00 0.00 584.80 10.00 4416.73 0 4.21
80 618.9 1 TL 215.20 17.50 91.87 614.80 7.00 3997.03 2 −0.67
100 602 0 TL 293.50 0.00 100.00 575.90 8.00 4318.77 2 −4.53

33 4

20 556.5 8 TL 18.80 0.00 100.00 519.00 1.00 1209.28 8 −7.23
40 562.9 4 TL 89.30 66.00 26.09 527.00 5.00 4797.14 6 −6.81
60 540.2 2 TL 115.80 13.20 88.60 557.60 6.00 4299.88 6 3.12
80 519 2 TL 194.90 0.00 100.00 524.20 6.00 4707.69 2 0.99
100 519 2 TL 152.00 34.70 77.17 542.00 6.00 4430.14 0 4.24

33 5

20 556.5 2 463.82 0.00 0.00 0.00 556.50 0.00 925.34 10 0.00
40 562.9 8 1614.77 15.40 33.80 0.00 566.20 0.00 976.70 10 0.58
60 519 11 2449.81 48.40 50.30 0.00 519.00 5.00 4530.66 8 0.00
80 519 9 TL 88.00 41.40 52.95 519.00 5.00 4811.97 8 0.00
100 519 8 TL 58.50 14.90 74.53 523.50 5.00 5248.92 0 0.86

aThe percentage gap between regret lower bound value and regret upper bound value.
bThe deviation in percentage between the average optimal value using modified ABC algorithm and the optimal value using MIP.
cThe best solution (in terms of objective value and CPU time) obtained by MABC algorithm in 10 run times.



12 Scientific Programming

𝑙𝑖𝑚𝑖𝑡: The maximum tolerance trial(𝑐𝑖)𝑝: Random number, 0 ≤ 𝑝 ≤ 1.
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